Evolution equations, II

Alexandru Ionescu

September 10, 2021

The main equations

• the defocusing pure power NLS: $u : \mathbb{R}^d \times [0, T] \to \mathbb{C}$,

$$i\partial_t u + \Delta u = u|u|^{2\sigma}, \qquad u(0) = \phi.$$

• the KdV equation: $u : \mathbb{R} \times [0, T] \to \mathbb{R}$,

$$\partial_t u + \partial_x^3 u = u \partial_x u, \qquad u(0) = \phi.$$

Local well-posedness: fixed-point argument

We rewrite the NLS in integral form (Duhamel formula)

$$u(t) = e^{it\Delta}\phi - i \int_0^t e^{i(t-s)\Delta} N((u(s)) ds,$$

$$N(u) = u|u|^{2\sigma}.$$

We would like to construct the solution by the recursive scheme

$$u^{(n+1)}(t) = e^{it\Delta}\phi - i\int_0^t e^{i(t-s)\Delta} \mathcal{N}(u^{(n)}(s)) ds,$$

$$u^{(0)}(t) = e^{it\Delta}\phi.$$

The procedure converges if

$$\left\| \int_0^t e^{i(t-s)\Delta} \mathcal{N}(f(s)) \, ds - \int_0^t e^{i(t-s)\Delta} \mathcal{N}(g(s)) \, ds \right\|_{L_T^\infty H^\rho} \ll \|f - g\|_{L_T^\infty H^\rho}$$
(1)

for any $f,g\in C([0,T]:H^\rho)$ with $\|f\|_{L^\infty_TH^\rho},\|g\|_{L^\infty_TH^\rho},\|g\|_{L^\infty_TH^\rho}\leq 2R$.

Local well-posedness: fixed-point argument

If $\rho > d/2$ then H^{ρ} is an algebra, $\rho > d/2$, therefore

$$\|\mathcal{N}(f) - \mathcal{N}(g)\|_{L^{\infty}_T H^{\rho}} \lesssim_{\rho} R \|f - g\|_{L^{\infty}_T H^{\rho}}$$

If $\sigma \geq 1$ is an integer then

$$\|e^{i(t-s)\Delta}\{\mathcal{N}(f)-\mathcal{N}(g)\}\|_{H^{
ho}}\lesssim_{
ho,R}\|f-g\|_{L^{\infty}_TH^{
ho}}$$

for any $s \le t \in [0, T]$. Thus, for any $t \in [0, T]$

$$\left\| \int_0^t e^{i(t-s)\Delta} \left[\mathcal{N}(f(s)) - \mathcal{N}(g(s)) \right] ds \right\|_{H^\rho} \lesssim_{\rho,R} T \|f - g\|_{L^\infty_T H^\rho},$$

which gives the desired bounds (1) if $T \ll_{\rho,R} 1$.

Conservation laws: the quantities

$$M(t) = \int_{\mathbb{R}^d} |u(x,t)|^2 dx,$$

$$E(t) = \frac{1}{2} \int_{\mathbb{R}^d} |\nabla_x u(x,t)|^2 dx + \frac{1}{2\sigma + 2} \int_{\mathbb{R}^d} |u(x,t)|^{2\sigma + 2} dx$$
(2)

are conserved.

Theorem: Assume that

$$\sigma \in \left(0, \frac{2}{d-2}\right).$$

If $\phi \in H^1(\mathbb{R}^d)$ then there is a unique global solution $u \in S^1 \subseteq C([0,\infty):H^1(\mathbb{R}^d))$ of the initial-value problem

$$i\partial_t u + \Delta u = u|u|^{2\sigma}, \qquad u(0) = \phi.$$

Moreover, the mapping $\phi \to u$ is continuous from $H^1 \to S^1([0, T])$, for any T > 0.

- To prove global well-posedness we need to be able to prove local well-posedness in \mathcal{H}^1 .
- The range $\sigma \in (0, \frac{2}{d-2})$ is called the energy-subcritical range.
- We would still like to construct the solution by the basic recursive scheme

$$u^{(n+1)}(t) = e^{it\Delta}\phi - \int_0^t e^{i(t-s)\Delta} \mathcal{N}(u^{(n)}(s)) ds,$$

$$u^{(0)}(t) = e^{it\Delta}\phi.$$

in a suitable space $S^1[0,\varepsilon]$.

We define the Strichartz space of functions on $\mathbb{R}^d imes \mathbb{R}$ by

$$S^{0} := L_{t}^{\infty} L_{x}^{2} \cap L_{t}^{q} L_{x}^{r},$$

$$\|f\|_{S^{0}} := \max \left\{ \|f\|_{L_{t}^{\infty} L_{x}^{2}}, \|f\|_{L_{t}^{q} L_{x}^{r}} \right\}$$

where (q, r) is an admissible pair

$$2/q + d/r = d/2,$$
 $(q, r) \in (2, \infty] \times [2, \infty].$ (3)

Here

$$\|f\|_{L^q_tL^r_x}:=\Big[\int_{\mathbb{R}}\Big[\int_{\mathbb{R}^d}|f(x,t)|^r\,dx\Big]^{q/r}\,dt\Big]^{1/q}.$$

Theorem: (Strichartz estimates) (a) If (q, r) is admissible then $\|e^{it\Delta}\phi\|_{L^q_tL^r_x}\lesssim_q \|\phi\|_{L^2}$.

(b) If (q, r) is an admissible pair then

$$\left\| \int_{-\infty}^t e^{i(t-s)\Delta} N(s) \, ds \right\|_{L^\infty_t L^2_x \cap L^q_t L^r_x} \lesssim_q \|N\|_{L^1_t L^2_x + L^{q'}_t L^{r'}_x}.$$

By definition,

$$\|N\|_{X+Y} := \inf_{N=N_1+N_2} \|N_1\|_X + \|N_2\|_Y.$$

• Dispersive estimates. The kernel of the operator $e^{it\Delta}$ is

$$K(x,t) := C \int_{\mathbb{R}^d} e^{ix \cdot \xi} e^{-it|\xi|^2} d\xi = C t^{-d/2} e^{i|x|^2/(4t)}.$$

$$\|e^{it\Delta}\|_{L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)} \lesssim 1,$$

$$\|e^{it\Delta}\|_{L^1(\mathbb{R}^d) \to L^\infty(\mathbb{R}^d)} \lesssim |t|^{-d/2}.$$

By interpolation

$$\|e^{it\Delta}\|_{L^{r'}(\mathbb{R}^d)\to L^r(\mathbb{R}^d)}\lesssim |t|^{-d(1/2-1/r)}.$$

• The *TT** argument: we want

$$\|e^{it\Delta}\phi\|_{L^q_tL^r_x}\lesssim_q \|\phi\|_{L^2}.$$

This is equivalent to

$$\Big| \int_{\mathbb{R}^d \times \mathbb{R}} (e^{it\Delta} \phi)(x) g(x,t) \, dx dt \Big| \lesssim_q \|\phi\|_{L^2} \|g\|_{L^{q'}_t L^{r'}_x}.$$

This is equivalent to

$$\left\| \int_{\mathbb{R}^d \times \mathbb{R}} e^{-it|\xi|^2} e^{ix \cdot \xi} g(x,t) \, dx dt \right\|_{L^2_{\xi}} \lesssim_q \|g\|_{L^{q'}_t L^{r'}_x}.$$

This is equivalent to

$$\Big| \int_{\mathbb{R}^d \times \mathbb{R}} \int_{\mathbb{R}^d \times \mathbb{R}} g(x, t) \overline{g}(y, s) K(x - y, t - s) \, dx dt dy ds \Big| \lesssim_q \|g\|_{L_t^{q'} L_x^{r'}}^2. \tag{4}$$

However, using the dispersive estimate,

$$\Big|\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}g(x,t)h(y,s)K(x-y,t-s)\,dxdy\Big|\lesssim G(t)G(s)|t-s|^{-d(1/2-1/r)}$$

where

$$G(t) = \left[\int_{\mathbb{R}^d} |g(x,t)|^{r'} dx \right]^{1/r'}.$$

The desired bound follows from fractional integration:

$$||f * |y|^{-\gamma}||_{L^q(\mathbb{R})} \le C_{p,q}||f||_{L^p(\mathbb{R})}$$

if

$$0<\gamma<1, \qquad 1< p< q<\infty, \qquad 1-\gamma=\frac{1}{p}-\frac{1}{q}.$$

We return now to the proof of the global well-posedness theorem. Assume, for simplicity, that d=3 and we study the cubic NLS , corresponding to $\sigma=1$. This is consistent with the subcritical condition

$$\sigma \in (0, 2/(d-2)).$$

We define the Strichartz space $S^1[0,T]$ as the set functions on $\mathbb{R}^d \times [0,T]$ defined by the norm

$$||f||_{\mathcal{S}^1[0,T]} := \max \left\{ ||\langle \nabla \rangle f||_{L_t^\infty L_x^2}, \, ||\langle \nabla \rangle f||_{L_t^4 L_x^3} \right\}.$$

with (q, r) = (4, 3).

The Strichartz estimate shows that

$$\|e^{it\Delta}\phi\|_{S^1[0,T]}\lesssim \|\phi\|_{H^1}$$

To close the fixed-point argument we need to show that

$$||f \cdot g \cdot \partial h||_{L_{t}^{4/3} L_{x}^{3/2}[0,T]} \ll ||f||_{S^{1}[0,T]} ||g||_{S^{1}[0,T]} ||h||_{S^{1}[0,T]}$$
(5)

if T is small enough. However, using Sobolev embedding in the x variable

$$\begin{split} \|f\|_{L_t^4 L_x^{12}[0,T]} \lesssim \|f\|_{S^1[0,T]}, & \|g\|_{L_t^4 L_x^{12}[0,T]} \lesssim \|g\|_{S^1[0,T]}, \\ \|\partial h\|_{L_t^\infty L_x^2[0,T]} \lesssim \|h\|_{S^1[0,T]}. \end{split}$$

Therefore

$$||f \cdot g \cdot \partial h||_{L^{2}_{t}L^{3/2}_{x}[0,T]} \lesssim ||f||_{S^{1}[0,T]}||g||_{S^{1}[0,T]}||h||_{S^{1}[0,T]}$$

and the desired conclusion (5) follows by taking T small.

We consider now the Korteweg-de Vries equation: $u : \mathbb{R} \times [0, T] \to \mathbb{R}$,

$$\partial_t u + \partial_x^3 u = u \partial_x u, \qquad u(0) = \phi.$$

The equation has infinitely many conservation laws, including the conservation of mass

$$M(t) = \int_{\mathbb{R}^d} |u(x,t)|^2 dx.$$

Theorem: If $\phi \in H^0(\mathbb{R})$ is real-valued then there is a unique global solution $u \in F^0 \subseteq C([0,\infty):H^0(\mathbb{R}))$ of the KdV initial-value problem. Moreover, the mapping $\phi \to u$ is continuous from $H^0 \to F^0([0,T])$, for any T>0.

- The energy argument gives local well-posedness in $H^{3/2+}$.
- By scaling $u_{\lambda}(x,t)=\lambda^2 u(\lambda x,\lambda^3 t),\ \lambda>0$, we may assume that the initial data is small in H^0 , $\|\phi\|_{H^0}\leq \varepsilon\ll 1$, which will be propagated by the flow.
- We would still like to construct the solution by the basic recursive scheme (coming from the Duhamel formula)

$$u^{(n+1)}(t) = e^{-t\partial_x^3}\phi + \int_0^t e^{-(t-s)\partial_x^3} \mathcal{N}(u^{(n)}(s)) ds,$$

$$u^{(0)}(t) = e^{it\Delta}\phi.$$

in a suitable space $F^0[0,1]$. In our case the nonlinearity is

$$N(u) = u\partial_{x}u.$$

The key idea is to use a new class of spaces, called the $X^{s,b}$ spaces introduced by Bourgain, Kenig-Ponce-Vega, and Klainerman-Machedon. They are defined by the norms

$$||f||_{X^{s,b}} := ||\widehat{f}(\xi,\tau)\langle \tau - \omega(\xi)\rangle^b \langle \xi \rangle^s||_{L^2}$$
 (6)

where $\langle r \rangle := (1+r^2)^{1/2}$ and $\omega(\xi) := \xi^3$ is the KdV dispersion relation. Here $f: \mathbb{R} \times \mathbb{R}$ and \widehat{f} denotes its Fourier transform in both variables.

For functions $f : \mathbb{R} \times [a, b]$ we define

$$||f||_{X^{s,b}[a,b]} := \inf_{Ef=f \text{ on } \mathbb{R} \times [a,b]} ||Ef||_{X^{s,b}},$$

where the infimum is taken over all the extension Ef of f.

Notice that

$$X^{s,b} \hookrightarrow C(\mathbb{R}: H^s)$$
 if $b > 1/2$.

To close the fixed point argument we need to prove the linear estimates

$$\|e^{-t\partial_{x}^{3}}\phi\|_{X^{s,b}[0,1]} \lesssim \|\phi\|_{H^{s}},$$
 (7)

$$\left\| \int_0^t e^{-(t-s)\partial_x^3} N(s) \, ds \right\|_{X^{s,b}[0,1]} \lesssim \|N\|_{X^{s,b-1}[0,1]}, \tag{8}$$

and the bilinear estimates (b = 1/2+),

$$\|\partial_{\mathsf{X}}(fg)\|_{\mathsf{X}^{0,b-1}} \lesssim \|f\|_{\mathsf{X}^{0,b}} \|g\|_{\mathsf{X}^{0,b}}.$$
 (9)

The linear estimates are easy, for example

$$\begin{split} \|e^{-t\partial_x^3}\phi\|_{X^{s,b}[0,1]} &\leq \|\eta(t)e^{-t\partial_x^3}\phi\|_{X^{s,b}} \\ &\lesssim \|\widehat{\phi}(\xi)\widehat{\eta}(\tau-\xi^3)\langle \tau-\omega(\xi)\rangle^b\langle \xi\rangle^s\|_{L^2_{\xi,\tau}} \\ &\lesssim \|\phi\|_{H^s}. \end{split}$$

In view of the definitions, the bilinear estimates are equivalent to

$$\int_{\mathbb{R}^{4}} \frac{|\xi + \eta| H(\xi + \eta, \tau + \mu) F(\xi, \tau) G(\eta, \mu)}{\langle \tau + \mu - \omega(\xi + \eta) \rangle^{1 - b} \langle \tau - \omega(\xi) \rangle^{b} \langle \mu - \omega(\eta) \rangle^{b}} d\xi d\eta d\tau d\mu
\lesssim ||F||_{L^{2}} ||G||_{L^{2}} ||H||_{L^{2}}$$
(10)

where

$$F(\xi,\tau) := \widehat{f}(\xi,\tau) \langle \tau - \omega(\xi) \rangle^b,$$

$$G(\xi,\tau) := \widehat{g}(\xi,\tau) \langle \tau - \omega(\xi) \rangle^b.$$

The point is that the denominator cannot be small, since

$$\omega(\xi + \eta) - \omega(\xi) - \omega(\eta) = (\xi + \eta)^3 - \xi^3 - \eta^3 = 3\xi\eta(\xi + \eta).$$

The bounds (10) follow by dyadic decompositions in the variables $\xi, \eta, \tau - \omega(\xi), \mu - \omega(\eta)$. An important case is when

$$\xi \approx N \gg 1, |\eta| \lesssim 1/N^2, |\tau - \omega(\xi)| \lesssim 1, |\mu - \omega(\eta)| \lesssim 1.$$