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Main takeaway message

I New method to construct (perturbations to) solutions.
I Linear operators (Friday: nonlinear).
I Constructive! Gives quantitative information on the solutions.
I Simple ideas.
I Very well suited towards counterexamples with open

conditions.
I Computer-assisted proof.
I In this talk: All BCs are Dirichlet, but the method works with

Neumann, Robin or Steklov as well.
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Additional observations
In this talk: main operator is the Laplacian, but the method works
for others. For example, following Chen-Hou-Huang (De Gregorio
model):

ωt + uωx = uxω, ux = Hω

Finite time singularities iff stability around self-similar profile ω̄ (+
more conditions). If one writes the linearization:

ωt = L(ω) + N(ω) + F

the core of the argument is to bound the spectrum and prove, for a
suitable weight and λ > 0:

〈L(ω), ω〉 ≤ −λ〈ω, ω〉

and extract nonlinear stability out of the linear one.
⇒ Computer-assisted.
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What is a computer-assisted proof (in analysis/PDE)?

SCHEME OF A PROOF:

PROBLEM
Infinite dim.,
Infeasible by hand

REDUCTION
Finite (Big) set of
calculations

THEOREM
Pen and paper C-A Proof

ANALYSIS CODING

KEY OBSERVATION 1: THIS IS NOT SIMULATION.

KEY OBSERVATION 2: EVERYTHING IS FULLY RIGOROUS.
INTERVAL ARITHMETICS ARE USED AS PART OF THE PROOF.

THE RESULT IS A THEOREM.
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Part 1: Not any 3 eigenvalues determine a triangle

Joint work with Gerard Orriols.
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The spectrum of the Laplace operator

Let Ω ⊂ Rn be a bounded domain.{
−∆u = λiu in Ω
u = 0 on ∂Ω,

The Laplace operator has a discrete spectrum

0 < λ1 < λ2 ≤ λ3 ≤ . . .→∞

“Can one hear the shape of a drum?” – Mark Kac, 1966
Can one find two non-isometric domains Ω1,Ω2 such that the
solutions are the same λi in each Ω?
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Theorem (Gordon-Webb-Wolpert, 1992)
In general, NO.
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Can one hear the shape of a drum?

I One can’t hear the shape of a drum (Gordon–Webb–Wolpert, ’92).
I There is spectral determination in the class of analytic bounded planar

domains with a reflection symmetry (Zelditch, ’09).
I Hezari-Zelditch (’19): ellipses of small eccentricity can be heard in the

class of smooth domains.
I Hezari-Zelditch (’21): Centrally symmetric analytic plane domains.
I Durso (’88), Grieser–Maronna (’13): two isospectral triangles are

isometric.
I Hezari-Lu-Rowlett (’17, ’20): two isospectral trapezoids are isometric.
I Enciso-JGS (’17): any (semi-)regular polygon can be heard in the class of

polygons (no constraints on the number of sides).
Fundamental: All proofs use the whole spectrum.
⇒ OVERKILL for polygons
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Can a human hear the shape of a triangular drum?

I It is natural to ask if finitely many eigenvalues suffice.
I Chang and DeTurck (’89) proved that it is enough to check that λ1, λ2

and a finite number of eigenvalues which depends on these two, but a
priori unbounded.

I The dimension of the moduli space is 3.
I Antunes and Freitas conjectured, based on numerical evidence, 10 years

ago, that indeed λ1, λ2 and λ3 determine the shape of the triangle, and
they observe that this is not the case with λ1, λ2 and λ4.

I No progress since, even in this “simple” case.
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Not any three eigenvalues determine a triangle

Theorem (JGS–Orriols, ’20)
There exist two non-isometric triangles TA and TB for which the eigenvalues
λ1, λ2 and λ4 agree.
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Some observations

I By rescaling, it is enough to consider the functions
ξ21 = λ2

λ1
(T ), ξ41 = λ4

λ1
(T ) = (f , g)(T ) and fix the length of one (the

longest) side. This compactifies the space.
I We identify the point (x1, x2) with the triangle of vertices (0, 0), (1, 0)

and (x1, x2).
I Numerically find two candidates T1 and T2 with f (Ti ) ∼ c1, g(Ti ) ∼ c2.
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Can a human hear the shape of a triangular drum?
1556 P. R. S. Antunes and P. Freitas
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Figure 5. (a) The contours of x2,1 (with a dashed black line) and x3,1 (with different colours) and
(b) the contours of x2,1 (dashed black line) and x4,1 (with different colours). (Online version in
colour.)
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Figure 6. (a) The contours of x2,1 (dashed black line) and x3,1 (red) in a neighbourhood of the
equilateral triangle and (b) some values of x3,1(x) over the level curve defined by x2,1 = 2.297.
(Online version in colour.)

Proc. R. Soc. A (2011)

 on July 1, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

Numerical evidence by Antunes–Freitas: (a) for ξ21, ξ31, (b) for ξ21, ξ41.
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The regions of search
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The Poincaré–Miranda theorem

Theorem (Poincaré–Miranda)
Given two continuous functions f , g : [−1, 1]2 → R such that

I f (x , y) has the same sign as x when x = ±1
I g(x , y) has the same sign as y when y = ±1,

there exists a point (x , y) ∈ [−1, 1]2 such that f (x , y) = g(x , y) = 0.

Fix ξ21 := 1.67675 and ξ41 := 2.99372, and let

f (T ) = ξ21(T )− ξ21, g(T ) = ξ41(T )− ξ41

The only remaining thing is validating these inequalities!
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Rigorous eigenvalue bounds

Finite Element Methods (FEM)
Give the index of the eigenvalue in the spectrum.
Very rough (lower) bounds.
Hard to validate.

Method of Particular Solutions (MPS)
Very good precision (depending on the geometry of the problem).
Exponential convergence using the lightning method (Gopal–Trefethen ’19).
No information about the position in the spectrum.

We use a combination of both families in two passes, together with good
stability bounds by Barnett-Hassell (2011).
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Guaranteed lower bound

Theorem (Guaranteed lower bound, Liu ’15)
Let λk be the kth eigenvalue and λh,k the kth eigenvalue of the discrete FEM
system. We can give a lower bound of λk by

λh,k

1 + Cλh,k/n2
≤ λk

⇒ Linear algebra problem: Bound rigorously the eigenvalues of a (big) Matrix.
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Proof that there are no gaps

It is enough to bound rigorously the first eigenvalues of a matrix.
1. Find numerically S̃ with S̃T S̃ ≈ I and S̃TMS̃ almost diagonal.
2. There exists S near S̃ such that STS = I.
3. Therefore M has the same eigenvalues as S−1MS = STMS ≈ S̃TMS̃.
4. Apply Gershgorin’s disks theorem to this interval of matrices to isolate

the first eigenvalues.

Gershgorin’s intervals theorem
The eigenvalues of a symmetric matrix A = (aij ) lie in the intervals
[aii −

∑
j 6=i |aij |, aii +

∑
j 6=i |aij |].
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Conclusion

I This validates the condition on a triangle.
I Use monotonicity arguments to validate the condition on triangles nearby.
I Cover the segments with (finitely many) triangles and validate them.
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Part 2: Counterexamples to Payne’s conjecture

Joint work with Joel Dahne and Kimberly Hou.
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Payne’s conjecture (1967)

The nodal line of u2 on a bounded domain in R2 must touch the boundary.

Extended to higher dimensional case by Yau
(1993).
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Partial positive results

I Convex domain:
I Melas (1992)
I Alessandrini (1994)

I Varius symmetries and/or convexity assumptions
I Payne (1973),
I Lin (1987)
I Pütter (1990)
I Damascelli (2001)
I Yang and Gou (2013)
I ...
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A counterexample

Counterexample constructed by Hoffmann-Ostenhof,
Hoffmann-Ostenhof and Nadirashvili in 1997.

Extended to higher dimensions by Fournais (2001) and
Kennedy (2013).

No explicit lower bound on the number of boundary
components.

"Delicate to bound, astronomical" "Of the order 109"
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Question (Hoffmann-Ostenhof, Hoffmann-Ostenhof,
Nadirashvili 1997)

What is the smallest number, N0, of boundary components for a
counterexample?
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Our counterexample

Theorem (Dahne, JGS, Hou 2021)
There exists a planar domain with 6 holes (N0 = 7) for which the nodal line of
u2 does not touch the boundary.
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Alternative counterexamples
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Construction of the counterexample

1. Find good numerical approximations ũ2
and λ̃2 of u2 and λ2

2. Compute rigorous error bounds for the
approximation

3. Certify the index of the approximation λ2 ∈ [λ̃2 ± 6.89 · 10−3]
|u2(x)− ũ2(x)| ≤ 4.2162 · 10−5

Similar to Dahne-Salvy (2020) and JGS-Orriols (2020)
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Determining the index

Approximate eigenvalues:

λ1 = 31.0432, λ2 = 63.2104, λ3 = 63.7259, λ4 = 63.7259, λ5 = 68.2629.

Proceed as in JGS-Orriols (2020).

1. Separate the first four eigenvalues by lower
bounding λ5

2. Isolate the first four eigenvalues - complicated by
the double eigenvalue
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Determining the index - lower bounding λ5

Theorem (Liu, 2015)
Consider a polygonal domain Ω with a
triangulation so that each triangle has diameter
at most h. Let λk be the k-th solution of
Dirichlet Laplacian in Ω and λh,k the k-th
eigenvalue of the corresponding
Crouzeix-Raviart discretized problem in Ω.
Then

λh,k

1 + C2
hλh,k

≤ λk ,

where Ch ≤ 0.1893h is a constant.

See also Liu, Oishi (2013) and Liu (2020).
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Determining the index - lower bounding λ5

We want a lower bound for λ5
λh,5

1 + C2
hλh,5

≤ λ5,

Enough to find a lower bound for λh,5
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Determining the index - lower bounding λ5

Weak formulation:
∫

Ω∇u · ∇ψ = λ
∫

Ω uψ

Define stiffness and mass matrices
A = (aEF ),B = (bEF )

Ax = λBx

Mx = λx with M = B− 1
2AB− 1

2

Want to lower bound the fifth eigenvalue, λh,5,
of M

M is of size 6048× 6048
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Determining the index - lower bounding λ5

Lemma
Let v1, . . . , vm be vectors in Rm and s > 0 such that |〈vi , vj〉 − δij | ≤ s and
suppose that 8ms < 1. Then there exists an orthonormal set of vectors
w1, . . . ,wm ∈ Rm such that ‖vi − wi‖ ≤

√
3s.

Let Q̃ consist of columns forming an (numerically) approximate orthonormal
basis of eigenvectors of M.

D̃ = Q̃TMQ̃: almost diagonal and approximately similar to M.

By lemma exists Q orthogonal close to Q̃.

D = QTMQ

Conclude using Gershgorin’s theorem.
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Determining the index - isolating λ2

Construct four approximate eigenfunctions ũ1, ũ2, ũ3 and ũ4.

Compute enclosures of their eigenvalues λ̃1, λ̃2, λ̃3 and λ̃4.

Double eigenvalue (λ̃3 and λ̃4) needs special care.
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Construction of the approximations - Method of particular
solutions

Introduced by Fox, Henrici and Moler (1967) and improved by Betcke and
Trefethen (2005) in "Reviving the Method of Particular Solutions".

Finds (λ̃, ũ) satisfying

−∆ũ =λ̃ũ in Ω
ũ ≈0 on ∂Ω

ũ =
N∑

k=1

ckφk with −∆φk = λ̃φk in Ω

Examples of φk : Jαk (
√
λr) sinαkθ, Y1

(
r
√
λ
)

sin θ, Jk
(
r
√
λ
)

sin kθ
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Construction of the approximations - choice of basis
functions

Extremely important for good (root-exponential) convergence.

Combines ideas mainly from:
I Fox, Henrici and Moler (1967)
I Betcke and Trefethen, Reviving the method of particular solutions (2005)
I Gopal and Trefethen, Solving laplace problems with corner singularities

via rational functions (2019) - The Lightning Method
I JGS-Orriols (2020)
I Dahne-Salvy (2020)
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Construction of the approximations

Eigenvalue Free coefficients Collocation points
ũ1 λ̃1 = 31.0432 17 51
ũ2 λ̃2 = 63.20833598626884 476 7616
ũ3 λ̃3 = 63.7259 270 2160
ũ4 λ̃4 = 63.7259 252 2016
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Rigorous error bounds

Theorem (Moler, Payne 1968)
(λ̃, ũ) approximate eigenpair. Let µ =

√
|Ω| supx∈∂Ω |ũ(x)|

‖ũ‖2
.

Then there exists an eigenpair (λk , uk ) satisfying

|λ̃− λk |
λk

≤ µ,

|ũ(x)− uk (x)| ≤
(

sup
x∈∂Ω

|ũ(x |)
)(

1 + g(x)λ̃
(

1
1− µ + 1

α

(
1 + µ2

α2

)))
.

With

α = min
λn 6=λk

|λn − λ̃|
|λn|

, g(x) =
(∫

Ω
G(x , y)2dy

) 1
2

≤ 1
4π
√

2|Ω|.
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Rigorous error bounds

µ ≤ Enclosure of λ
ũ1 0.14 [30 ± 6.1]
ũ2 8.26 · 10−5 [63.21 ± 6.89 · 10-3]
ũ3 0.00186 [64± 0.393]
ũ4 0.00215 [64± 0.411]
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Handling the double eigenvalue

Goal: Prove that ũ3 and ũ4 correspond to two different
eigenfunctions.

Assume ũ3 corresponds to uk and ũ4 to ul . Want to
prove k 6= l .

Enough to show that uk (x1)
ul (x1) 6=

uk (x2)
ul (x2) for some x1 6= x2.

Problem: no lower bound for α =⇒ no upper bound
for error.

α = min
λn 6=λk

|λn − λ̃|
|λn|
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Handling the double eigenvalue

Revised goal: Prove that there are two eigenvalues in
Λ′ = [64± 0.419] ⊃ [64± 0.393] ∪ [64± 0.411] = Λ.

By contradiction, assume only one eigenvalue in Λ′.

Gives us a lower bound for α, so we can prove
uk (x1)
ul (x1) 6=

uk (x2)
ul (x2) .

This implies k 6= l and λk , λl ∈ Λ ⊂ Λ′ gives a
contradiction.
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Isolating λ2
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Isolating the nodal line

|ũ2(x)− u2(x)| ≤ 4.2162 · 10−5 ∀x ∈ Ω.

Step 1 Prove u2 strictly negative on Γ.
ũ2 ≤ −4.4929 · 10−5 on Γ

Step 2 Prove u2 positive on a pt. inside Γ.
ũ2(1/10, 0) ∈ [0.01342± 10−6]

Conclusion: The nodal line is fully contained inside Γ.
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Computational details

Code written in Julia using Arb for rigorous computations through Nemo and
Arblib.jl

Lower bounding λ5,h took 12 minutes for computing Q̃ and 1 hour for
verification with Arb

Construction of approximate eigenfunctions
I ũ1: 10 seconds
I ũ2: 6 hours
I ũ3, ũ3: 5 minutes each

Computation of rigorous bounds
I ũ1: 10 seconds
I ũ2: 6 hours
I ũ3, ũ3: 30 minutes each
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Code

Source code as well as notebooks containing all
the proofs available at https://github.com/
Joel-Dahne/PaynePolygon.jl

https://github.com/Joel-Dahne/PaynePolygon.jl
https://github.com/Joel-Dahne/PaynePolygon.jl
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Bonus: Rotating solutions of the SQG equation

Joint work with Angel Castro and Diego Córdoba.
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Surface Quasi-geostrophic equations

θt + u · ∇θ = 0, (x , t) ∈ R2 × R+

u = ∇⊥ψ, θ = −(−∆)1/2ψ,

u(x) = (−R2θ,R1θ) = 1
2πPV

∫
R2

(− y2
|y |3 ,

y1
|y |3 ) θ(x + y , t)dy
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Theorem
There exists a non trivial global smooth solution for the SQG equation with
finite energy.

I The level sets of this solution rotate with constant angular velocity
I The solution is actually C2 and compactly supported
I The solution has 3-fold symmetry
I The initial data is close to a radial function. Every radial function is a

stationary solution of the SQG equation



47 / 65

SQG as an equation for the level sets of θ
Let’s assume that z(α, ρ, t) = (z1(α, ρ, t), z2(α, ρ, t)), with (α, ρ) ∈ T×R+ are
the level sets of θ(x , t), in such a way that

θ(z(α, ρ, t), t) = f (ρ)

Then

(−u(z(α, ρ, t), t) + zt(α, ρ, t)) · z⊥α (α, ρ, t) fρ(ρ)
z⊥α · zρ(α, ρ, t) = 0 (1)

In addition, if the level sets rotate with constant angular velocity we can write

z(α, ρ, t) = O(t)x(α, ρ), O(t) =
(

cos(λt) − sin(λt)
sin(λt) cos(λt)

)

1. The function f is given. Indeed, it is something we choose through the
initial data

2. The unknowns are the curve x(α, ρ) and the angular velocity λ
3. We only need to solve (1) in the support of fρ(ρ).
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The profile f (ρ)

I f ∈ C4

I Monotone decreasing
I fρ compactly supported in (1− a, 1)
I fρ → −δ1 when a→ 0
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SQG as an equation for the rotating level sets of θ
We have to solve for the pair (x(α, ρ), λ)

− λx(α, ρ) · xα(α, ρ)

+ 1
2π x

⊥
α (α, ρ) ·

∫ ∞
0

∫ π

−π

fρ(ρ′)
|x(α, ρ)− x(α′, ρ′)|xα(α′, ρ′)dα′dρ′ = 0.

We still have some freedom to choose the parametrization of the level sets. We
choose radial coordinates:

x(α, ρ) = r(α, ρ)(cos(α), sin(α))
with r : T× R+ → R+. And we need to solve for the pair (r(α, ρ), λ)

F [r , λ] = 0

F [r, λ]

≡ λrα(α, ρ)−
1
2π

∫ ∞
0

∫ π

−π

fρ(ρ′)
|x(α, ρ)− x(α′, ρ′)|

cos(α− α′)(rα(α′, ρ′)− rα(α, ρ))dα′dρ′

+
rα(α, ρ)
2πr(α, ρ)

∫ ∞
0

∫ π

−π

fρ(ρ′)
|x(α, ρ)− x(α′, ρ′)|

cos(α− α′)(r(α′, ρ′)− r(α, ρ))dα′dρ′

−
1

2πr(α, ρ)

∫ ∞
0

∫ π

−π

fρ(ρ′)
|x(α, ρ)− x(α′, ρ′)|

sin(α− α′)(r(α, ρ)r(α′, ρ′) + rα(α, ρ)rα(α′, ρ′))dα′dρ′,
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SQG as an equation for the rotating level sets of θ
We have to solve for the pair (x(α, ρ), λ)

− λx(α, ρ) · xα(α, ρ)

+ 1
2π x

⊥
α (α, ρ) ·

∫ ∞
0

∫ π

−π

fρ(ρ′)
|x(α, ρ)− x(α′, ρ′)|xα(α′, ρ′)dα′dρ′ = 0.

We still have some freedom to choose the parametrization of the level sets. We
choose radial coordinates:

x(α, ρ) = r(α, ρ)(cos(α), sin(α))

with r : T× R+ → R+. And we need to solve for the pair (r(α, ρ), λ)

F [r , λ] = 0

Important fact! r(α, ρ) = ρ is a solution for all λ

F [ρ, λ] = 0 ∀λ
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Linearization of F [r , λ] around ρ

To apply bifurcation theory, we have to find an element, r̃(α, ρ) in the kernel of
the linearization of the operator F [r , λ] around r(α, ρ) = ρ.

(∂rF )[ρ, λ]r̃(α, ρ)

=λr̃α(α, ρ)− 1
2π

∫ ∫
fρ(ρ′) cos(α− α′)(r̃α(α′, ρ′)− r̃α(α, ρ))√

ρ2 + (ρ′)2 − 2ρρ′ cos(α− α′)
dα′dρ′

+ r̃α(α, ρ)
2π

∫ ∫
fρ(ρ′) cos(α− α′)(ρ′ − ρ)

ρ
√
ρ2 + (ρ′)2 − 2ρρ′ cos(α− α′)

dα′dρ′

− 1
2π

∫ ∫
fρ(ρ′)(ρ− ρ′ cos(α− α′)) sin(α− α′)(ρr̃(α′, ρ′)− ρ′ r̃(α, ρ))

(ρ2 + (ρ′)2 − 2ρρ′ cos(α− α′)) 3
2

dα′dρ′

Therefore we have to solve for the pair (r̃(α, ρ), λ)

(∂rF )[ρ, λ]r̃(α, ρ) = 0.
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The main equation

We introduce the ansatz

r̃(α, ρ) = ρBm(ρ) cos(mα)

and we obtain the equation

Ĩ(ρ)Bm(ρ) + T̃mBm(ρ) = λBm(ρ) ,

with

Ĩ(ρ) = − 1
2πρ

∫
fρ(ρ′)T 1

(
ρ

ρ′

)
dρ′

T̃mB(ρ) = 1
2πρ

∫
fρ(ρ′)B(ρ′)ρ

′

ρ
Tm
(
ρ

ρ′

)
dρ′
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Properties of Ĩ and T̃ .

Tm(s) =
∫ π

−π

cos(mx)√
1 + s2 − 2s cos(x)

dx

I Tm(s) > 0
I Tm(s) > Tm+1(s)
I Tm(s) is smooth but at s = 1 where Tm(s) ∼ − log(|s − 1|)
I T̃m(s) is not self-adjoint

Then
I Ĩ(ρ) ∈ C3 satisfies I(ρ) > 0
I T̃m is a compact operator mapping Hk to Hk+1, with k = 0, 1, 2, and

‖T̃m‖L2→L2 ≤ C ‖T̃m‖Hk→Hk+1 ≤ C(m)

I T̃m is "negative" (TmB(ρ) < 0 if B(ρ) > 0)
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Existence in L2 for m = 3

We find (B3, λ3) ∈ L2 × R such that

Θ3B3(ρ) ≡ Ĩ(ρ)B3(ρ) + T̃B3(ρ) = λ3B3(ρ)

We can construct an approximation Bsj for the symmetric problem

Θ3
SBsj = λ∗Bsj + e,

(
Θ3

S = 1
2
(

Θ3 + Θ3∗))
with ‖e‖L2 small and with an explicit bound (computer-assisted).
We look for a solution of the type

B3 = Bsj + v , v ∈ B⊥sj

The equation for v reads

Θ3v = (λ− λ∗)Bsj + λv − e −Θ3
ABsj

Θ3
A = 1

2
(

Θ3 −Θ3∗)
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Existence in L2 for m = 3

Taking scalar product with u ∈ B⊥sj yields the equation

〈Θ3v − λv , u〉 = −〈e + Θ3
ABsj , u〉 ∀u ∈ B⊥sj ,

Let’s call
c∗ = inf

v∈B⊥sj
‖v‖L2 =1

〈Θ3v , v〉

and let’s assume that c∗ > −∞.Then for λ < c∗ the operator Θ3 − λI is
coercive in L2. We can apply Lax-Milgram theorem to obtain the existence of
vλ ∈ L2 satisfying

〈Θ3vλ − λvλ, u〉 = −〈e + Θ3
ABsj , u〉 ∀u ∈ B⊥sj ,

Then there exists a function d(λ) such that

Θ3vλ = (λ− λ∗)Bsj + λvλ − e −Θ3
ABsj + d(λ)Bsj

We just need to show that d(λ) has a zero for some λ < c∗.
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Existence in L2 for m = 3

I d(λ) is continuous
I d(λ) > 0 for λ→ −∞
I

d(λ) ≤ ‖Θ
3
ABsj + e‖L2

c∗ − λ
‖e −Θ3

ABsj‖L2

‖Bsj‖2L2
+ (λ∗ − λ) + |〈e,Bsj〉|

‖Bsj‖2L2

We need to find λ > λ∗ but λ < c∗ to obtain d(λ) < 0 and therefore there
exists λ3 such that d(λ3) = 0.
We have obtained that the pair

(
B3 = Bsj + vλ3 , λ3

)
satisfies

Θ3B3 = λ3B3
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Other way of looking at it
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Other way of looking at it
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Sharpening the profile of f (ρ)

By making a, b � a small we make small the L2−norm of ΘABsj . In our case,
we take b = 1

512a.
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How do we use the computer to bound c∗?
We would like to find a bound from below for

c∗ = inf
v∈B⊥sj
‖v‖L2=1

〈Θ3v , v〉, 〈̃Iv + T̃ v , v〉 ≥ min Ĩ + 〈T̃ v , v〉

with v ∈ B⊥sj and ‖v‖L2 = 1.
We recall that T̃ is compact and then we can approximate it by a finite
dimensional operator by projecting onto a sufficiently large dimensional
subspace. Let {vi}∞i=1 an orthogonal basis of B⊥sj , v0 = Bsj and

T̃N =
N∑

i,j=0

〈T̃ vi , vj〉vj Πvi

We bound

min Ĩ + 〈T̃ v , v〉 ≥ min Ĩ + 〈T̃Nv , v〉︸ ︷︷ ︸
finite dimensional

−
∣∣〈(T̃ − T̃N

)
v , v〉

∣∣︸ ︷︷ ︸
generalized Young’s inequality

In our case, N = 24. We take vi to be Legendre polynomials adapted to our
domain.
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Computer-Assisted Proofs (finite dimensional part)

I We use interval arithmetics to give a rigorous enclosure of the result.
The finite dimensional part is bounded using Gershgorin’s theorem (we get
good bounds since our matrix is either diagonally dominant or small). We know
that every eigenvalue of a matrix A is contained in the union of the disks:

Di =

z ∈ C, |z − Aii | ≤
∑
j=1
j 6=i

|Aij |

 , i = 1, . . . , n.
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Computer-Assisted Proofs (tails)

Using the generalized Young’s inequality, we need to compute

∥∥∥∥∫ K(ρ, ρ′)B(ρ′)dρ′
∥∥∥∥

L2
≤ max{‖K(ρ, ρ′)‖L∞

ρ′
L1ρ , ‖K(ρ, ρ′)‖L∞ρ L1

ρ′
}‖B‖L2

Obstructions:
1. K is explicit but not easy to compute (it involves elliptic integrals).
2. K is singular along the diagonal ρ = ρ′.
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Computer-Assisted Proofs (tails)

1. We perform (by hand) a series expansion around ρ = ρ′ up to errors of
size (ρ− ρ′)2 log(|ρ− ρ′|) or smaller, with explicit bounds on the errors.
Then, substitute K by its expansion and carry over the error bounds.

2. We split the integration region into two parts: singularity and rest.

The singularity is bounded integrating explicitly the logarithmic terms.
The rest is calculated using an adaptive Gauss-Legendre quadrature of
order 2.
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H3-Regularity

Once we have a solution B3 ∈ L2

Ĩ(ρ)B3(ρ)− λ3B3(ρ) = −T̃ 3B3(ρ)

we can bootstrap because
1. Ĩ ∈ C3

2. min Ĩ − λ3 > 0 (also computer-assisted)
3. T̃ maps Hk into Hk+1 for k = 0, 1, 2.
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Thank you!


