Ergodicity of Markov processes: theory and computation (2)

Yao Li

Department of Mathematics and Statistics, University of Massachusetts Amherst

September 9, 2021

ICERM, Brown University

Last time

- Markov processes on measurable state space.
- Coupling method and renewal theory

Recall from last time

- \bullet Φ_n discrete time Markov process
- ② (Φ_n^1, Φ_n^2) coupled process. $\Phi_0^1 \sim \mu$, $\Phi_0^2 \sim \nu$.
- **3** α atom. Coupling time $\tau_{\it C}$ first simultaneous visit to α
- Coupling lemma:

$$\|\mu P^n - \nu P^n\|_{TV} \le 2\mathbb{P}[\tau_C > n]$$

Splitting method: create $\hat{\Phi}_n$ such that C_1 is an atom. If $\Phi_n \in C$, $\mathbb{P}[\hat{\Phi}_n \in C_1] = \delta$.

First simultaneous renewal time?

- $Y_1, Y_1, Y_2, Y_2, \cdots$ are i.i.d. with distribution $\eta_{\alpha} \|_{\Phi_0 = \alpha}$
- Let T be the simultaneous renewal time

$$T = \inf_{n} \{ n = S_{k_1} = S'_{k_2} \text{ for some } k_1, k_2 \}$$

o From renewal theorem: There exist n_0 and c such that

$$\mathbb{P}[n \text{ is a renewal time }] = \mathbb{P}[n = S_k \text{ for some } k] \geq c$$
 for all $n \geq n_0$.

Theorems

Exponential tail

If $\mathbb{E}[\rho_1^{Y_0}], \mathbb{E}[\rho_1^{Y_0}], \mathbb{E}[\rho_1^{Y_1}] < \infty$ for some $\rho_1 > 1$, then there exists $\rho_0 > 1$ such that $\mathbb{E}[\rho_0^T] < \infty$.

Power-law tail

If
$$\mathbb{E}[Y_0^{\beta}], \mathbb{E}[(Y_0)^{\beta}], \mathbb{E}[Y_1^{\beta}] < \infty$$
 for some $\beta > 0$, then $\mathbb{E}[T^{\beta}] < \infty$.

(Note that finite exponential/power-law moment is equivalent to exponential/power-law tail.)

Ref: Lectures on the Coupling Method by Torgny Lindvall

Alternating σ -field (1)

- ② $B_{2n} = \min\{S'_j A_{2n} \mid S'_j A_{2n} \ge 0\}$. First renewal after A_{2n} (denoted by $S'_{v_{2n}}$).
- **3** $A_{2n+1} = S'_{v_{2n}+n_0}$. Wait at least n_0 steps.
- **⊘** $B_{2n+1} = \min\{S_j A_{2n+1} \mid S_j A_{2n+1} \ge 0\}$. First renewal after A_{2n+1} (denoted by $S_{v_{2n+1}}$).
- $A_{2n+2} = S_{v_{2n+1}+n_0}$

Alternating σ -field (2)

Odd i

$$\mathcal{B}_{i} = \sigma\{Y_{j}, Y'_{k} | j \leq v_{i}, k \leq v_{i-1} + n_{0}\}$$

Even i

$$\mathcal{B}_i = \sigma\{Y_j, Y_k \mid k \leq v_i, j \leq v_{i-1} + n_0\}$$

Random sum of random numbers

- ② By renewal theorem, the probability of $B_k = 0$ is at least c.
- **②** Total number of attempts $\tau = \min\{k \mid B_k = 0\}$.
- First simultaneous coupling time

$$T \leq B_0 + \sum_{i=1}^{\tau} U_i = Y_0 + \sum_{i=1}^{\infty} U_i \mathbf{1}_{\{\tau \geq i\}}$$

- **3** Now need to control moments of U_i .
- See whiteboard for details.

How to move from τ_C to τ_α ?

1 Let C be a small set with minorization condition

$$P(x, A) \ge \delta \mathbf{1}_C(x) \nu(A), \quad A \in \mathcal{B}(X)$$

- ② Split C into C_0 and C_1
- **②** Every time when Φ_n visits C, $\hat{\Phi}_n$ has probability δ to visit C_1 (the atom).
- 5 Same idea: random sum of random numbers.

Random sum of random numbers (again!)

- **9** Small set *C* with $P(x, A) \ge \delta \mathbf{1}_C \nu(A)$
- ② $\tau^1 = 0$, $\tau^1 = \eta_C$ first passage time to C
- **③** $\tau^{n+1} = \inf\{n \mid \Phi_n \in C, n \ge \tau^n\}$ n + 1-th passage time to C
- **3** $Z_n = 1$ if $\Phi_{\tau^n} = \alpha$, $Z_n = 0$ otherwise.
- **3** Z_n is measurable on $\sigma(\Phi_0, \dots, \Phi_{\tau^n})$
- $P_{\mathsf{x}}[Z_n = 1 \,|\, \mathcal{F}_{\tau^{n-1}}] = \delta > 0$
- **②** Let $\xi = \inf\{n \mid Z_n = 1\}$. Number of visiting to C needed to enter α . $\eta_{\alpha} = \tau^{\xi}$.

Theorems

Exponential tail case

If $\sup_{x\in C}\mathbb{E}_x[r^{\tau^1}]<\infty$ and $\mathbb{E}_\mu[r^{\tau^1}]<\infty$ for some r>1, then there exists $r_1>1$ such that $\mathbb{E}_\mu[r_1^{\tau^\xi}]<\infty$ and $\sup_{x\in C}\mathbb{E}_x[r_1^{\tau^\xi}]<\infty$.

Power-law tail case

Let $\hat{\alpha}_k = 2, 2, 3, 4, 5, \cdots$.

Let $f_{\beta}(n) = \sum_{k=1}^{n} \hat{\alpha_k}^n$. Then there exists C_{β} such that $C_{\beta}^{-1} n^{\beta} \leq f_{\beta}(n) \leq C_{\beta} n^{\beta}$.

If $\sup_{x\in C} \mathbb{E}_x[f_\beta(\tau^1)] < \infty$ and $\mathbb{E}_\mu[f_\beta(\tau^1)] < \infty$ for some $\beta > 0$, then $\mathbb{E}_\mu[f_\beta(\tau^\xi)] < \infty$ and $\sup_{x\in C} \mathbb{E}_x[f_\beta(\tau^\xi)] < \infty$.

Proof on the white board

Criterion for ergodicity

- Find a small set C.
- **3** Split the small set to get an atom α .
- ② Independent coupling. Couple at time T (first simultaneous visit to the atom).
- Random sum of random numbers episode 1: exponential/power-law tail of η_C gives exponential/power-law tail of η_α
- Random sum of random numbers episode 2: exponential/power-law tail of η_{α} gives exponential/power-law tail of T

Question: First passage time to the small set?

Thank you