Ergodicity of Markov processes: theory and computation (3)

Yao Li

Department of Mathematics and Statistics, University of Massachusetts Amherst

September 9, 2021

ICERM, Brown University

Last time

- Coupling method and renewal theory
- Exponential and power-law ergodicity

Recall from last time

- Find a small set C.
- **②** Split the small set to get an atom α .
- Independent coupling. Couple at time (first simultaneous visit to the atom).
- **③** Random sum of random numbers episode 1: exponential/power-law tail of η_C gives exponential/power-law tail of η_α
- Random sum of random numbers episode 2: exponential/power-law tail of η_{α} gives exponential/power-law tail of T

First passage time to the small set

General approach

- Construct a Lyapunov function
- Show that the "bottom" of the function landscape is a small set
- $\ensuremath{\mathfrak{O}}$ Show that $\eta_{\ensuremath{\mathcal{C}}}$ has exponential/power-law tail

Adapted sequence

- 2 Z_k is an adapted sequence such that Z_k is measurable on \mathcal{F}_k . $Z_k \geq 0$
- σ $\tau^n = \min\{n, \tau, \inf\{k \ge 0 \mid Z_k \ge n\} \text{ for a stopping time } \tau.$

Dynkin's formula

Theorem (Dynkin's formula)

$$\mathbb{E}_{\mathbf{x}}[Z_{ au^n}] = \mathbb{E}_{\mathbf{x}}[Z_0] + \mathbb{E}_{\mathbf{x}}\left[\sum_{i=1}^{ au_n} (\mathbb{E}[Z_i\,|\,\mathcal{F}_{i-1}] - Z_{i-1})
ight]$$

Recall: conditional expectation

- **1** Y: random variable, \mathcal{F} : sub sigma field
- **②** Conditional expectation $\mathbb{E}[Y|\mathcal{F}]$ is a \mathcal{F} measurable random variable.
- If Y is \mathcal{F} measurable, then $\mathbb{E}[Y|\mathcal{F}] = Y$

See proof on the whiteboard.

Dynkin's formula (2)

Proposition

Let f_k and s_k be two sequences of nonnegative functions.

lf

$$\mathbb{E}[Z_{k+1} \mid \mathcal{F}_k] \leq Z_k - f_k(\Phi_k) + s_k(\Phi_k)$$

Then for any stopping time τ , we have

$$\mathbb{E}_{x}[\sum_{k=0}^{\tau-1}f_{k}(\Phi_{k})] \leq Z_{0}(x) + \mathbb{E}_{x}[\sum_{k=0}^{\tau-1}s_{k}(\Phi_{k})]$$

Proof on the whiteboard

Lyapunov function

Theorem

If there exists a function V > 1 such that

$$PV(x) - V(x) \le -\beta V(x) + b\mathbf{1}_C(x)$$

for some $\beta > 0$, $b < \infty$, then for any $r \in (1, (1 - \beta)^{-1})$, there exists $\epsilon > 0$ such that

$$V(x) \leq \mathbb{E}_X[\sum_{k=0}^{\eta_C-1} V(\Phi_k) r^k] \leq \epsilon^{-1} r^{-1} V(x) + \epsilon^{-1} b \mathbf{1}_C(x).$$

Proof on the whiteboard

Exponential tail of first passage time

1

$$\mathbb{E}_{\mathbf{x}}[\sum_{k=0}^{\eta_{\mathcal{C}}-1} r^k V(\Phi_k)] \geq \mathbb{E}_{\mathbf{x}}[\sum_{k=0}^{\eta_{\mathcal{C}}-1} r^k] = \frac{1}{r-1} \mathbb{E}_{\mathbf{x}}[r^{\eta_{\mathcal{C}}}-1] \geq c \mathbb{E}_{\mathbf{x}}[r^{\eta_{\mathcal{C}}}]$$

for some constant c.

- ② Hence $\mathbb{E}_{\mathbf{x}}[r^{\eta_{\mathcal{C}}}] < \infty$
- 8

$$\mathbb{P}[r^{\eta_{\mathcal{C}}} \geq r^n] \leq \mathbb{E}_x[r^{\eta_{\mathcal{C}}}]r^{-n}$$

 $\P[\eta_C \geq n] \leq Cr^{-n}$ for some constant C.

Power-law tail of first passage time

Theorem

If there exists $m \geq 0$ such that for each $i=1,\cdots,m$ and functions $V_0,\,V_1,\cdots,\,V_m$ such that

$$PV_{i-1} \leq V_{i-1} - c_i V_i + b_i \mathbf{1}_C$$
 $i = 1, \dots, m$

Then

$$\mathbb{E}_{x}\left[\sum_{k=0}^{\eta_{C}-1}(k+1)^{i+1}V_{i}(\Phi_{k})\right] \leq C_{i+1}(V_{0}(x)+1)$$

for some $C_{i+1} \leq \infty$.

Reference: Jarner-Roberts 2002 AAP

Reduction to one Lyapunov function (1)

Lemma

If $V \ge 1$, $b, c \ge 0$, $\alpha < 1$ and

$$PV \leq V - cV^{\alpha} + b\mathbf{1}_C$$

then for any $\eta>0$ there exists some $b_1,c_1<\infty$ such that

$$PV^{\eta} \leq V^{\eta} - c_1 V^{\alpha+\eta-1} + b_1 \mathbf{1}_C.$$

Reduction to one Lyapunov function (2)

Theorem

If $V \ge 1$, $b, c \ge 0$, $\alpha < 1$ and

$$PV \leq V - cV^{\alpha} + b\mathbf{1}_C$$

then for each $1 \leq \beta \leq (1-\alpha)^{-1}$, let $V_{\beta}(x) = V^{1-\beta(1-\alpha)}$, we have

$$\mathbb{E}_{\mathsf{x}}\left[\sum_{k=0}^{\eta_{\mathcal{C}}-1}(n+1)^{\beta-1}V_{\beta}(\Phi_{k})\right] \leq C_{\beta}(V(\mathsf{x})+1)$$

for some $C_{\beta} < \infty$

Reduction to one Lyapunov function (3)

Integer β only. Let $\gamma=1-\alpha$ and $m=\lceil \gamma^{-1} \rceil$. Let $V_0=V$, $V_i=V^{1-i\gamma}$ for $i=1,\cdots,m-1$.

Need to show that

$$PV_{i-1} \leq V_{i-1} - c_iV_i + b_i\mathbf{1}_C$$
 for each $i = 1, \dots, m$.

- Case i = 1: $PV \le V cV^{1-\gamma} + b\mathbf{1}_C$, or $PV_0 \le V_0 cV_1 + b\mathbf{1}_C$.
- ② Case i > 1: Let $\eta = 1 (i-1)\gamma$, $V_{i-1} = V^{\eta}$. By the lemma, we have $PV^{\eta} \leq V^{\eta} c_1V^{\alpha+\eta-1} + b_1\mathbf{1}_C$. Since $\alpha + \eta = \eta \gamma = 1 i\gamma$, we have $V^{\alpha+\eta-1} = V_i$, or $PV_{i-1} \leq V_{i-1} c_iV_i + b_i\mathbf{1}_C$.
- \emptyset β is an integer that is less than m. Apply the theorem.

Lyapunov function method

Try to find a Lyapunov function V(x)

- If $PV(x) V(x) \le -\beta V(x) + b\mathbf{1}_C(x)$, first passage time to C has exponential tail.
- ② If $PV \le V cV^{\alpha} + b\mathbf{1}_C$ for some $\alpha < 1$, first passage time to C has power-law tail.

Finding a suitable Lyapunov function is the main difficulty.

Stochastic energy exchange model

- A chain of N cells is connected to two heat baths.
- Cell *i* carries energy E_i .
- Exponential clock with rate $R(E_i, E_{i+1}) = \sqrt{\min\{E_i, E_{i+1}\}}$ is associated with each adjacent pair.
- When clock rings,

$$(E'_i, E'_{i+1}) = (E_i + E_{i+1})p, (E_i + E_{i+1})(1-p)$$
.

p: uniform distribution on (0,1).

Stochastic energy exchange model (cont.)

- Bath temperatures T_L and T_R .
- Clocks between ends of chain and baths: $R(T_L, E_1)$ and $R(E_N, T_R)$
- Similar rule for an energy exchange involving heat baths.
- Heat bath energy $\sim \mathcal{E}(T_L)$ and $\sim \mathcal{E}(T_R)$ (exponential distribution).

Result

Theorem 1, Contraction of Markov operator, (Y. Li 2018 AAP)

For any $\gamma>0$, there exists $\eta>0$ such that for any $\mu,\ \nu\in\mathcal{M}_{\eta}$,

$$\lim_{t\to\infty} t^{2-\gamma} \|\mu P^t - \nu P^t\|_{TV} = 0.$$

 \mathcal{M}_{η} is the measure class on which function

$$\sum_{m=1}^{N}\sum_{i=1}^{N-m+1}(\sum_{j=0}^{m-1}E_{i+j})^{a_{m}\eta-1}+\sum_{i=1}^{N}E_{i}$$

is integrable, where $a_m = 1 - (2^{m-1} - 1)/(2^N - 1)$.

Result

Theorem 2, Properties of NESS (Y. Li, 2018 AAP)

There exists a unique invariant measure π that is absolutely continuous with respect to the Lebesgue measure. In addition, for any $\gamma>0$, there exists $\eta>0$ such that for any $\mu\in\mathcal{M}_{\eta}$,

$$\lim_{t \to \infty} t^{1-\gamma} \|\mu P^t - \pi\|_{TV} = 0$$

Theorem 3, Decay of Correlation (Y. Li, 2018 AAP)

For any $\gamma>0$ there exists a $\eta>0$ such that for any $\mu\in\mathcal{M}_{\eta}$, let functions ξ and $\varphi\in L^{\infty}(\mathbb{R}_{+}^{N})$. Then

$$\left| \int_{\mathbb{R}^N_+} (P^t \zeta)(\mathbf{E}) \xi(\mathbf{E}) \mu(\mathrm{d}\mathbf{E}) - \int_{\mathbb{R}^N_+} (P^t \zeta)(\mathbf{E}) \mu(\mathrm{d}\mathbf{E}) \int_{\mathbb{R}^N_+} \xi(\mathbf{E}) \mu(\mathrm{d}\mathbf{E}) \right| \\ = O(1) \cdot \left(\frac{1}{t^{2-\gamma}} \right)$$

as $t \to \infty$.

Strong Markov property

9 $B_{\delta} \subset \mathbb{R}_{+}^{N}$ is an "active set":

$$\inf\{E_i | \mathbf{E} = (E_1, \cdots, E_N) \in B_\delta\} \geq \delta$$
.

- ② $D \subset B_\delta$: uniform reference set.
- **\odot E**_n: time-h sample chain

$$T_{n+1} = \inf_{k > T_n} \{ \mathbf{E}_k \in B_\delta \}$$

 $\hat{\mathbf{E}}_n = \mathbf{E}_{T_n}$: B_{δ} -induced chain.

Strong Markov property (2)

Induced Chain Lemma (Y. Li 2018 AAP)

Assume

0

$$\mathbb{P}[T_{n+1}-T_n>n\,|\,E_{T_n}]\leq \xi(E_{T_n})n^{-\alpha}\,,$$

where $\xi(\mathbf{E})$ is uniformly bounded in B_{δ} .

0

$$\mathbb{P}_{\mathsf{E}_0}[\hat{\tau}_D > n] \le \eta(\mathsf{E}_0)e^{-c\eta}\,,$$

then for any small $\epsilon > 0$, there exists a constant c such that

$$\mathbb{P}_{\mathsf{E}_0}[\tau_D > n] \le c(\eta(\mathsf{E}_0) + \xi(\mathsf{E}_0))n^{-(\alpha - \epsilon)}$$

Tower construction of Lyapunov functions

• The most difficult part is to estimate

$$\mathbb{P}[T_{n+1}-T_n>n\,|\,E_{T_n}].$$

Need a Lyapunov function V such that

$$P^hV(\mathbf{E})-V(\mathbf{E})\leq -c_0V^{\alpha}(\mathbf{E})$$

for some h > 0.

V take high value at boundary (small energy).

Tower construction of Lyapunov functions (2)

Let $a_i = 1 - \frac{2^{i-1}-1}{2^N-1}$ be a decreasing sequence.

- Natural Lyapunov function with respect to site *i*: $V_{1,i}(\mathbf{E}) = E_i^{a_1\eta-1}$, $\eta > 0$ is arbitrarily small.
- $P^hV_{1,i}$ decreases if $V_{1,i}$ is much bigger than its "neighbors".
- Question: how to build a global Lyapunov function from $V_{1,i}$?
- Tower construction:

$$V_k(\mathsf{E}) = \sum_{i=1}^{N-k+1} V_{k,i} = \sum_{i=1}^{N-k+1} \left(\sum_{j=0}^{k-1} E_{i+j}\right)^{a_k \eta - 1}$$

for $1 \le k \le N - 1$.

Global Lyapunov function

$$V(\mathbf{E}) = \sum_{i=1}^{N-1} V_i(\mathbf{E})$$
 .

Tower construction of Lyapunov functions (3)

Main idea of the proof

Recall that

$$V_{n,k} = (E_k + \cdots + E_{k+n-1})^{a_n \eta - 1}$$
.

- General rule: higher value on lower probability states
- Penalty for states that have consecutive low energy sites.
- If a $V_{n,k}$ is sufficiently large, then E_k, \dots, E_{k+n-1} are all small.
- If E_{k+n} is much larger, the expectation of $V_{n,k}$ decreases at the next energy exchange.

Tower construction of Lyapunov functions (4)

Main idea of the proof (cont.)

Otherwise

$$(E_k + \cdots + E_{k+n-1} + E_{k+n})^{a_{n+1}\eta - 1} \gg (E_k + \cdots + E_{k+n-1})^{a_n\eta - 1}$$

- Easy to see the expected change of $V_{n,k}$ is dominated by that of $V_{n+1,k}$
- Boundary has temperature T_L , T_R . We can always find an n'>n such that $E_{k+n'}$ is "much larger" that $E_k,\cdots,E_{k+n'-1}$.
- Same strategy on the left end.
- The expected increase of every $V_{n,k}$ can be bounded.
- When *V* is extremely large, the expected decrease dominates the expected increase.

Tower construction of Lyapunov functions (5)

- Idea of the tower construction: Dichotomy.
- For each **E**, either $P^hV_{k,i}(\mathbf{E})$ decreases, or $V_{k,i}(\mathbf{E})$ is dominated by the "next level" $V_{k+1,i}$ (or $V_{k+1,i-1}$).
- $P^nV_{k,i}$ decreases if $V_{k,i}$ "touches" the boundary.

Theorem A (Y. Li 2018 AAP)

For any $\eta>0$ and h>0 small enough, there exist $c_0>0$, $M_0>1$ depending on η , N, and h, such that

$$(P^h)V(\mathbf{E}) - V(\mathbf{E}) \leq -c_0 V^{\alpha}(\mathbf{E})$$

for every $\mathbf{E} \in \{V > M_0\}$, where $\alpha = 1 - \frac{1}{2(1-\eta)}$.

$$B_{\delta} = \{ V \leq M_0 \}.$$

Thank you