RELATIVISTIC FLUID EQUATIONS

BENOIT PAUSADER

1. INTRODUCTION
This note is a compilation from [1, 2, 3, 4, 6]. We also point out [9] as nice references.

1.1. Notations. We consider Minkowski space (R'*3, g 5) with goo = —¢?, gi; = ;; and goj; = gjo = 0.
Its inverse is denoted g"* where g% = —c2, g% = d;; and g% =0 = ¢’%. We use the Einstein convention
that repeated up-down indices be summed and we raise and lower indices using the metric as follows:

A% = gaﬁAg, Ba = gaBBB.
In addition, latin indices 4,7 ... vary from 1 to 3, while greek indices p,v... vary from 0 to 3.

Note in particular that the coordinate along u” is given by ¢, = |u“uu|_%uy and that the projection
along u is given by*

. 1
(proj, )", = v utu,.

We denote T9(M) the set of contravariant d-tensors on the Minkowski space.

1.1.1. Poincaré group. The Poincaré group is the group of isometries of (the affine space) M. Besides
translations, we have the Lorentz transformations O(3,1), i.e. the set of linear transformations L such
that

g(LX, LX) = (X, X),

or in other words, LasL®" = dj.

The first postulate is that all the laws of special relativity should be invariant (in fact co-variant) under

Poincaré transformations?.

1.2. Vocabulary. The vectors of M are naturally separated into

o time-like vectors v¥ such that g, v"v” < 0 (just as for 0;).
e null vectors for which g, v*v” = 0.
o space-like vectors for which g, v*v” > 0 (just as 0;).

In fact, one can also look at causality to define 6 different types of vectors® (future-oriented time-like,
future-oriented null, zero, space-like, past-oriented null and past-oriented time-like). We can easily see
that all of the above categories are invariant under Lorentz transform.

IThe tensors with up indices are vectors; the tensor with down indices are forms. While the use of the metric allows to
largely identify the two (especially in special relativity), it is often convenient to keep in mind which objects are naturally
vectors and which are naturally 1-forms. For example, the 4-velocity is naturally a vector, while the momentum will
naturally be a 1-form.

2 Another way of stating this is that the laws of special relativity should be the same when expressed in any inertial
frame, i.e. in any coordinate frame which is the image of the standard coordinate frame ((0,0,0,0), d¢, 01, J2,093) under a
Poincaré transform

3The six different types are the cosets under dilation and isometries. As I understand this, the idea is that dilating
amounts to choosing a scale; an isometry amounts to choosing an admissible frame; the relevant information should be
independent of these two operations. For comparison, in the Euclidean space, there are only 2 different equivalence class:
{0} and nonzero vectors. In this sense, even at this rough level, the geometry of Minkowski space is much richer.

1
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In the Minkowski space, there is no notion of absolute time and the time azis depends on the observer.
We define an event to be a point (¢,2) of M. We define an observer to be a point and a time axis v
(defined by a time-like vector v). We define the rest space (or simultaneity space) of an observer to be
the 3-space (t,x) +vt. Thus, now the notion of simultaneity depends on the observer.

Note that if v = p — ¢ is (future-oriented) time-like or null, then, for all the observers, ¢ precedes
p, whereas if p — ¢ is space-like, then there are observers for which p precedes ¢ and some for which ¢
precedes p.

1.2.1. Point particles. A particle in motion is then only described by its curve p(s) : R — M, its world-
line. Physically, we only consider particle such that the tangent vector p = Osp is time-like. Since only
the curve is relevant, we might as well parameterize it by arc length. Thus, from now on, we assume that
for any world line p, we have that*

Gapp" B’ = —c.

1.2.2. Stress-energy tensor (or energy-momentum tensor). In relativity, the properties of a matter field
are all summarized in a stress-energy tensor TH" € T2(M), which is symmetric T#” = T"* and positive
in the sense that for any time-like vector v, we have that T#”v#v” > 0. This tensor is defined from the

energy, momentum and stress of the matter in the following way: for any observer with axis v°,

e The energy of the matter field he measures is given by € = ¢™2T"v,v,,
e The linear momentum density he measures is given by p” = —c=?TH"y,,,
e The matter stress tensor that he measures is given by S = Tj, ..

In general relativity, the total stress-energy tensor T (given by the sum of all the stress-energy tensors
of each matter field present) determines the metric through the Einstein equations:

8rG

E,uu - Agwj = CTTMV (11)

where E = Ric — %Rg is the Finstein tensor of the metric, A is the cosmological constant and G is the

gravity constant (coming from Newtonian theory). In particular, from the Bianchi identity we obtain
that

vV, TH = 0. (1.2)

where V denotes the covariant derivative.

In special relativity, we assume that E = A = 0 here and we neglect (1.1). However, it is desirable that
we retain (1.2) for the total stress-energy tensor (in this case, the covariant derivative becomes a simple
partial derivative).

1.3. Perfect fluid. A perfect fluid or simple fluid is a (relativistic) model for a fluid in which the fluid
is modeled by

e a 4-velocity u” € T1(M) whose integral curve give the world-line of all the particles of fluid. It
satisfies

uut = —c?; (1.3)
e a density function n € TY(M) such that n(t,x) gives the density of particles at the event (¢,x)

e an energy-density ¢ which gives the (density of) total energy of a fluid particle at rest
e an isotropic stress in its rest frame given by pls.

43ometimes the world-line is parameterized by gagpo‘pﬁﬁ = —mc? instead, but when we have several fluids, we find it
better to use this notation.
5The formula above are better understood if we keep in mind that ¢ lv, is normalized.
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From all these assumptions, we see that the stress energy-momentum is then given by
utu” 7

U
™ = (e +p) +pg = e+, (1.4)

2

c

where nH¥ = g"” + ¢~ 2utu” is the (Euclidean) metric on the rest-space of u.
The precise form of €, p depends on thermodynamics assumptions.

1.3.1. Other noteworthy types of fluids. A dustis a pressureless perfect fluid; thus its stress-energy tensor
is given by

A radiation field is a perfect fluid for which € = 3p; thus its stress-energy tensor is given by

+ g/w:| )

utu?

T =1p {4

1.4. Thermodynamics. The first principle of thermodynamics states that there exists an equation of
states®:
d{eV} =Td{sV} + pd{nV} — pdV (d€ =TdS + pdN — pdV'),

1.5
de =Tds+ pdn, p=Ts+ un —e, (15)

where

e T denotes the temperature,
e s denotes the entropy,
e 1 denotes the chemical potential of the fluid,
e 1 denotes any volume.
One can understand these equations by saying that there is an equation of state e = €(s,n) depending
on the density and the entropy, and this defines the temperature and chemical potential by
Oe Oe
T—as7 p=g (1.6)
Note that e denotes the total energy, € = nmc? + €,y where €;,; accounts for the internal energy
(including the microscopic energy density, the potential energy density from microscopic interactions. .. ).
Therefore, we see that p = mc? + fing.

1.5. Dynamics for one neutral fluid. For simplicity, we start with the simpler case of a simple neutral
fluid. In this case, we can derive the equations of motion for a fluid starting from 2 “first principles”.
e The particle are conserved (neither created nor annihilated), in which case
dy(nu”) = 0. (1.7)
e The Bianchi identity (1.2) holds
utuY

Vi, Oy |(e+p) +pg"’| = 0.

o2
Note that (1.3), (1.7) and (1.2) constitute 6 equations for the 6 unknowns u”, n, s.
It is convenient to introduce the enthalpy h defined by
nh=c+p="Ts+ un, (1.8)

in which case, using (1.7), we see that the equation above simplifies to

nul/ L LV
= 0y [hut] 4+ g""O,p = 0. (1.9)

60r that we can describe the energy solely in terms of the density and the entropy.
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We claim that (1.7) and (1.9) gives the equation of motion.

1.5.1. Dynamics along u. Projecting (1.9) parallelly to u gives

nu” nu”
0= h?uﬂa,ju” + ?U”Ultﬁyh + U#g'uyaup =0.

The first term vanishes in view of (1.3). We then get
u” [Oyp —ndyh] =0 (1.10)
Using (1.8) and (1.6), we see that

Oyp —nd,h = (h— p)oyn —T,s = %ﬁbn —Td,s

and therefore, using once more (1.7),
T
0= S—u”&,n —Tu’0,s = =TI, [su”].
n

The third law of thermodynamics implies that
T>0, T=0=s5=0,

in which case we find that

0y [su”] = 0.
Now, if we define
)
n
we finally obtain that
u’8,5 = 0. (1.11)

Therefore, if we assume that at initial time, each particle carries the same entropy, s = s, then this
remains true for all times, and we have § = 5y uniformly in space and time. Thus, coming back to the
equation of state, se that in this case € = €(n) and we say that the fluid is barotropic.

For a barotropic fluid, (1.8) gives that

dh  1dp

dn  ndn
and we see that the equation (1.9) along u is trivially satisfied. To conclude: if we consider a simple
neutral fluid such that, at initial time s = 3, then this is propagated by the flow, h and p depend only on
n, and the parallel component of (1.9) along u is satisfied.

Definition: A simple fluid is called isentropic if at some initial time § = 5, in which case, this remains
always true.

1.5.2. Dynamical equations for barotropic fluids. For barotropic fluids, the fluid is fully determined by
only n and u” satisfying (1.3). These are 4 unknowns and they satisfy (1.7) and the part of (1.9)
orthogonal to u. These are 4 equations. Projecting (1.9) in the direction orthogonal to u gives

nh utu?
2 0" 0p =0, "= —a—+g",
where a* = u’0,u* denotes the acceleration and 7 the restriction of the metric to the rest frame.
Therefore the equations of motion are
Oy (nu”) =0,

1.12
at = —c*n"'o, [Inh]. (1.12)
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1.5.3. Vorticity. An important quantity is the relativistic momentum
Mo = € 2hitg, (1.13)

which allows to define the relativistic vorticity

Wap = 0amg — 08Ty ie. w=dm.
We then obtain the Lichnerowicz equation of motion

Oy(nu”) =0, u“wap =T0s5.
Which simplifies in the isentropic case to the Synge relation
u%wqp = 0.
1.5.4. Irrotational flows. Consider an isentropic flow. In this case, we see from (1.9) that
4”0, 0 [hug] = Oa[u” Oy [hug]] — (Dau”)dy, [hug]

SEN [—ggijiagn] — (Ot )wys — (Dau”)Is[hu,]
= —20nph — (0au” )wp — (Dau” )h(su,)
and therefore, we see that the vorticity is transported in the sense that
U’ Opwap = (Ouu”)wa, — (Opu” )way - (1.14)

Consequently, if an isentropic flow satisfies w = 0 at initial time, it remains so for all later time.
Reciprocally, it follows from the Lichnerowicz equation and the third law of thermodynamics that a
flow which is irrotational is isentropic.

An isentropic and irrotational flow is a potential flow in the sense that there exists a function ¢ : M — R
such that

Ta = ¢ 2hug = 0n0.
The equations of motion then give, after some computations that

Og¢ — ¢" 0,00, {an} =0, 5‘#{W+02hlh} =0,

which seems similar to a relativistic potential flow equation.

1.6. Lorentz Covariance. Consider a Lorentz-transformation L, i.e. a (fixed) 2-tensor L satisfying
LogL® = 5% and define”

(X)* = LXs, n/(X') =n(X), N(X)=nX), €X)=X), @)X)=L"us(X)

Then, we see that (n, h, €, u) satisfy (1.7) and (1.9) if and only if (n’,h/,€,u’) does.
For the sake of example, let us do the computations in detail.
We first see that X7 = L_¥(X’)*. Denoting 0’ the derivative in the new coordinates, we compute

0, [n'(X") ()" (X")] = L0, [n(X )uu (X))
= L0y [nu,)(X) - 05,(X)
= L""Ly*620,,[nu,)(X) = 0.

70Of course, we keep g unchanged.
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Similarly for the second equation,
n/ (u/)V

c2

OLIn )]+ g ol = 171 g s ()] 4 gl (2, (X))
= 110 5y ) (X) - 3L (LD (X)) + g 0o (1L (X))
- L”aL”BLfé;’nCLzag [hug) + L25% g" dgp = 0.

1.7. The Crocco equation.

1.8. Lagrangian. There is also a Lagrangian formulation, but I could not find one that I thought was
completely satisfactory. We give here one Lagrangian from [8] seems to work but we will not dwell on

this.:
1 1 1 do
S:f/ d*zy/—detg{ ——R—ple+c*) — Zpu1 (upu” + ) + pa—
cJu 2K 2 dX
where k = 871G, A is the parameter for the curve z#, ut = %, o is the entropy density and pq and po

are Lagrange multipliers.

1.9. Newtonian approximation. In this section, we see how the general relativity comes into play in
the equation for the dynamics of fluids, at first order (i.e. under the weak field approximation that the
metric is a small deviation from the Minkowski metric and the small velocity approximation where the
perfect fluid is close to being stationary). This allows to verify the normalization of our constants. We
refer to [7] for a more rigorous result. In the following, we consider a single barotropic fluid.

We assume that the cosmological constant vanishes, A = 0. In this case, upon taking the trace of
(1.1), we obtain that

8rG Y
R:—CTT, T:gWT“ :—(6—3p)

Thus we may rewrite (1.1) as

. &G 87G [e+p €—D
RICHD = CT { uv Tgm,} = A {CQUHUU + leu,y} (115)

Now, we assume that g,, is a small variation of the Minkowski metric which (only in this section) we
write as my,,. Thus g,, = my, + 0, where (in Minkowski-geodesic coordinates), |#| < 1 and 8 — 0 at
spatial infinity (in the Minkowski variables). Then (1.15) and (3.1) give, in g-harmonic coordinates,

1 81G [e+p €E—p €—p
imgaﬂl, = CT {CQ'LLH'LLU + ?mw) + Tgl“, + 0(80)2
Now, we expand
81G — -
D 9000 = 7T4 {6 J;p04’72 Py p900} + 0(00)?
c c 2

1(1 p87rG e+3p e+plv]2 e+p . |v?
2{028ttA} eoofﬁ 900*4 G{ 902 + 22 CT+ 2 0(07)2 +O((80)2+062900)

Assuming that

y . € 1
W =y(L0), bl <o, [flew <1, 5 =mmtO0(5), p=001),

we see that the equation above reduces to

\vl
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For the other coordinates, we find that

1 € —p8&rG 871G [e+p

0 — S ey = =2 { o, |+ oo

1 e —p8rG 87G [e+p €E—D

imgojk — WCT ik = c4 { 02 Uj'l}k + 9 6]16 + 0(80)2

Thus, in all these cases, we see that, at first order, Afy; = Af;;, = 0 and we can assume that these
vanish.

Now to understand the dynamical implication of this, we must compute the Christofel symbols. We
find that®

1 1
T8, = 5 [ = 0% (0,0 + 008 = Db} = = 505 10,1 + 0,80 — 0.0} + O(16°| - 06]

1 1
Ty = 5 [ = 0] {048 + 0B — 0.8y} = 5 {0,000+ Duhs — 0uB0} + O(10] - 196))

and given our assumptions on 6, we see that the only nonzero coefficients at first order are
1
I, = 5 0kb00- (1.17)

Now, the general relativistic version of the equations of motion (1.7) and (1.9) is

nu”

V. [nu] 2

0,

= Vo [hu] 4+ g"'Vp = 0,

which, in our situation, become to first order

O [yn] + Ok [ny0*] =0

h h 1 ]1
at[cfzﬂ + 0", LQV} T LQ + 900} Op=0

Oy [Cthﬂ} + Féoc%v + v* oy L};mﬂ] + n—l’y@jp =0
and using (1.16) and (1.17) and neglecting all the corrections of order ¢=2 (in particular the 7’s), we
finally obtain
on + Ok [m;k] =0
nm [0 + v*Opv’ | + &p = %8%‘00
—Abyg = 87Gnm

and we recognize the Newtonian equations for a perfect gravitating fluid once we set G to be Newton’s
gravitational constant.

2. CHARGED FLUID

We now introduce an electromagnetic field.

2.1. The Maxwell equations.

8From now on, we raise and lower symbols using the Minkowski metric. This is exact at first order since || < |m|.
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2.1.1. Electromagnetic field. An electromagnetic field F' = {F" }o<, <3 € T*(M) is a skew-symmetric

2-tensor F*¥ = —F"", The Maxwell equations express how an electromagnetic field varies:
1% 47T v
8,LF“ =—J O0aFpy + 08F o + 0y Fop =0, (2.1)
c

where J¥ denotes the total relativistic current. This can also be rewritten in a more geometric way as
4 »
dFF =0, d+«F=—xJ, F=F, dz" Ndz".
c
These equations imply the conservation of charge
a,J" =0. (2.2)

This field has an energy-momentum tensor:
1
EW = —(4m) "L | FreFPY g5 + ZFo‘ﬁFagg”” € T*(M).

in particular, one may verify that £ is a positive tensor.
The classical analogues are defined for the observer v as

e
E" = —ecF"v,, B®= %eo‘ﬁ"‘;vﬁFy(g.

where e denotes the charge of an electron.

2.1.2. Electromagnetic potential. Since the second equation (2.1) can be rewritten as dF = 0 and M is
simply connected, we see that there exists a 1-form A such that F' = dA. In other words,

F = 0,4, — 0,A,. (2.3)

We see from this that A is only determined up to a choice of gauge: if A’ = A + dy, then A’ also gives
F from the above relation.
For a vector potential A, the first Maxwell equation then gives that

00" A” — 9 [0, AV = %J”. (2.4)

In particular, given a solution A of (2.4), the electromagnetic field defined by (2.3) automatically satisfies
Maxwell’s equations.
If we choose the Lorentz gauge where 0, A" = 0, using (2.2), we see that (2.4) reduces to

4
DAP::—7§JV, QuAl_y = 0. (2.5)

2.1.3. Electromagnetic field in vacuum. In vacuum, we have no motion of charge and therefore J = 0. In
this case, we only have to determine the electromagnetic field which satisfies

OuF™ =0 0aFpy +05Fya+0,Fag =0  (dF =0, dx F =0).
In particular, we see from (2.5) that Maxwell’s equation reduce to
OF =0,

together with some constraints on the initial data.



RELATIVISTIC FLUIDS 9

2.1.4. Lorentz force. The Lorentz force F, exerted by the electromagnetic field F onto a particle of charge
q moving with 4-velocity u is given by
Fr = guaF pex
c
Therefore, naturally, the Lorentz force applied to a fluid with density n, charge-per particle ¢ and 4-
velocity u is given by

P =y e (26)
c

2.2. One charged fluid in vacuum.

2.2.1. Dynamical equations. We now consider the case of just one charged fluid in vacuum, with density
of charge p = gn for some ¢ > 0. In this case, the total electric current is given by

JV = gnu”. (2.7)
The dynamical equations are then given by the Maxwell equation, the continuity of charge and the
conservation of the total stress-energy (or Bianchi identity): (2.1), (2.7), (1.7) and (1.2). The latter reads

v 1 14
0=0, [T + &) = ”c%ay (] + g™ Dyp — — Jo P = ”CZ d, [hut] + g™ d,p — %uawa. (2.8)

Since F' is skew-symmetric, when we project in the direction of u, we obtain (1.10) and thus the
discussion in sub subsection 1.5.1 applies equally well. In particular, fluids which are initially isentropic
remain so and are in fact barotropic.

2.2.2. Generalized Vorticity. We define the generalized vorticity as
PWap = da(hug) — p(hua) + qcFup.
This is again transported by the flow in the sense of (1.14). Indeed, we may simply compute

czu”auwag = 0a(u” 0y (hug)) — 0, (hug)Oau” — 0p(u” 0, (hua)) + Oy (hua)0su” + geu” 0, Fop
2 2
= —8a(%6ﬁp — cqugFlgwgw) + 93(—0up — cquerg'yg) — geu” (0aFpy + 08 FL0)

<
n
- (aau”)CQw,,g — (0u”)0g(huy) + qe(Oou” ) Fop
+ (5‘5u”)62wm + (93u”)0a(huy) — qc(0pu” ) Foq
= qc{@a(ungg) — Bg(ueFag) —u0uFp, —u’0sF, o + (0au”)F,3 — (0pu”)Fua}
— (aau”)CQw,,,g + (6Bu”)(32wm — {(0au”)0s(huy) — (Opu”)0u (huy,)}
= —02(8au”)wl,g + 02(('“)gu”)wm,

and hence as long as the solution is smooth, irrotational initial data lead to solutions which remain
irrotational.

2.3. The relativistic Euler-Maxwell equation for electrons. The Euler-Maxwell equation for elec-
trons is the variant of the previous case, where we also assume the presence of a second fluid which
remains at rest and which has charge opposite to the fluid under consideration.

We assume the presence of a background fluid with n = ng, u = 9; and charge e. Since we assume
that this fluid is not moving, we cannot incorporate its stress-energy tensor in the Bianchi identity (1.2),
which we then have to abandon.

The dynamical equations are then given by the Maxwell equations (2.1), where the total electric current
is now

JV = e[ngdy —nu”],
the conservation of particle (1.7) (or the conservation of charge (2.2)), but we need to find a replacement
for (1.2). This is similar to the case of loosing a conservation law, in which case, we can always go back
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to Newton’s law. In special relativity, there are two possible replacements for Newton’s law: either a law
prescribing the acceleration as in (1.12), or a law prescribing the variation of momentum 7 (see (1.13)) as
in (1.9) or (2.8). The correct one seems the balance of momentum: “the variation of momentum equals
the sum of the forces exerted upon the fluid”. In our case, we only have the Lorentz force (2.6) and this
gives

nu” o, + g""d,p = %uaF’“’, 7 = c 2hu”. (2.9)

Note that since we do not describe a complete system (e.g. we are neglecting the forces that the electron
fluid exerts upon the uniform background), we do not recover the fact that the stress-energy-tensor is
divergence free (1.2). However, we retain a partial equality which is sufficient to give us conservation of
the physical energy:

9, [T +&%] =0.

2.3.1. Lorentz covariance. Consider a Lorentz-transformation L, i.e. a (fixed) 2-tensor L satisfying
LapL® =4 and define

(XN =L*Xs, n/(X)=n(X), @)*X')=L"ug(X), (F)*(X')=LL"F,s5X),
(J)*(X") = L J5(X)
Then, we see that (n,u, J, F') satisfy (2.1)-(1.7)-(1.2) if and only if (n’,u/, J’, F") does.

2.3.2. Perturbations of a constant equilibrium. We remark that the same formal computations as in
Subsection 2.2.2 still hold. Therefore it makes sense to consider irrotational fluids. In addition, the
following “physical” explanation is sometimes given to justify the study of irrotational initial data:

In the absence of a mechanism to create vorticity (such as the presence of boundary) and when
the (generalized) vorticity satisfies a transport law, if one starts with a state which is irrotational, any
“physical” perturbation of the system will not destroy this vanishing of the generalized vorticity; in other
words, one cannot perturb the velocity and the magnetic field independently in a “physical” fashion.

In any event, regardless of the relevance of the previous paragraph, considering an irrotational pertur-
bation greatly simplifies the system and is certainly relevant to applications.

We now consider the perturbation of the following equilibrium:

n=mng, u=0, F=0.
We assume that the data are isentropic and irrotational. We write the fluid 4-vector as

. . 1
u’ = ('ye,vl,v2703), U, = (70275,1)1,1)2,1)3), uhu, = —Z, e = [1 + 072|v|2} 2 (2.10)

and we consider the unknowns’

pl=c2h? = c2hd, EI = ecF°. (2.11)
All the other unknowns can be recovered from the formula
ec P IR = Oppd — 0k,
the first equation in (2.1)

1

4dme? % &,

NYe = No —
and from the fact that the mapping

D :(n,v) = (nYe, pte) = (ny/1 4 c2[v|2, ¢ 2h(n)v)

9This choice of unknown is motivated from the choice of unknowns in the non relativistic case [5]. Another way of seeing
this is that since u" is a small variation of d; and since only the equations of motion orthogonal to u# will be relevant, it
should suffice to look at the projection of the equations of motion onto 63‘ and to recover the full dynamics of v by imposing
(2.10).
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is invertible in an L*°-neighborhood of v = 0 and n = ng, where h ~ hg := h(ng). This latter point is
easily seen from the Jacobian matrix

-1,-2,,T
_ Ye Yo ¢t
VD = (C_Qh’(n)v c2h(n)I3 ) ’
which also in particular implies that
K (ng)
2

O:h = —
J 4me

;06 E" + h.o.t. (2.12)

The dynamical equations then reduce to the following (from (1.9) and the first equation of (2.1))
2 2

<5, el _
hye © 2 (2.13)

O E? — ¢ (curl curl(pe))? — 4776202%/12 =0

B . 1
Ol + BV + —0jh +
Ve

where
(curl(v))" :=€"* 9;vy.
We can now choose scales appropriately so as to minimize the number of parameters in the linear
system. Define!®
4me?ng

2
), A= » ~cwe, [ =Ac

Cs

/
ho = hino), pp=p'no),  T=10~ (
0

pe(w,t) = B(A\x, Bt),  E(,t) = BE(\x, Bt),
n=no(1+ Az, 8)), hoh = h(@), 7 = \/1+ (c/ho)h=2[fi2
and introduce
Q=|V| tcurl, P=-V(-A)"ldiv, P’+Q?*=1d, PQ=0, P’=P @Q>=Q.
We can recast (2.13) as

Cc

i+ E—TAPE = N,
OHE + AQ*li — i = N,
where

~12 . - ~12
—lehi |”2|+{TAPE+}L~°Vh}+C{1—1}V|“|
0

ol ho L1y 2
147
—N2={1— %n}ﬁﬂ.

We define
A2:=1-TA, A}:=1-A
and we introduce the dispersive unknowns
U, := Pji — i\ .PE

- (2.14)
Uy :=Qu— i\, 'QF

10Here w, denotes the (nonrelativist) electron plasma frequency and cs denotes the (non relativist) sound velocity.
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which satisfy the system
(at + iAe) U, = PNl - iAePNQ

2.15
(3t + iAb) U, = Q/\/l — iA;lQNQ. ( )

This system is now amenable to analysis of quasilinear dispersive equations techniques.

2.4. The relativistic 2-fluid Euler-Maxwell equation. We now complete the system described above
and let the ion evolve freely. This section is essentially taken from [5].

We thus consider two fluids with two densities n; and n., two velocity fields v; and v, (both of which
satisfy (1.3)) and an electromagnetic field F. We assume that each ion carries a charge of +Ze. We are
also given pressure laws p; and p,. and enthalpies h; and h, satisfying (1.8), with M;, the rest-mass of an
ion instead of m. for p;, h;. Thus, our matter fields are described by

M, v Ha v

U, U; u,u
ny i1 v v o__ e Ve v
7 =nihi—5- +pig",  T&¥ =nche=5= + peg™”.

The Maxwell equations (2.1) remain the same, with the relativistic current now defined as

JV = Zenjul — enoul (2.16)

€

Both species are independently conserved so that
Oy (nuy) =0 = 0,(neuy) (2.17)

and we have two forms of balance of momentum:

n; en;

uY
L0, [hiul'] 4+ g" Oupi = —Z
c? c
Nel
2

(ui)aF“o‘
(2.18)

=0, [heug} + guyaupe = %(ue)aFua~
C

In particular, we recover the fact that the stress-energy tensor is divergence free (1.2):
o, [T +TH 4+ EM] = 0.
Again, we have two naturally transported (generalized) vorticities:
whg = Oo [hi(ui) 5] — 0p [hi(ui)a] — ZecFag,
Wzﬁ = Oa [he(te)g] — Op [he(ue)a] + ecFugp,
which satisfy that
0,5 = —(@at s + (Dl ik 219
ugOywap = —(Oatig)wys + (GpugJwp,.-
We thus see that irrotational flows are well-defined and remain irrotational along the flow.

We can easily see from (1.8) that the component of (2.18) parallel to the fluids under consideration
are automatically satisfied. Thus to verify (2.18), it suffices to verify it when p = j varies between 1 and
3.

We now define the unknowns
pl = c2hiul, pl=cPheul, 1<j <3,
E =ecF°, 2B/ = —ec™' €M Fyy, I = —cem! €M Bl
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Now, we can rewrite our evolution system as

O¢(nivi) + Czdiv(%ﬂi) =0,
8 9 |Mz‘\2
vihi 72

615(”6'76) + CQdiV(%Ma) =0,

1 )
6tui + *8jhl — ZE7 + =0,
i

? g e
heve 72

O F — c2eurl(B) + 47r6202[2%,ui - %ue] =0,

8t/14]e + ,7(%/16 + E7 + = 01
€

O0¢B + curl(E) = 0.

13

2.4.1. Linearization at an equilibrium. From these equations, we can find the equations satisfied by the

deviation from the equilibrium state

ni=2Z'ng, ne=ng, u=u; =0, F"=0.

‘We now set

H; = hi(no/Z), noP,Z =p}(no/Z), He=he(ng), noP.=p.(no),

/47rn026202 4me? . vnoZP;H;
Pi ’ o C

and

and use the rescaling

~i(z,t) = 3 (A, Bt), (
ni(z, t)yi(, t) = (no/Z)[p(Az, Bt) + 1], ne(z,t)ve(2,t) = noln(Az, Bt) + 1]
pi(z,t) = pu(Az, Bt),  pe(x,t) = (ep/Z)v(Az, Bt)
E(z,t) = noAP;E(\z, 8t), B(z,t) = (An/Z)B(Az, Bt)
hi(ni(z,t)) = Hihi(p(Az, Bt))
)

Ye(Az, Bt),

2
0]
ﬁ
-
S~—
I

. hi(ng) = Z°Pgi(p),  hi(0) =1=q(0)
he(ne(x,t)) = Hohe(R(Az, Bt)),  hi(ne) = Podi(i),  he(0) =1=¢.(0)

(2.20)
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to obtain the system

1
Op + div] N—tpu] =0,
Yilti
o 1 2
o) — E7 4 = 8314— @M:O,
1 'Vzhi 2
Ogn + div] ~_|_~nv] =0,
%he (2.21)
1 Ivl
e{Ow+ =——0 }+EJ+ 8jqe_0
heAe
~. O ~ 1 1
O E7 — —bcurl(B) + [# tn v]=0
€ %hi f}/ehe

&,B + curl(E) =0

which has a similar structure to the classical Euler-Maxwell system. Indeed, we may Taylor expand to
get

1+

7[)—1+r1p+917 @ = p+12p° + rolul® + ha,

Yihi

1+n 9
=1+7m3n+9gs, ge=n-+rn®+7r4v]*+ ha,

Fehe

where 71, 9, 15, r3, 74 and 7} are constants and ¢, g3 are smooth functions of (p,u,n,v) which vanish
at the origin (0,0, 0,0) together with their gradient, and hs, hy are smooth functions of (p, u,n,v) which
vanish at the origin (0,0, 0,0) together with their first and second derivatives.

We may thus rewrite (2.21) as

O¢p + diviu] + rdiv]pu] = —div]gi],
0 — B+ 0jp -+ 1203 (?) + (1 + 3)Oyfuf = T
Opn + div[v] + ngiv[nv] = —div[gs],
v + e 1B 4 5_1T8jn + E_lTT48j(7’L2) + (e _1Tr —|— )0, \v|2 =Ty, (2.22)
8,B + curl( E) =0,

- C -
OFE — —bcurl(B) +u— v+ [ripu — r3nv] = —gru + gsv,
€

where

= (3"~ 10,0 — 7 1 05he — (Fahi) ™" = 1)/2- Oy uf?
Ty = —{e ' T9, " = 1}0;q. — e '3 9jha — ((heFe) ™" = 1)/2- 05 0]

are simply smooth cubic (or higher order) terms in (p,n,w,v) with no particle structure. We can directly
observe that the linearization of (2.22) coincides with the linearization of the classical equation. Therefore
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we consider the same dispersion relations and we define similarly the dispersive unknowns as:

1 - - ‘ S
Ui = Usy = 5o VPRIV i+ 917 Aip — i/ BB — iRy,

1 - - , i : 2.2
Ue = Ue+ = ﬁ[—51/2‘v‘ 1Aen—|—R|V| 1Aep+l€1/2RjUj _ZRR]‘UJ:I, ( 3)

2y = 2Uy, = Ay|V|T'QB — iQ*E

with inverse transformation given by

—|V|e~t/2 —  |V[e'2R —
= —F——(Uce+U) + ——(U:+ V),
\/1+R2Ae( ) \/1+R2AZ—( )
VIR T V| o
= —— U+ U) + ——(U;: + Uy),
¥ = Uit en,| ARV ST ) )
‘ ie—1/2 U T —ie~ /2R U 2\ Re(17 (2.24)
v = j{w(e e)+7m(i* i)}+€b e(Uy),
; —iR — —1 — ,
I = Ry (U — Us) + ——ex (U; — T;) § — 2A; 'Re(U).
w J {m( ) m( )} b e( b)
We also define U,_ = U,, o € {i,e,b}. Above, we have used the operators:
a0 (@A V(1 =2) = (T —2)A) + 4
i =€ 2 )
N (L46) = (T+0)A+/(1—e) = (T —)A) + 4
e =¢& )
2 (2.25)

Ay =2\ /1+e— A,
H, :=V1-A, H.:=eY2J/1T=TA,

AZ 12 ) .
R:= \/;’ R, = Ivl 180(’ Qaﬁ(&) = |V| ! €avp 8V'

Using these formulas (and in particular the fact that d;n and 9;p are exact spatial derivatives so as to
counteract the singular relation at 0 frequency in the definition of U, and to keep the derivative structure
in the quadratic part of the nonlinearity A;), one quickly sees that (U;, U, Uyp) satisfy

(at +7/A1)U1 :Ma (at +iAe)Ue :N€7 (at +7;Ab)Ub,oz :Nbpu (226)

where the quadratic nonlinear terms are of the form

FN,)(Et) = oipn (& UL(E =, )T, (0, 1) dn,
AT Z/m (€ Tale ~ 0,000, 0) d .

o € {i,e, b}, Ty :={e+,e—,i+,i—, b+ 1,b+2,b+3,b—1,b—2,b — 3},

where the multipliers me, ., (&,7) and mp a0 (1), o € {1,2,3}, can be written as finite sums of
functions of the form

L+ Y2 mE&m), meM (2.28)

and the multipliers m;, ,, (£, n) can be written as finite sums of functions of the form
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where M denotes the set of functions of the form m(&,n) = ¢1(€)g2(€ —n)gs(n) where ¢; is a nice symbol.

3. BASIC FORMULAS AND TOOLS

3.1. Some geometrical formulas. We recall the definition of the relevant geometrical objects, given a
manifold (M, g) with a Levi-Civita connection:

1
Flg = 5976 {6a905 + 85900( - 6090(6}

I _ " p o o

R aBy — 851—‘&7 - 87]‘—‘045 + Foﬁr'ya - Fg'y af

Ricy,, = 0a1%, — 8,0, + 19,7, —~T% T =R,
R = ga'BRICaﬂ

We claim that, in Lorentz coordinates !,
2(Ricy)uw = Oggun + O(O)2. (3.1)
Indeed, in Lorentz-coordinates, we have that
29°%0ng0s = 9P 09 gup = 0 < 05 {geﬁ |detg|} =0 20,9 = gapg"’ 0,9*". (3.2)
This gives that
2Ricu = 0o {97 10ug0v + Ougon — ogul} — 0 {9°" Ougoa} + T5al7, —T5,T7,
Keeping only the terms linear in the metric, we get
2(Ricy) i = —°0pgu + {0,197 05 g00] + 0019%7 0o go,] — 0u[9°°0ug0a] } + O(89)?.

In view of (3.2), the term inside the bracket only produces commutator terms which are O(dg)? and we
therefore obtain (3.1).

As an aside that we will not use, we may remark that in Lorentz coordinates, we have that, for any
function ¢,

Dg¢ = gaﬁaa,ﬁ’d)-
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HBelow Ogguv denotes of course the D’Alembertian of the function g,.,. By metric compatibility, the D’Alembertian
of the metric vanishes identically.



