
SEMILINEAR DISPERSIVE EQUATIONS

BENOIT PAUSADER AND ALEXANDRU IONESCU

1. Examples of normal form transformations

Normal form transformations correspond to a change of unknown u → v :=
u + O(u2) which allows to remove some parts of the nonlinearity (at least up to
terms of higher homogeneity)

Lu = O(u2) = Nres(u) +Nnres(u) → L(v) = Nres(u) +O(u3).

It turns out that such transformations can often be found for oscillatory ODEs and,
after passing to Fourier space, for dispersive equations (see e.g. [10]).

1.1. Null form for the wave equation. A simple example of normal form trans-
formation occurs for the null nonlinear wave equation1

�u = Q0(u, u) = (∂tu)2 − |∇xu|2

In this case, we observe that the simple change of unknowns u 7→ v := u + u2/2
gives

�v = �(u+ u2/2) = u�u = u
(
(∂tu)2 − |∇xu|2

)
and this conjugates the original quadratic equation for u into a cubic equation for
v. We can also note that this is only the first term of a complete normal form

�(eu − 1) = eu
(
�u− (∂tu)2 + |∇xu|2

)
= 0,

so that w = eu − 1 evolves completely linearly.

1.2. KdV on T in L2. This follows essentially [1]. We consider the KdV equation
on the Torus T = R/(2πZ) :

(∂t + ∂xxx)u = ∂x(u2), u(x, t) : T× R→ R. (1.1)

Conjugating by the free flow and taking the Fourier transform, we can write

u(x, t) =
∑
k∈Z

ak(t)ei[kx+k3t], ak(t) = a−k(t)

and we obtain

(∂t + ∂xxx)u =
∑
k∈Z

∂tak(t)ei[kx+k3t],

∂x(u2) = i(p+ q)
∑
p,q∈Z

ap(t)aq(t)e
i[(p+q)x+(p3+q3)t]

1here we denote the D’Alembertian by �u =
(
−∂2

t + ∆
)
u = mαβ∂α∂βu.

1
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and matching the oscillatory phase2, we obtain the ODE system

∂tak(t) = ik
∑
p,q∈Z,
p+q=k

ap(t)aq(t)e
i[p3+q3−k3]t, k ∈ Z.

(1.2)

We directly remark that ∂ta0 = 0, and in fact, up to replacing

u→ v(x, t) := u(x− 2ct, t), c :=
1

|T|

∫
T
u0dx,

we may assume that a0(t) ≡ 0. In addition, if p+ q = k, we can decompose

p3 + q3 − k3 = p3 + q3 − (p+ q)3 = −3pq(p+ q)

and we can partially integrate (1.2) by integrating the fast oscillation:

∂tak(t) = −ik
∑
p,q∈Z,
p+q=k

ap(t)aq(t)∂t

{
ei[p

3+q3−k3]t

i3kpq

}
,

= −∂t


1

3

∑
p,q∈Z,
p+q=k

ap(t)

p
· aq(t)

q
· ei[p

3+q3−k3]t


+

2

3

∑
p,q∈Z,
p+q=k

ap(t)

p
· ∂taq(t)

q
· ei[p

3+q3−k3]t,

(1.3)

and letting

Ak(t) := ak(t) +
1

3

∑
p,q∈Z,
p+q=k

ap(t)

p
· aq(t)

q
· ei[p

3+q3−k3]t

we see that ak 7→ Ak is a local change of variable on hs, s ≥ 0 with

‖〈k〉(Ak − ak)‖`2(Z) . ‖a‖2`2(Z) (1.4)

and

∂tAk = −2

3
i
∑

p,q,r∈Z,
p+q+r=k

ap(t)

p
· aq(t) · ar(t) · ei[p

3+q3+r3−k3]t = T (a, a, a)
(1.5)

and we note that T is bounded in `1(Z) ⊂ h1 so that the regular Cauchy-Lipshitz
gives

Theorem 1.1. Any initial data u0 ∈ H1(T) leads to a local solution u ∈ C([0, T ] :
H1(T)) where T = T (‖u0‖H1). Using the conservation laws, this solution can be
extended to a global solution.

Proof of Theorem 1.1. It follows from (1.2) that

M := ‖a(t)‖2`2 = ‖u0‖2L2

is conserved. We see from (1.4) that

‖a‖h1 ≤ ‖A‖h1 +O(M).

2or taking the Fourier transaform in x.
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In addition, inspection of (1.5) using the algebra property gives that

‖T (a, b, c)‖h1 . ‖a‖h1‖b‖h1‖c‖h1

so that the ODE for A has a local solution on a time interval [0, T ] with T =
T (‖a(0)‖h1). The solution can be extended globally through the conservation of
the energy

E(u) :=
1

2

∫
T
(∂xu)2dx+

1

3

∫
T
u3dx

which, together with the conservation of the mass, controls the Ḣ1 norm through
Sobolev embedding:∣∣∣∣∫

T
u3dx

∣∣∣∣ ≤ ‖u‖L∞M(u) .M(u)
3
2 +M(u)‖∂xu‖L2 .

�

In fact, using that

p3 + q3 + r3 − k3 = 3(p+ q)(p+ r)(q + r)

the normal form transformation can be iterated to give L2(T)-LWP3 but the com-
putations become more cumbersome since some part of the nonlinearity becomes
resonant (e.g. when p + q = 0 - observe that in this case, one can use that∑
p apa−p =

∑
p apap = ‖a‖`2 is conserved) and cannot be integrated.

2. An example of linear scattering for the nonlinear Schrödinger
equation

This is more or less taken from [2, 11]. We will consider the following equation
for (x, t) ∈ R3 × R:

(i∂t −∆)u+ |u|2u = 0, u(t = 0) = u0 ∈ H1(R3). (2.1)

Solutions are global by a continuation argument thanks to the conservation laws4

M(u) :=

∫
|u(x, t)|2dx =

∫
|u0(x)|2dx, E(u) :=

∫ {
|∇u|2 +

1

2
|u|4
}
dx = E(u0).

(2.2)

We propose to prove the following:

Theorem 2.1. Any solution of (2.1) starting from H1 initial data leads to a unique
global solution u ∈ Ct(R : H1(R3))∩L5

x,t(R3×R) that scatters linearly in the sense

that there exists u± ∈ H1 such that

‖u(t)− eit∆u±‖H1 → 0 as t→ ±∞.

In addition, we have propagation of regularity: assuming that u0 ∈ Hs, s ≥ 1, then
u ∈ Ct(R : Hs) and

‖u±‖Hs . C‖u0‖Hs .

3see [1] for details
4the first can be verified by multiplying the equation by u, taking the imaginary part and

integrating. The second can be obtained by multiplying the equation by ∂tu, taking the real part
and integrating.
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Remark 2.1. (1) The theorem remains true in arbitrary dimension d ≥ 1,
provided one replaces the nonlinearity |u|2u by |u|p−1u for 1 + 4/d ≤ p ≤
1 + 4/(d − 2) (1 + 4/d ≤ p < ∞ when d = 1, 2), although the proof gets
considerably more complicated in the endpoint case.

(2) The problem is more complicated in the focusing case when +|u|2u is re-
placed by −|u|2u. In this case, one needs to add at least some solitons, but
the general picture is still largely conjectural.

We will focus on the case t→ +∞. Thanks to the time-reversal symmetry

u(x, t)→ u(x,−t)
the result for the backward case t→ −∞ follows from the forward case. Before we
continue with the proof, we can observe that the proof of weak scattering is simple
(see Lemma 2.1). We also recall that (2.1) is invariant by the scaling

u(x, t) 7→ λu(λx, λ2t), u0(x) 7→ λu0(λx) (2.3)

which preserves the Ḣ
1
2 -norm of the initial data. And therefore, for control of global

behavior, only scale-invariant norms can be helpful. Fortunately, the conservation
laws (2.2) provides us with two off-scale global bounds which can then be used to
interpolate with many more off-scale bounds to produce a scale-invariant norm.
Starting from (2.2), we already see that

‖u‖
L∞Ḣ

1
2
. ‖u‖

1
2

L∞t L
2
x
‖∇xu‖

1
2

L∞t L
2
x
.
√
M(u)E(u)

is a first scale-invariant quantity. If this norm is small, local theory gives the
scattering result easily. When this norm is large, we need to obtain a norm that
can be made small for large time. Here we will choose a Strichartz norm LptL

q
x with

p <∞ (where functions of compact support in time are dense).

2.1. Reduction to a quantitative estimate.

2.1.1. The Duhamel formula. If we consider a smooth solution, we may conjugate
the equation by eit∆ and rewrite

∂t
{
eit∆u(t)

}
= ieit∆

{
|u(t)|2u(t)

}
(2.4)

which, upon integration, leads to

u(t) = e−it∆u0 + i

∫ t

s=0

e−i(t−s)∆
{
|u(s)|2u(s)

}
ds

= e−it∆
{
u0 + i

∫ t

s=0

e−is∆
{
|u(s)|2u(s)

}
ds

}
and we see that scattering is more or less equivalent to making sense of the indefinite
integral

u+ := u0 + i

∫ ∞
s=0

e−is∆
{
|u(s)|2u(s)

}
ds. (2.5)

Given the conservation laws, this integral converges weakly.

Lemma 2.1. Let u be a solution to (2.1) with H1 initial data. This solution
converges weakly in the sense that there exists u± ∈ H1 such that for all φ ∈
C∞c (R3), there holds that

〈u(t), e−it∆φ〉 → 〈u±, φ〉, as t→ ±∞. (2.6)
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Proof of Lemma 2.1. Given φ ∈ C∞c (R3), we take the inner product and use the
linear dispersion to get

mφ(t) := 〈u(t), e−it∆φ〉 = 〈eit∆u(t), φ〉

= 〈u0, φ〉+ i

∫ t

s=0

〈e−is∆
{
|u(s)|2u(s)

}
, φ〉ds

= 〈u0, φ〉+ i

∫ t

s=0

I(s)ds, I(s) := 〈|u(s)|2u(s), eis∆φ〉

and it suffices to show that I(s) is integrable. But using the dispersion inequality
(2.11) and the conservation laws, we see that

|I(s)| . ‖eis∆φ‖L∞‖u3(s)‖L1 .φ 〈s〉−
3
2 ‖u(s)‖3L3 .φ 〈s〉−

3
2 [M(u) + E(u)]

3
2 .

Besides, we see that

‖u±‖H1 ≤ lim inf ‖eit∆u(t)‖H1 = ‖u(t)‖H1 ≤ [M(u) + E(u)]
1
2 .

�

In fact, with an appropriate spacetime bound, we can upgrade this to strong
convergence.

Lemma 2.2. Assume that u ∈ L5
x,t(R3 × R), then u scatters. In particular u

scatters if ‖u‖
Ḣ

1
2
< ε is small enough.

Proof of Lemma 2.2. This follows from Strichartz estimates. Up to choosing T
large enough, we can assume that

‖u‖L5
t ([T,∞):L5

x) < ε

and Strichartz estimates give that for P ∈ {Id,∇x}, on I = [T, T ∗)

‖Pu‖S0(I) . ‖Pu(T )‖L2 + ‖u2Pu‖
L

10
7
x,t

. ‖u(T )‖H1 + ‖u2‖
L

5
2
x,t

‖Pu‖
L

10
3
x,t

. ‖u(T )‖H1 + ε2‖Pu‖S0(I)

and we can absorb the right-hand side into the left hand side to obtain a uniform

bound: u,∇u ∈ L
10
3
x,t, and redoing the computations, we see that

‖P
∫ τ

s=σ

e−is∆
{
|u(s)|2u(s)

}
ds‖L2 . ‖u2Pu‖

L
10
7
t ([σ,∞):L

10
7
x )

. ‖u‖2L5
t ([σ,∞)L5

x)‖Pu‖
L

10
3
x,t

and we have a Cauchy sequence as σ →∞.
�

Lemma 2.3. Let u be a solution to (2.1) with initial data u0 ∈ H1. Assume that

‖u‖L4
x,t(R3×R) <∞ (2.7)

then in fact the conclusion of Theorem 2.1 holds.
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Proof of Lemma 2.3. Step 1: Boundedness of L4 implies boundedness of scale in-
variant norms5.

Splitting the time axis into N = O(ε−4‖u‖4
L4
x,t

) intervals, we may assume that

‖u‖L4
x,t(R3×I) ≤ ε. (2.8)

We first use the conservation laws to obtain by interpolation a scale-invariant norm:

‖u‖
L6
t (I:L

9
2
x )
≤ ‖u‖

1
3

L∞t L
6
x
‖u‖

2
3

L4
x,t(R3×I) .E ε

2
3 .

Once we have a scale-invariant quantity, we can use it to control other Strichartz
norms: using the admissible pairs (a, b) = (10/3, 10/3) and (p, q) = (30/11, 90/23)
in (2.13), we find that, if I = [t0, t1],

‖u‖
L

10
3
x,t(R3×[t0,t1])

. ‖e−it∆u(t0)‖
L

10
3
x,t

+ ‖
∫ s

t0

e−i(t−s)∆
{
|u|2u(s)

}
ds‖

L
10
3
x,t(R3×[t0,t1])

. ‖u(t0)‖L2
x

+ ‖u3‖
L

30
19
t ([t0,t1]:L

90
67
x )
.M(u)

1
2 + ‖u‖2

L6
t ([t0,t1]:L

9
2
x )
‖u‖

L
10
3
x,t

.M(u)
1
2 + ε

4
3 ‖u‖

L
10
3
x,t

and choosing ε > 0 small enough we obtain that

‖u‖
L

10
3
x,t

.M(u)
1
2 .

Similarly, we can obtain an H1-bound using (a, b) = (10, 30/13) and (p, q) =
(30/17, 90/11),

‖∇xu‖
L10
t L

30
13
x

. ‖e−it∆∇xu(t0)‖
L10
t L

30
13
x

+ ‖
∫ s

t0

e−i(t−s)∆∇x
{
|u|2u(s)

}
ds‖

L10
t L

30
13
x

. ‖∇u(t0)‖L2 + ‖u2∇u‖
L

30
13
t ([t0,t1]:L

90
79
x )
. E(u)

1
2 + ‖u‖2

L6
t ([t0,t1]:L

9
2
x )
‖∇xu‖

L10
t L

30
13
x

. E(u)
1
2 + ε

4
3 ‖∇xu‖

L10
t L

30
13
x

.

Now using Sobolev inequality, we conclude that

‖u‖L10
x,t
. ‖∇xu‖

L10
t L

30
13
x

. E(u)
1
2

and therefore, summing over the intervals, we see that

‖u‖Lp(R3×R) . ‖u0‖H1 , 10/3 ≤ p ≤ 10.

Step 2: Scattering.
We want to show that

v(t) = eit∆u(t) = u0 + i

∫ t

s=0

e−is∆
{
|u(s)|2u(s)

}
ds

5note that L4
x,t scales like the Ḣ

1
4 norm (see (2.9)), which is supercritical.
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is H1-Cauchy in t. But using the Strichartz estimates (2.13), we obtain that for
τ ≤ τ ′,

‖v(τ ′)− v(τ)‖L2 = ‖
∫
R
e−is∆

{
|u(s)|2u(s)

}
1[τ,τ ′]ds‖L2

. ‖u3‖
L

10
7
x,t(R3×[τ,τ ′])

. ‖u2‖
L

5
2
x,t(R3×[τ,∞)

‖u‖
L

10
3
x,t

and similarly,

‖∇x(v(τ ′)− v(τ))‖L2 = ‖
∫
R
e−is∆∇x

{
|u(s)|2u(s)

}
1[τ,τ ′]ds‖L2

. ‖u2∇xu‖
L

10
7
x,t(R3×[τ,τ ′])

. ‖u2‖
L

5
2
x,t(R3×[τ,∞))

‖∇xu‖
L

10
3
x,t

which is Cauchy as τ →∞.
�

Remark 2.2. The numerology in the choice of the spacetime norms can be under-
stood from the fact that the linearized equation

Luv := (i∂t −∆) v + 2|u|2v + u2v

defines a bounded mapping S0(I) → S0(I) when u is bounded in a scale invariant
norm ‖u‖Lp(I:Lq) <∞ for

2

p
+
d

q
=
d

2
− s, d = 3, s =

1

2
. (2.9)

The precise choices are dictated by various applications of Hölder and Sobolev in-
equalities.

2.2. Interaction Morawetz estimates. We recall the energy-momentum tensor
for (2.1)

T00 =
1

2
|u|2, T0j = Tj0 = −={u∂xju},

Tjk = 2<
{
∂xju∂xku

}
+

1

2
δjk
[
|u|4 −∆(|u|2)

]
,

(2.10)

which satisfies the local conservation law:

∂tT0α = ∂kTkα, α ∈ {0, 1, 2, 3}.

In particular, one obtains a conserved measure µ(dx) = 2T00dx = |u(x, t)|2dx, and
a Virial estimate6

∂t

∫
R3

{Aj(x− x0)Tj0(x)} dx =

∫
R3

Tjk(x)∂kAj(x− x0)dx

= 2

∫
R3

<
{
∂xju(x)∂xku(x)

}
∂kAj(x− x0)dx

+
1

2

∫
R3

|u(x)|4∂jAj(x− x0)dx

− 1

2

∫
R3

|u(x)|2∆(∂jAj(x− x0))dx.

6intuitively, this reflects the fact that whereas position and momentum can evolve in arbitrary
way, position× momentum has a good chance to be monotonic in time.
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This can be used for various choices of vector A, with A = ∇a for a(x) = |x|2/2 or
a(x) = |x| or rescaled version being the most frequent (see also [8, 9] for interesting
variants in lower dimensions). Choosing a(x) = |x| and using that

Aj =
xj
|x|
, ∂kAj =

1

|x|

{
δjk −

xjxk
|x|2

}
, ∆a =

2

|x|
, ∆2a = −8πδ0

gives

∂t

∫
R3

x− x0

|x− x0|
=
{
u(x)∂xju(x)dx

}
dx

=2

∫
R3

<
{
∂xju(x)∂xku(x)

}
· ∂xj∂xka(x− x0)dx+

∫
R3

|u(x)|4

|x− x0|
dx+ 4π|u(x0)|2.

The last two terms of the last line are nonnegative; since a is convex, the first term
is the contraction of two nonnegative matrices and is guaranteed to be nonnegative.
Integrating in time, we see that

‖u‖L∞t L2
x
‖∇xu‖L∞t L2

x
≥
[∫

R3

x− x0

|x− x0|
=
{
u(x)∂xju(x)dx

}
dx

]t1
t0

≥
∫
R

∫
R3

|u(x)|4

|x− x0|
dxdt+ 4π

∫
R
|u(x0)|2dt.

This inequality holds for all choices of x0. It can be used by averaging it over the
conserved measure µ = |u|2dx. This gives

∂t

∫∫
R3

{T00(y)∂ja(x− y)Tj0(x)} dxdy

=

∫∫
R3

{T00(y)Tjk(x) + Tj0(x)Tk0(y)} ∂k∂ja(x− y)dxdy

=

∫∫
R3

[
|u(y)|2<

{
∂xju(x)∂xku(x)

}
+ T0j(x)T0k(y)

]
∂j∂ka(x− y)dxdy

+
1

4

∫∫
R3

|u(y)|2|u(x)|4∆a(x− y)dxdy − 1

4

∫∫
R3

|u(y)|2|u(x)|2∆2a(x− y)dxdy.

Once again, we can safely ignore the first term on the RHS. In addition, we see
that

I(t) :=

∫∫
R3

{
T00(y)

(x− y)j
|x− y|

Tj0(x)

}
dxdy

=
1

2

∫∫
R3

{
|u|2(y)

(x− y)j
|x− y|

= {u(x)∂xju(x)}
}
dxdy . ‖u‖3L∞t L2

x
‖∇xu‖L∞t L2

and integrating in time, we obtain that∫
R

∫∫
R3

|u(x)|4|u(y)|2

|x− y|
dxdydt+ 4π

∫
R

∫
R3

|u(x)|4dxdt ≤ 2M(u)
3
2E(u)

1
2

which gives (2.7).

Remark 2.3. (1) In the radial setting, one could combine the original Morawetz
inequality and the Strauss inequality

r
1
2 |u(r)| . ‖∂ru‖L2
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for radial functions to get other integral quantities, e.g.∫
R

∫
R3

|u(x, t)|6dxdt ≤ ‖|x| 12u‖2L∞x,t

∫
R

∫
R3

|u(x, t)|4

|x|
dxdt . ‖u‖L∞t L2

x
‖∇xu‖3L∞t L2

x
.

(2) Using Littlewood-Paley analysis, one may improve the regularity require-
ments to more balanced estimates.

2.3. Toolbox: linear estimates. The basic estimate is the dispersion inequality

‖e−it∆f‖L∞x . (4πt)−
3
2 ‖f‖L1

x
(2.11)

which follows from stationary phase, or the representation of the Schrödinger semi-
group. It can be interpolated with the fact that e−it∆ is an L2 isometry to obtain

‖e−it∆f‖Lpx . (4πt)−
3
2 (1− 2

p )‖f‖
Lp
′
x
, 2 ≤ p ≤ ∞. (2.12)

From (2.11) and the fact that eit∆ is an L2 isometry, we can deduce the Strichartz
estimates

‖e−it∆f‖LptLqx . ‖f‖L2
x
,

2

p
+

3

q
=

3

2
, p ≥ 2,

‖
∫
eis∆h(s)ds‖L2

x
. ‖h‖

Lp
′
t L

q′
x
,

‖
∫ t

s=0

e−i(t−s)∆h(s)ds‖LatLbx . ‖h‖Lp′t Lq
′
x

(2.13)

where (a, b) satisfies the same requirements as (p, q). Using Sobolev estimates, we
can use this to control

‖e−it∆f‖LatLcx . ‖|∇|
se−it∆f‖LatLbx . ‖f‖Ḣsx ,

2

a
+

3

c
=

3

2
− s.

3. Modified scattering

This is largely inspired from [7]. Here we consider the cubic Hartree equation in
R3

(i∂t −∆)u+ ((−∆)−1|u|2)u = 0, u(t = 0) = φ (3.1)

and we show that, for small and localized initial data φ, the solution satisfies a
different asymptotic behavior: modified scattering.

We can start with the same considerations as for (2.1). The main conservation
laws are similar

M(u) = M(u0), E(u) =

∫
|∇xu|2 +

1

2

∫∫
|u(x)|2|u(y)|2

|x− y|
dxdy

= ‖∇xu‖2L2 +
1

2
‖|∇|−1(|u|2)‖2L2

(3.2)

and the scaling invariance

u(x, t)→ λ2u(λx, λ2t)

which leaves invariant the Ḣ−
1
2 (R3) norm of the initial data. We see that both

conservation laws are subcritical and we do not expect them to be very helpful in
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the analysis of the asymptotic behavior7. The scaling analysis would suggest to use
a norm like

‖u‖Z′ := ‖u‖L2
tL

3
x

as our main control norm. Unfortunately, this norm is not even finite for linear
solutions (see Lemma 3.1). We will replace it by the weak control norm

‖u‖Z := ‖û‖L∞t L3
ξ

(3.3)

which still controls the main term in the decay estimate.

Remark 3.1. We can observe that the proof of weak linear scattering no longer
works since this time, the best that can be said using the conservation laws is that8

‖((−∆)−1|u|2)u‖
L

6
5
. ‖u‖L2 · ‖(−∆)−1|u|2‖L3.‖u‖L2 · ‖|u|2‖L1

which is insufficient since for a Schwartz function ‖eit∆φ‖L6 . 〈t〉−1 is not inte-
grable. We will see indeed that the solutions follow a different asymptotic behavior:
modified scattering.

It turns out that there is a replacement for a conservation law coming from the
invariance under Galilean translations

u(x, t)→ Gvu(x, t) := ei[t|v|
2−〈v,x〉]u(x− 2tv, t) (3.4)

which generates the following Galilean vector field

Gju(x, t) =

(
∂

∂vj
Gvu

)
|v=0

= −2t∂xju− ixju(x, t)

= −2te−i
|x|2
4t ∂xj

{
ei
|x|2
4t u

} (3.5)

and one can see that

‖u0‖Ḣ−1 . ‖xu0‖L2 = ‖Gju(t = 0)‖L2 .

In addition, since (3.4) is a conservation law for the equation, we see that

0 =

(
∂

∂vj
eq(Gvu)

)
|v=0

= LuGju

where Lu is the linearization

Luw := (i∂t −∆)w +
[
(−∆)−1(|u|2)

]
· w + 2

[
(−∆)−1<{uw}

]
· u (3.6)

and once again, if we control a critical norm, we can hope that Lu has nice bound-
edness properties, which allows to propagate bounds on Gju, which can then be
interpolated with the conservation laws to obtain boundedness of the critical norm.
This is amenable to a bootstrap analysis.

We first observe that the linearized equation (3.6) almost preserves the L2 norm:

1

2

d

dt
‖w‖2L2 = =〈i∂tw,w〉 = =〈Luw,w〉 − 2=〈(−∆)−1<{uw}u,w〉

=
1

2π

∫∫
R3

<{u(x)w(x)}={u(y)w(y)}
|x− y|

dxdy

7Though of course, they can be used to guarantee global existence.
8And even this requires a missing endpoint Sobolev estimate.
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and using Cauchy-Schwarz and Sobolev’s embedding, we find that

1

2

d

dt
‖w‖2L2 . ‖w(x)w(y)‖L2

x,y
·
(∫∫

|u(x)|2|u(y)|2

|x− y|2
dxdy

) 1
2

. ‖w‖2L2
x
‖|∇|− 1

2 |u|2‖L2
x
. ‖w‖2L2‖|u|2‖

L
3
2
x

. ‖w‖2L2
x
‖u‖2L3

x

and Gronwall inequality gives that

‖w(t)‖2L2
x
≤ ‖w(0)‖2L2

x
· exp(C‖u‖2L2

t ([0,t]:L
3
x)). (3.7)

This is almost enough to conclude. Looking at (3.5) suggests that a better

unknown than u could be v = ei|x|
2/4tu, for which we can observe, using Sobolev

embedding that

‖u(t)‖L3 = ‖v‖L3 . ‖v‖
1
2

L2‖∇v‖
1
2

L2 ≤ ‖u‖
1
2

L2 · (
1

t
‖Gu‖L2)

1
2 . t−

1
2M(u)

1
4 ‖Gu‖

1
2

L2 .

From which we deduce that

‖u‖L2
t ([1,t]:L

3
x) .M(u)

1
4 ‖Gu‖L∞t ([0,t]:L2

x)

√
ln(t)

which barely misses to close when combined with (3.7): assuming that ‖Gu‖L2

remains bounded, one obtains that it increases slowly (if the data are small).
Thus a näıve bootstrap fails. Ultimately, the above scheme would not allow us

to control a scale invariant norm uniformly in time, which makes it improbable. We
will improve the above strategy by introducing a (weak) scale-invariant quantity,
the Z-norm in (3.3) which we will show remains bounded along the evolution. As
a reality check on it, we observe that it does remain bounded for linear evolutions
and that it is weaker than the norms from the preliminary bootstrap (see (3.9)).

3.0.1. General strategy. Since we are considering a small data, setting u = εv, we
can rewrite the equation as

(i∂t −∆) v = ε2
[
(−∆)−1|v|2

]
· v

and, as a first approximation, one can integrate exactly the blue terms by setting
f(t) = eit∆v(t). The equation then becomes

i∂tf(t) = −iε2eit∆
{[

(−∆)−1|e−it∆f |2
]
e−it∆f

}
= T(f, f, f).

which is a priori O(ε2) and so f remains small for times O(ε−2), but the right-hand
side is not purely perturbative and we need to extract an effective dynamics and
recast

i∂tf̂ −
1

t
Teff (f̂ , f̂ , f̂) = 〈t〉−1−δTpert(f̂ , f̂ , f̂) (3.8)

and we expect the right-hand side terms to be perturbative, so that solutions asymp-
totically only solve the blue dynamics: they are well approximated by solutions of
the form

i∂sg = Teff (g, g, g)

The Z-norm is then chosen as a conservation law for this dynamics, and a good
model for the solutions to (3.1) is

u(t) = e−it∆f(t) = e−it∆ (ǧ(ln(t)) + o(1)) .
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If the dynamics for g converges, we obtain a reformulation of the scattering state-
ment. Else, we obtain modified scattering since the main evolution (in time t) is
the linear flow, but it needs to be composed with a secondary slower evolution (in
time ln(t)).

In our case, we can even integrate exactly the dynamics on the right-hand side of

(3.8) by a simple phase conjugation by setting g(t) = eiΘf̂(t), and the final model
can be given in terms of a modifed phase

u(x, t) =

∫
R3

g∞(ξ)e−i[〈x,ξ〉+Ψ(ξ,t)]dξ, Ψ̇(ξ, t) = |ξ|2 +
1

t

[
(−∆)−1|g∞|2

]
(ξ).

We also refer to [4, 6] for adaptations of this method in other contexts, and to [5]
for a different take on a similar problem.

3.1. Small data modified scattering for Hartree.

Theorem 3.1. Assume that

‖xu0‖L2
x

+ ‖u0‖H1
x
≤ ε0

then, there exists a unique global solution of (3.1) which satisfies the bounds

‖u‖L∞t H1
x

+ ‖u‖Z . ε0, ‖Gu(t)‖L2
x
. ε0〈t〉ε0

and this solution satisfies modified scattering in the sense that there exists a function
ĝ∞ ∈ L2

x ∩ L3
x such that

‖û(ξ, t)− ei[t|ξ|
2+ln(t)[(−∆)−1|g∞(ξ)|2]]g∞(ξ)‖L3

ξ
→ 0, as t→ +∞.

3.2. Closing the bootstrap. We need to find a modification of the above argu-
ment. Allowing growth of ‖u‖L2

t ([1,t]:L
3
x) faster than logarithmic would not do: this

would lead to exponential bounds after one round of the bootstrap and could not
be saved. Instead, we will allow ‖Gu(t)‖L2

x
to grow slowly and try to keep the L2

tL
3
x

from growing faster than logarithmically.
Let

‖u‖Xt := ‖u‖L2 + ‖Gu‖L2 .

Note that the Xt norm depends on t through the definition of G. Local well-
posedness ensures that solutions belong to C0

tXt, and that t 7→ ‖u(t)‖Xt is contin-
uous in time.

We can first observe that the weak norm Z is indeed weaker (than X). We start
from the following reinterpretation of G which follows from (3.5):

F
{
Gje

−it∆f
}

(ξ) = eit|ξ|
2

∂ξj f̂(ξ), ‖Ge−it∆f‖L2 = ‖xf‖L2 .

and we conclude that

‖û‖L3 = ‖f̂‖L3 . ‖f‖
L

3
2
. ‖f‖

1
2

L2‖xf‖
1
2

L2 . (3.9)

To obtain quantitative bounds, it will suffice to prove the following bootstrap:
Assume that, for 0 ≤ t ≤ T , there holds that

‖u0‖L2 + ‖xu0‖L2 ≤ ε0,

‖u(t)‖L2 + ‖û(t)‖L3 ≤ ε1,

‖Gu(t)‖L2 ≤ ε1〈t〉δ
(3.10)
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then, in fact

‖u(t)‖L2 . ε0,

‖Gu(t)‖L2 . ε0〈t〉Cε
2
1 ,

‖û(t)‖L3 . ε0 + ε3
1.

(3.11)

Taking ε1 � ε0, this allows to propagate the bounds (3.11) by continuity globally
in time.

The first bound in (3.11) follows by conservation of the energy. Using Lemma
3.1 and integrating in time, we find that

‖u‖L2
t ([1,T ]:L3

x) .
√

ln(T )‖û‖L∞t L3
ξ

+ sup
0≤t≤T

t−δ‖u‖X . ε1

[
1 +

√
ln(T )

]
.

which, given (3.7) provides the second bound in (3.11). Finally, the last bound is
proven in Section 3.3.

3.2.1. Precised dispersion inequality. We prove the following precised dispersion
inequality

Lemma 3.1. Assume that f is a Schwarz function, then

‖e−it∆f‖L3
x(R3) = ct−

1
2 ‖f̂‖L3(R3) + t−

3
4 ρ(t), |ρ(t)| . ‖f‖X , (3.12)

and in particular, for t ≥ 2, ‖e−it∆f‖L2([1,t]:L3
x) &

√
ln(t).

Proof of Lemma 3.1. We revisit the proof of the dispersion inequality

(
e−it∆f

)
(x) =

1

(4πit)
3
2

∫
R3

e−i
|x−y|2

4t f(y)dy =
e−i

|x|2
4t

(4πit)
3
2

∫
R3

ei〈x,
y
4t 〉−i

|y|2
4t f(y)dy.

If f is compactly supported, we see that e−i
|y|2
4t f(y) → f(y); extracting the limit,

we obtain(
e−it∆f

)
(x) =

e−i
|x|2
4t

(2it)
3
2

(
f̂(− x

4t
) +

∫
R3

ei〈
x
4t ,y〉f(y) ·

(
e−i

|y|2
4t − 1

)
dy

)

=
e−i

|x|2
4t

(2it)
3
2

(
f̂(− x

4t
) +R(x, t)

)
We will see that R is a remainder. We can start by inspecting the main term

‖e
−i |x|

2

4t

(2it)
3
2

f̂(− x
4t

)‖L3
x

= ct−
3
2 ‖f̂(−x/4t)‖L3

x
= c′t−

1
2 ‖f̂‖L3

x
. (3.13)

For the remainder9, we note that

R[f ](x, t) = F
{

(e−i
|y|2
4t − 1)f(y)

}
(
x

4t
)

and, decomposing, for A := 〈t〉 12 ,

f = fs + fn, fs(y) := ϕ(A−1y)f(y), fn(y) := (1− ϕ(A−1y))f(y)

9We are thankful to A. Stingo for suggestimg this approach.
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we see that

‖R[fs]‖L3 . t‖F
{

(e−i
|y|2
4t − 1)fs

}
‖L3 . t‖(e−i

|y|2
4t − 1)fs‖

L
3
2
. A‖xfs‖

L
3
2
. A

3
2 ‖xf‖L2 ,

‖R[fn]‖L3 . t‖(e−i
|y|2
4t − 1)fn‖

L
3
2
. t‖fn‖

L
3
2
. t‖xf‖L2‖|y|−11{|y|≥A}‖L6 . tA−

1
2 ‖xf‖L2 .

�

3.3. Improved bootstrap. In order to close the bootstrap (3.11), it suffices to
control the third norm. Recall that the linear profile

f(t) := eit∆u(t)

satisfies

i∂tf(t) = −eit∆
{[

(−∆)−1|e−it∆f |2
]
e−it∆f

}
.

This is slightly easier to interpret in the Fourier space

i∂tf̂(ξ, t) = −
∫∫

R3

e−itΦ(ξ,η,σ)f̂(ξ − η, t)f̂(ξ − η − σ, t)f̂(ξ − σ, t)dηdσ
|η|2

,

Φ(ξ, η, σ) = |ξ|2 + |ξ − η − σ|2 − |ξ − η|2 − |ξ − σ|2 = 2〈η, σ〉

which finally gives the evolution equation for the linear profile

i∂tf̂(ξ, t) = −
∫∫

R3

e−2it〈η,σ〉f̂(ξ − η, t)f̂(ξ − η − σ, t)f̂(ξ − σ, t)dηdσ
|η|2

,

= T (f̂ , f̂ , f̂).

(3.14)

We can rewrite

T (f̂ , f̂ , f̂) =

∫∫∫
f(x)f(y)f(z)ei〈ξ,z−x−y〉 · I · dxdydz,

I :=

∫∫
e−2it〈η,σ〉ei〈η,x−z〉ei〈σ,y−z〉

dηdσ

|η|2

and using the Fourier transform computations∫
Rd
e−i〈ξ,x〉

dx

|x|α
= cα|ξ|α−d, 0 < α < d.

we can compute that

I :=

∫
ei〈σ,y−z〉

(∫
e−i〈η,z−x−2tσ〉 dη

|η|2

)
dσ = c2

∫
ei〈σ,y−z〉

dσ

|z − x− 2tσ|

=
c2
2t

∫
ei〈σ,y−z〉

dσ

|σ − z−x
2t |

=
c2c1
2t

e−i
1
2t 〈z−x,z−y〉

|z − y|2

Now, on the support of f we expect |z − x| �
√
t, |z − y| �

√
t (e.g. if we can

assume that f is “close to” having compact support) and we can extract the main
order contribution by suppressing the slowly oscillating exponential:

T (f̂ , f̂ , f̂) =
1

t

[
Teff (f̂ , f̂ , f̂) + Trem(f̂ , f̂ , f̂)

]
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where

Teff (f̂ , f̂ , f̂) =

∫∫∫
f(x)f(y)f(z)ei〈ξ,z−x−y〉

dxdydz

|z − y|2

= f̂(ξ) ·
(∫∫

f(y)f(z)ei〈ξ,z−y〉
dydz

|z − y|2

)
= f̂(ξ) ·

(∫∫
f(z − x)f(z)ei〈ξ,x〉

dxdz

|x|2

)
= f̂(ξ) ·

(∫∫
f̂(η)f̂(η)ei〈ξ−η,x〉

dxdη

|x|2

)
= c2f̂(ξ) ·

∫
|f̂(η)|2 dη

|ξ − η|
while the remainder is give by

Trem(f̂ , f̂ , f̂) =

∫∫∫
f(x)f(y)f(z)ei〈ξ,z−x−y〉

e−i
1
2t 〈z−x,z−y〉 − 1

|z − y|2
dxdydz

=

∫∫∫
f(α+ z − y)f(y)f(z)e−i〈ξ,α〉

ei
1
2t 〈y−α,y−z〉 − 1

|z − y|2
dαdydz

and we can rewrite (3.14), isolating the perturbative terms:

i∂tf̂(ξ, t)− c

t

[
(−∆)−1|f̂ |2

]
(ξ) · f̂(ξ, t) =

1

t
Trem(f̂ , f̂ , f̂).

the left-hand side can be integrated exactly by setting

ĝ(ξ, t) = f̂(ξ, t)eiΘ(ξ,t), Θ̇(ξ, t) =
1

t

[
(−∆)−1|ĝ|2

]
(ξ),

which satisfies

i∂tĝ(ξ, t) =
1

t
eiΘ(ξ,t)Trem(f̂ , f̂ , f̂), (3.15)

with a right hand side which is perturbative according to Lemma 3.2.

Lemma 3.2. There holds that

‖Trem(f̂1, f̂2, f̂3)‖L3 . 〈t〉−δ
3∏
j=1

[‖fj‖L2 + ‖xfj‖L2 ]

Proof of Lemma 3.2. Using Hausdorff-Young, and Hardy-Littlewood’s inequalities,
we see that

‖Trem(f̂1, f̂2, f̂3)‖L3
ξ
. ‖

∫∫
f1(α+ z − y)f3(y)f2(z)

ei
1
2t 〈y−α,y−z〉 − 1

|z − y|2
dydz‖

L
3
2
α

. ‖f1‖
L

3
2
·
∣∣∣∣∫∫ |f3(y)f2(z)|

|z − y|2
dydz

∣∣∣∣
. ‖f1‖

L
3
2
‖f2‖

L
3
2
‖f3‖

L
3
2

We can decompose, for A := 〈t〉δ,

fi := fsi + fni , fsi (x) = ϕ(A−1x)fi(x), fni (x) = (1− ϕ(A−1x))fi(x),

with

‖fni ‖L 3
2
. ‖fni ‖

1
2

L2‖fni ‖
1
2

L
6
5
. A−

1
2 ‖xf‖L2
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and we deduce that we may assume

fi(x) = ϕ(A−1x)fi(x), A := 〈t〉δ, ‖fi‖L1 . A
3
2 ‖fi‖L2 . A

3
2

√
M(u)

and when all positions are small, we can expand∣∣∣ei 1
2t 〈y−α,y−z〉 − 1

∣∣∣ . t−1A2

which leads to an acceptable contribution. �

Finally, we can close the bootstrap estimate (3.11). Indeed, we can start from
(3.15) and obtain that

‖û(t)‖L3 = ‖f̂‖L3 = ‖ĝ‖L3 ≤ ‖ĝ(0)‖L3 +

∫ t

s=0

〈s〉−1−δε3
1ds ≤ ε0 + Cε3

1.
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