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Harmonic maps between singular spaces I
Georgios Daskalopoulos and Chikako Mese

We discuss regularity questions for harmonic maps from a n-dimen-
sional Riemannian polyhedral complex X to a non-positively
curved metric space. The main theorems assert, assuming Lipschitz
regularity of the metric on the domain complex, that such maps
are locally Hölder continuous with explicit bounds of the Hölder
constant and exponent on the energy of the map and the geome-
try of the domain and locally Lipschitz continuous away from the
(n − 2)- skeleton of the complex. Moreover, if x is a point on the
k-skeleton (k ≤ n − 2) we give explicit dependence of the Hölder
exponent at a point near x on the combinatorial and geometric
information of the link of x in X and the link of the k-dimensional
skeleton in X at x.

1. Introduction

The seminal work of Gromov and Schoen [9] extends the study of harmonic
maps between smooth manifolds to the case when the target is a Riemannian
simplicial complex of non-positive curvature. The theory of harmonic maps
into singular spaces was expanded substantially by the work of Korevaar
and Schoen [11, 12] and Jost [10] where they consider targets that are arbi-
trary metric spaces of non-positive curvature. (Such spaces are called NPC
or CAT(0) if they are simply connected.) One important motivation for con-
sidering singular spaces in the theory of harmonic maps is in studying group
representations. The main application of the Gromov–Schoen theory is to
establish a certain case of non-Archemedean superrigidity complementing
Corlette’s Archemedean superrigidity for lattices in groups of real rank 1 [3].

The next step in the generalization of the harmonic map theory is to
replace smooth domains by singular ones. This problem is also motivated
by superrigidity, in this case when the domain group is non-Archemedean.
The consideration of a Riemannian simplicial complex as the domain space
for harmonic maps seems to have been initiated by Chen [2]. Subsequently,
this theory was further elaborated by Eells and Fuglede [7] and Fuglede [8].
In particular, they show Hölder continuity for harmonic maps under an
appropriate smoothness assumption for the metric on each simplex.
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The development of the harmonic map theory from a Riemannian com-
plex is important in the study of non-Archedemean lattices. Considering a
two-dimensional domains, Daskalopoulos and Mese [4–6] establish fixed point
and rigidity theorems of harmonic maps from certain flat two-complexes.
The key issue in the techniques introduced in these papers is to prove reg-
ularity theorems strong enough to be able to apply differential geometric
methods.

Recall that the main idea of [9] is also to show that harmonic maps are
regular enough so that Bochner methods could be used in the setting of
singular targets. In particular, the fundamental regularity result of [9, 11]
is that harmonic maps from a smooth Riemannian domain into an NPC
target are locally Lipschitz continuous. As noted in [2], this statement no
longer holds when we replace the domain by a polyhedral space. On the
other hand, we have found in [5, 6] that modulus of continuity better than
Hölder is crucial in applications. This necessitates stronger regularity results
than Hölder.

This paper is meant to be the state of the art in the regularity theory
of harmonic maps from Riemannian cell complexes to non-positively curved
metric spaces (cf. Section 2 for precise definitions). Our first theorem con-
cerns Hölder continuity of harmonic maps. This is a generalization of the
result of [7] for Lipschitz metrics.

Theorem 1.1 (cf. Theorem 4.3). Let B(r) be a ball or radius r around
a point in an admissible complex X endowed with a Lipschitz Riemannian
metric g and (Y, d) an NPC space. If f : (B(r), g) → (Y, d) is a harmonic
map, then there exist C and γ > 0 so that

d(f(x), f(y)) ≤ C|x − y|γ ∀x, y ∈ B("r).

Here, C and γ only depend on the total energy Ef of the map f , (B(r), g)
and " ∈ (0, 1).

Note that our approach to Hölder continuity follows the one in [2, 9]
and is completely different from the one in [7, 8]. In our case, a variant
of the Gromov–Schoen monotonicity formula allows us to obtain energy
decay estimates which in turns imply Hölder continuity by an adaptation
of an argument due to Morrey. The technical difficulty is that we make no
assumption that the boundary of each simplex is totally geodesic as it is
implicitly assumed in [2]. Our method also differs from the one in [9] due to
the fact that for singular domains the monotonicity formula does not hold
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for large balls (cf. Remark 3.3 of [4]). The main technical hurdle is to obtain
energy decay estimates with uniform radius and this is handled in Section 4.

Our main theorem concerns better regularity of harmonic maps. More
precisely, we show that harmonic maps are Lipschitz continuous away from
the codimension 2 skeleton X(n−2) of X. For points that lie on the lower
dimensional skeleta, we also give an estimate of the Hölder exponent of the
harmonic map in terms of the first eigenvalue of the link of the normal
stratum of the skeleton. More precisely, let x ∈ X(k) − X(k−1) and let N =
N(x) denote the link of X(k) at x along with the metric induced by the given
Lipschitz Riemannian metric on X. Note that N is a spherical (n − k − 1)-
complex. Set

λN
1 := inf

Q∈Y
λ1(N,TQY ),

where λ1(N,TQY ) denotes the first eigenvalue of the Laplacian of N with
values in the tangent cone of Y at Q (see Section 8 for further details). More
precisely, our main theorem is as follows:

Main Theorem (cf. Theorem 9.1). Let B(r) be a ball of radius r around
a point x in an admissible complex X endowed with a Lipschitz Riemannian
metric g, (Y, d) an NPC space and f : (B(r), g) → (Y, d) a harmonic map.

(1) If x ∈ X − X(n−2), let d denote the distance of x to X(n−2). Then
for " ∈ (0, 1) and d′ ≤ min{"r, "d}, f is Lipschitz continuous in B(d′)
with Lipschitz constant depending on the total energy Ef of the map
f , (B(r), g), d and ".

(2) If x ∈ X(k) − X(k−1) for k = 0, . . . , n − 2, let d denote the distance of
x to X(k−1). Then for " ∈ (0, 1) and d′ ≤ min{"r, "d}, f is Hölder
continuous in B(d′) with Hölder exponent and constant depending on
the total energy Ef of the map f , (B(r), g), d and ". More precisely,
the Hölder exponent α has a lower bound given by the following: If
λN

1 ≥ β(> β) then α(α+ n − k − 2) ≥ β(> β). In particular, if λN
1 ≥

n − k − 1, then f is Lipschitz continuous in a neighborhood of x.

The paper is organized as follows: In Section 2 we define our domain
and target spaces and recall the notion of harmonic maps. In Section 3 we
prove the monotonicity formula in our setting and in Section 4 we discuss
the Hölder continuity of harmonic maps. Section 3 is in some sense the
heart of the paper as all subsequent results depend on it. Though similar
in spirit with the monotonicity formula of [9] it also differs significantly in
the fact that we show that the relevant quantity (the order function) is not
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monotone as in [9]. Nonetheless, we show that the order function has a well-
defined limit. This is necessary due to the fact that the different strata in
the complex are not assumed to be totally geodesic. As mentioned before,
in Section 4 we include a proof of the Hölder continuity of harmonic maps
with a slightly more relaxed assumption on the metric of the complex than
in [7, 8]. The purpose of Sections 5 and 6 is to construct a tangent map. We
then establish properties of maps from a flat domain in order to analyze the
tangent map in Section 7. Finally, Section 8 is devoted to the proof of the
Main Theorem.

Notation. Throughout the paper, unless mentioned otherwise (Y, d) or
simply Y will denote an NPC metric space.

2. Domain and target spaces

2.1. Local models

We now introduce our local models which will represent a neighborhood of
a point in a complex. A half space is a connected component H of Rn − h
where h is an affine hyperplane. By a normalized half space, we will mean a
half space H so that the hyperplane h that defines H contains the origin &0.
We say the normalized half spaces H1, . . . , Hν are linearly independent if the
normals to the hyperplanes h1, . . . , hν defining the half spaces are linearly
independent. A wedge (or a n-dimensional ν-wedge) W is the closure of
the intersection of ν number of linearly independent normalized half spaces
H1, . . . , Hν . By its construction, every wedge is a n-dimensional cone in Rn

with &0 as the vertex. Wedge angles are the angles between any pair of vectors
h1, . . . , hν . In particular a two-wedge has one wedge angle, and in general a
ν-wedge has ν(ν−1)

2 number of wedge angles.
A face of the wedge is an intersection W ∩ hi1 ∩ · · · ∩ hij , 1 ≤ i1 ≤ · · · ≤

ij ≤ ν. For example, the intersection W ∩ h1 is a face which is a (n − 1)-
dimensional linear subspace of Rn and the intersection W ∩ h1 ∩ · · · ∩ hν is
a face which is a (n − ν)-dimensional linear subspace of Rn. This latter face
is the lowest dimensional face of W and we denote it by D. We will use the
coordinates of Rn to label points in W . For simplicity, we always choose the
coordinate system (x1, . . . , xn) of Rn so that D is given as xn−ν+1 = · · · =
xn = 0.

Let W1, . . . , Wl be n-dimensional ν-wedges and let {F a
i }a=1,...,ν be the set

of all (n − 1)-dimensional faces of Wi for i = 1, . . . , l. For any i, j = 1, . . . , l
with i (= j let ϕab

ij : F a
i → F b

j be a possibly empty linear isometry called a
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gluing map of F a
i and F b

j and let Φij be a set of all gluing maps ϕab
ij : F a

i → F b
j

for a, b = 1, . . . , ν. Let Φ be the union of Φij for i, j = 1, . . . , l and i (= j.

Definition 2.1. A dimension-n, codimension-ν local model B = ∪Wi/ ∼ is
a disjoint union of n-dimensional ν-wedges W1, . . . , Wl along with an equiv-
alence relation ∼ defined by setting x ∼ x′ if ϕ(x) = x′ for φ ∈ Φ. We fur-
ther require (i) the cardinality of each Φij is at most 1 and (ii) for every
i = 1, . . . , l and a = 1, . . . , ν, there exists a non-empty gluing map in Φ with
F a

i as a domain or target.

When we have two n-dimensional 1-wedges, i.e., two half spaces, glued
together along D = {xn = 0}, the local model is simply Rn and this will be
referred to as a codimension-0 local model. Given a face F of a wedge Wi,
we will also call its equivalence class in B a face. The boundary of a local
model is the union of all (n − 1)-dimensional faces which belong to exactly
one wedge. Throughout the paper we also assume that our local models
have empty boundary. Also note that property (iii) implies that our local
models B are connected and admissible i.e., that B − F is connected for any
(n − 2)-dimensional face F .

Since W is a subset of Rn, there is a natural Euclidean metric inherited
from Rn. This defines an Euclidean metric δ on B. For x, y ∈ B, let |x − y|
be the induced distance function from δ. Set B(r) be the r-ball centered at
the origin of B and W (r) = B(r) ∩ W for any wedge W of B. For the sake
of simplicity, we will also refer to W (r) as a wedge (of B(r)). Also for x ∈ B
we will denote by Bx(r) the Euclidean r-ball around x. Note that throughout
the paper all balls will be taken with respect to the metric δ.

We now give examples of wedges in dimension 2 and dimension 3. (i)
The only two dimensional one-wedge (up to linear isometry) is the half
plane {(x, y) ∈ R2 : y ≥ 0}. We consider a model space B where k copies of
one-wedges are glued together along D = {(x, y) ∈ R2 : y = 0}. This exam-
ple models a neighborhood of an edge point of a two-dimensional simplicial
complex. (ii) An example of a two-dimensional two-wedge is the first quad-
rant {(x, y) ∈ R2 : x, y ≥ 0}. Another example is the set W = {(x, y) ∈ R2 :√

3x ≥ y ≥ 0}. A vertex point of a two-dimensional simplicial complex can
be modelled by a model space where one copies of W are glued together along
their faces (in this case lines y = 0 or y =

√
3x) according to the combinato-

rial information of the complex. Note that D is this case is the point x = y =
0. (iii) The only three-dimensional one-wedge (up to linear isometry) is the
half space {(x, y, z) ∈ R3 : z ≥ 0}. The model space B where l copies of one-
wedges are glued together along D = {(x, y, z) ∈ R3 : z = 0} models a neigh-
borhood of the two-skeleton in a three-dimensional simplicial complex. (iv)



262 Georgios Daskalopoulos & Chikako Mese

An example of a three dimensional two-wedge is {(x, y, z) ∈ R3 : y, z ≥ 0}.
Another example is the set W = {(x, y, z) ∈ R3 :

√
3y ≥ z ≥ 0}. A neighbor-

hood of a point on a one-skeleton of a three-dimensional simplicial complex
can be modelled by a model space B where l copies of W are glued together
along their faces according to the combinatorial information. Here, D =
{(x, y, z) ∈ R3 : y = z = 0}. (v) An example of a three-dimensional three-
wedge is the first octant {(x, y, z) ∈ R3 : x, y, z ≥ 0}. Another example is the
set W consisting of points of the form

∑3
i=1 tivi, ti ≥ 0 where v1 = (1, 0, 0),

v2 = (1
2 ,

√
3

2 , 0) and v3 = (1
2 , 1

2
√

3
,

√
2√
3
). Note that the standard tetrahedron

consists of points of the form
∑3

i=1 tivi, 0 ≤ ti ≤ 1. A neighborhood of a
point on the 0-skeleton of a three-dimensional simplicial complex can be
modelled by a model space B where l copies of W are glued together along
their faces according to the combinatorial information of the complex. Here,
D is the point (0, 0, 0).

Let B be a dimension-n, codimension-ν local model and let ν = n − k.
Recall that this means that D ⊂ B is of dimension k; more specifically, D
can be isometrically identified with Rk. We say x ∈ B is a codimension-
(n − j) singular point if Bx(σ) is homeomorphic to B′(σ) where B′ is some
dimension-n, codimension-(n − j) local model for some σ > 0. We denote
the closure of the set of codimension-(n − j) singular points by Sj and set
S−1 = ∅. For example, if B is a codimension-(n − k) local model, then Sk =
D and Si = ∅ for i = −1, . . . , k − 1.

The following two definitions will be important in Section 4.

Definition 2.2. Suppose x ∈ Sj+1 − Sj . Thus, x is an interior point of a
(j + 1)-dimensional face F . We define πj(x) to be the set of all points x′

in Sj ∩ F such that |x − x′| = miny∈Sj∩F |x − y|. First, note that the closest
point projection of x to the boundary of F is not necessarily unique so that
πj(x) may contain more than one point. Secondly, because a face of a local
model is a convex subset of Euclidean space, πj(x) ⊂ Sj − Sj−1. For i > j,
x ∈ Si and x′ ∈ Sj , we write x ! x′ if we can arrive from x to x′ by a sequence
of successive projections, i.e., there exists a sequence

x = yi, yi−1, . . . , yj+1, yj = x′

so that

yi ∈ Si,

yi−1 ∈ πi−1(yi) ⊂ Si−1,

. . .
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yj+1 ∈ πj+1(yi−j−1) ⊂ Sj+1,

yj ∈ πj(yi−j) ⊂ Sj .

For x ∈ B(σ), let Πj(x) be the set of points x′ ∈ Sj so that x ! x′. For any
set N , let Πj(N) be the set of points x′ ∈ Sj so that x ! x′ for x ∈ N .

Definition 2.3. Let x ∈ B and σ > 0. The ball Bx(σ) is called homoge-
neous if for all t ∈ (0, 1)

Bx(tσ) = tBx(σ).

Given x ∈ B, we let St(x) denote the star of the point x in B i.e., the union
of the wedges containing x. Finally, if x ∈ B(r) we set R(x) to be the radius
of the largest homogeneous ball centered at x contained in St(x) ∩ B(r).

In addition to the Euclidean metric δ we equip a local model B (or B(r))
with a Lipschitz Riemannian metric g. By this we mean that for each wedge
W of B (resp. each face F of B), we have a Lipschitz Riemannian metric gW

(resp. gF ) up to the boundary of W (resp. F ) with the property that if F ′

is a face of W (resp. F ) then the restriction gW (resp. gF ) to F ′ is equal to
gF ′ . Note that we do not necessarily assume that the faces of the wedges are
totally geodesic. We can express g as a matrix (gij) in terms of the Euclidean
coordinate system on the wedges W inherited from the Euclidean space.

Definition 2.4. We say λ ∈ (0, 1] is an ellipticity constant of g if for each
wedge W (resp. each face F ) the ellipticity constants of gW (resp. gF ) are
bounded below by λ and above by 1

λ , in other words in terms of Euclidean
coordinates on W (resp. F ) we have

(2.1) λ2|ξ|2 ≤
n∑

i,j=1

gijξ
iξj ≤ 1

λ2 |ξ|2.

Definition 2.5. We say a metric g on B(r) is normalized if gij(0) = δij .

2.2. Admissible cell complexes

A convex cell complex or simply a complex X in an affine space Ed is a
finite collection {F k} of cells where each F 0 is a point, and each F k is a
bounded convex piecewise linear polyhedron with interior in some Ek ⊂ Ed,
such that the boundary ∂F k of F k is a union of F s with s < k (called the
faces of F k), and such that if s < k and F k ∩ F s (= ø, then F s ⊂ F k. For
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example a simplicial complex is a cell complex whose cells are all simplices.
We will denote by X(i) the i-dimensional skeleton of X, i.e., the union of
all cells F k where k ≤ i. X is called n-dimensional or simply a n-complex if
X(n+1) = ∅ but X(n) (= ∅. The boundary of X, denoted ∂X, is the union of
k-cells F k, k < n, so that F is a face of exactly one n-cell. A point p ∈ ∂X is
called a boundary point and a point p ∈ X − ∂X is called an interior point.
In the sequel, we will require the following conditions (sometimes called
admissibility conditions, or admissible complex (cf.[7])):

(1) X is dimensionally homogeneous; i.e., for k < n, each k-cell is a face
of a n-cell.

(2) X is locally (n − 1)-chainable; i.e., for every connected, open set U ⊂
X, the open set U − X(n−2) is connected.

A Lipschitz Riemannian n-complex is a convex cell complex where each cell
F is equipped with a Lipschitz Riemannian metric gF up to the boundary.
We are assuming that if F ′ is a face of F then the restriction gF to F ′ is
equal to gF ′ . Admissible cell complexes are based on local models because
of the following obvious proposition

Proposition 2.1. Let X be an admissible Lipschitz Riemannian complex of
dimension n with metric g given as (gij). Let x ∈ X(k) − X(k−1) and let λ ∈
(0, 1] be the ellipticity constant of g near x. Then there exist a dimension-n,
codimension-(n − k) local model B and a homeomorphism Lx : B(λR(x)) →
Lx(B(λR(x))) ⊂ X so that

(i) Lx(0) = x,

(ii) for any wedge W of B, Lx restricted to W ∩ B(λR(x)) maps into the
closure F of a n-cell of X,

(iii) with W viewed as a subset of Rn as in Section 2.1, Lx

∣∣
W∩B(λR(x))

uniquely extends as an affine map Lx defined on Rn,

(iv) the pullback metric h = L∗
xg has the property that hij(0) = δij with

respect to the coordinate chart on W .

Because g has ellipticity constant λ, Lx maps the ball of radius λR(x)
centered at 0 into the largest ellipse contained in the ball of radius R(x)
centered at x.

We now mention that (a) trees and Bruhat–Tits buildings are examples
of admissible cell complexes; (b) for any finitely generated group Γ there is a
two-dimensional admissible complex without boundary whose fundamental
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group is Γ (cf.[4]); (c) triangulable Lipschitz manifolds and normal complex
analytic spaces are homeomorphic to admissible complexes. For more details
we refer to [7].

2.3. Harmonic maps

We now define our target spaces.

Definition 2.6. A complete metric space (Y, d) is said to be an NPC (non-
positively curved) space if the following conditions are satisfied:

(i) The space (Y, d) is a length space. That is, for any two points P and
Q in Y , there exists a rectifiable curve γPQ so that the length of
γPQ is equal to d(P, Q) (which we will sometimes denote by dPQ for
simplicity). We call such distance realizing curves geodesics.

(ii) Let P, Q, R ∈ Y . Define Qt to be the point on the geodesic γQR satis-
fying dQQt

= tdQR and dQtR = (1 − t)dQR. Then

d2
PQt

≤ (1 − t)d2
PQ + td2

PR − t(1 − t)d2
QR.

Remark. Simply connected Riemannian manifolds of non-positive
sectional curvature, Bruhat–Tits Euclidean buildings associated with actions
of p-adic Lie groups and R-trees are examples of NPC spaces. These spaces
are also referred to as CAT(0) spaces in literature. We refer to [1] for more
details.

We will now review the definition of harmonic maps. For details we refer
the reader to [7]. First, we define the energy of a map. Let (Y, d) be an NPC
space and f : (B(r), g) → Y be a L2 map from the local model to Y . The
energy gEf is defined as the weak limit of the ε-approximate energy density
measures which are measures derived from the appropriate average difference
quotients. More specifically, define the ε-approximate energy eε : B(r) → R
by

eε(x) =






∫

y∈S(x,ε)

d2(f(x), f(y))
ε2

dσx,ε

εn−1 for x ∈ B(r)ε,

0 for x ∈ B(r) − B(r)ε,

where σx,ε is the induced measure on the ε-sphere S(x, ε) centered at x and
B(r)ε = {x ∈ B(r) : d(x, ∂B(r)) > ε}. Define a family of functionals gEf

ε :
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Cc(B(r)) → R by setting

gEf
ε (ϕ) =

∫

B(r)
ϕeεdµg.

Definition 2.7. We say that f : (B(r), g) → Y has finite energy (or that
f ∈ W 1,2(B(r), Y ) or simply that f is a W 1,2 map) if

gEf := sup
ϕ∈Cc(B(r)),0≤ϕ≤1

lim sup
ε→0

gEf
ε (ϕ) < ∞.

Theorem 2.1. Suppose f : (B(r), g) → Y has finite energy. Then the mea-
sures eε(x) dx converge weakly to a measure which is absolutely continuous
with respect to the Lebesgue measure. Therefore, there exists a function e(x),
which we call the energy density, so that eε(x) dµg ⇀ e(x) dµg.

In analogy to the case of real valued functions, we write |∇f |2g(x) in
place of e(x). (We will omit the subscript in |∇f |2g, dµg, etc. if it is clear
which metric we are using). In particular,

gEf =
∫

B(r)
|∇f |2gdµg.

For a set S ⊂ B, let

gEf [S] =
∫

S
|∇f |2gdµg.

We also define

|∇f |g(x) = (|∇f |2g(x))1/2.

For a Lipschitz vector field V on B(r), |f∗(V )|2g is similarly defined.
The real valued L1 function |f∗(V )|2g generalizes the norm squared on the
directional derivative of f . We refer to [7, 11] for more details.

Theorem 2.2. Suppose f : (B(r), g) → Y has finite energy and V is a Lip-
schitz vector field. The operator gπf defined by

gπf (V, W ) = 1
2 |f∗(V + W )|2g − 1

2 |f∗(V − W )|2g

is continuous, symmetric, bilinear, non-negative and tensorial. We call gπf

the pull-back metric.
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Notation 2.1. Let
{

∂
∂x1 , . . . , ∂

∂xn

}
be the standard Euclidean basis defined

on each wedge inherited from Rn and δ the standard Euclidean metric. Set

∂f

∂xi
· ∂f

∂xj
= δπf

(
∂

∂xi
,
∂

∂xj

)
and

∣∣∣∣
∂f

∂xi

∣∣∣∣
2

=
∂f

∂xi
· ∂f

∂xi
.

Similarly for the standard Euclidean polar coordinates (r, θ1, . . . , θn−1) on
each wedge we denote

∂f

∂xk
· ∂f

∂r
= δπf

(
∂

∂xk
,
∂

∂r

)
,

∣∣∣∣
∂f

∂r

∣∣∣∣
2

=
∂f

∂r
· ∂f

∂r
= δπf

(
∂

∂r
,
∂

∂r

)

and
∂f

∂θi
· ∂f

∂θj
= δπf

(
∂

∂θi
,
∂

∂θj

)
.

Note that the energy density with respect to the metric g is given by

|∇f |2g =
∑

i,j

gij ∂f

∂xi
· ∂f

∂xj
,

whereas the energy density with respect to the Euclidean metric is given by

|∇f |2 = |∇f |2δ =
∑

i

∣∣∣∣
∂f

∂xi

∣∣∣∣
2
.

By using the identification with local models given in Proposition 2.1 all
the above notions extend for any admissible complex X replacing B as a
domain. We omit the details.

For the trace of W 1,2 maps we refer to the following theorem (cf.[7, 11]).

Theorem 2.3. Let Ω be a compact domain in an admissible complex with
Lipschitz Riemannian metric g and (Y, d) a metric space. Any f ∈ W 1,2

(Ω, Y ) has a well-defined trace map denoted by Tr(f) or simply f , with
Tr(f) ∈ L2(∂Ω, Y ). If the sequence fi ∈ W 1,2(Ω, Y ) has uniformly bounded
energies gEfi [Ω] and if fi converges in L2 to a map f , then Tr(fi) converges
to Tr(f) in L2(∂Ω, Y ). Two maps f, g ∈ W 1,2(Ω, Y ) have the same trace if
and only if d(f, g) ∈ W 1,2(Ω,R) = W 1,2(Ω) has trace zero.

We define W 1,2
0 (Ω) to be the subset of W 1,2(Ω) functions with trace zero.

The next two theorems are also contained in [7, 11].
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Theorem 2.4. Let Ω be a compact domain in an admissible complex with
Lipschitz Riemannian metric g and (Y, d) a locally compact metric space.
Let fi ∈ W 1,2(Ω, Y ) be a sequence satisfying fi → f in L2 and gEfi [Ω] ≤ C
for some constant C independent of i. Then

gEf [Ω] ≤ lim inf
i→∞

gEfi [Ω].

Theorem 2.5. Let Ω be a compact domain in anadmissible complex with
Lipschitz Riemannian metric g and (Y, d) a locally compact metric space. Let
fi ∈ W 1,2(Ω, Y ) be a sequence satisfying gEfi [Ω] +

∫
X d2(fi(x), Q) dµg(x) ≤

C for some fixed point Q of Y and some constant C independent of i. Then,
there is a subsequence of fi that converges in L2(X, Y ) to a finite energy
map f .

Definition 2.8. Let Ω be a compact domain in an admissible complex with
Lipschitz Riemannian metric g and (Y, d) an NPC space. A map f : Ω → Y
is said to be harmonic if it is energy minimizing among all W 1,2-maps with
the same trace (boundary condition).

We end this section by proving two versions of the Poincaré inequality
that we will need in the sequel.

Theorem 2.6. Let Ω be a compact domain in an admissible complex with
Lipschitz Riemannian metric g. Then, there is a constant C depending only
on Ω and g so that for any ϕ ∈ W 1,2

0 (Ω)
∫

Ω
ϕ2dµg ≤ C

∫

Ω
|∇ϕ|2g dµg.

Proof. The proof follows closely the proof of the Poincare inequality in [16,
Lemma 2], therefore we will only give a sketch. Suppose the assertion is
false: then for each i = 1, 2, . . ., there exist functions ϕi ∈ W 1,2

0 (Ω) so that
∫

Ω
|∇ϕi|2g dµg <

1
i

∫

Ω
ϕ2

i dµg.

By setting

vi =
ϕi

(
∫
Ω ϕ

2
i dµg)1/2 ,

we have
∫
Ω v2

i dµg = 1 and
∫
Ω |∇vi|2g dµg < 1

i . By Theorems 2.5 and 2.4 there
exists a subsequence (which we denote again by i) so that vi → v in L2(Ω)
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and
∫
Ω |∇v|2gdµg ≤ lim infi→∞

∫
Ω |∇vi|2gdµg = 0. This implies that v must

be constant, and since
∫
Ω v2dµg = limi→∞

∫
Ω v2

i dµg = 1 it must be nonzero.
On the other hand, Theorem 2.3 implies that the trace of v is 0, which is a
contradiction. !

Theorem 2.7. Let X be a compact admissible complex with a Lipschitz
Riemannian metric g and (Y, d) a metric space. Then, there is a constant
C depending only on X and the ellipticity constant of the metric g so that
for any ϕ ∈ W 1,2(X, Y )

inf
P∈Y

∫

X
d2(ϕ, P )dµg ≤ C

∫

X
|∇ϕ|2gdµg.

Proof. By Fugledge [8], proof of Corollary 1 Step 2, the Poincare inequality
holds for the Euclidean metric, i.e., there exists a constant C depending only
on X so that

inf
P∈Y

∫

X
d2(ϕ, P ) dµ ≤ C

∫

X
|∇ϕ|2 dµ.

Let c be a universal constant depending only on the dimension of X. It
follows from (2.1) that

n∑

i,j=1

δij
∂ϕ

∂xi

∂ϕ

∂xj
≤ cλ−2

n∑

i,j=1

gij ∂ϕ

∂xi

∂ϕ

∂xj

and hence

(2.2) |∇ϕ|2 ≤ cλ−2|∇ϕ|2g.

Furthermore, (2.1) also implies that

λn ≤ dµg

dµ
≤ λ−n,

which combined with (2.2) completes the proof. !

Corollary 2.1. Let B be a dimension-n, codimension-ν local model, g a
Lipschitz Riemannian metric defined on B(r) and (Y, d) a metric space.
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Then, there is a constant C depending only on B(r) and the ellipticity con-
stant of g so that for any ϕ ∈ W 1,2(B(r), Y ) and σ sufficiently small

inf
P∈Y

∫

B(σ)
d2(ϕ, P )dµg ≤ Cσ2

∫

B(σ)
|∇ϕ|2gdµg.

Similarly, for any ϕ ∈ W 1,2(∂B(r), Y ) and σ sufficiently small

inf
P∈Y

∫

∂B(σ)
d2(ϕ, P )dΣg ≤ Cσ2

∫

∂B(σ)
|∇∂ϕ|2gdΣg,

where ∇∂ is the gradient tangential to ∂B(σ).

Proof. Both inequalities follow immediately from Theorem 2.7 by rescaling
and by the fact that B(σ) (resp. ∂B(σ)) is piecewise smoothly diffeomorphic
to the star (resp. the link) of the point 0. !

3. Monotonicity formula

In this section, we prove a monotonicity formula for harmonic maps. This
is a modified version of the monotonicity formula shown in [9] where the
domain space is a Riemannian manifold. The technical difficulties posed by
the singular nature of the domain space considered in this paper is that we
cannot necessarily work in normal coordinates and that the faces are not
necessarily totally geodesic in wedges with respect to the metric given.

Let B be a local model. We continue to use the Euclidean coordi-
nates (x1, . . . , xn) in each wedge W . For x, y ∈ B, we denote the induced
(Euclidean) distance by |x − y|. By definition, if x = (x1, . . . , xn) and y =
(y1, . . . , yn) are on the same wedge of B, then |x − y| =√

(x1 − y1)2 + · · · + (xn − yn)2. Furthermore, we let (r, θ1, . . . , θn−1) be the
corresponding polar coordinates, i.e., r gives the radial distance from the
origin and θ = (θ1, . . . , θn−1) are the coordinates on the standard (n − 1)-
sphere. Let g be a normalized Lipschitz metric defined on B(r) = {x ∈ B :
|x| < r}, i.e., if g = (gij) with respect to the coordinates x = (x1, . . . , xn) on
a wedge W , then

|gij(x) − gij(x̄)| ≤ c|x − x̄|, ∀x, x̄ ∈ W

and

(3.1) |gij(x) − δij | ≤ cσ
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for |x| ≤ σ. For σ ∈ (0, r), we set

(3.2) gEf (σ) =
∫

B(σ)
|∇f |2gdµg

and

(3.3) gIf (σ,Q) =
∫

∂B(σ)
d2(f, Q)dΣg

for Q ∈ Y . Here dΣg is the measure on ∂B(σ) induced by g. By Korevaar
and Schoen [11, Lemma 2.5.1], there exists a unique point Qσ ∈ Y so that

(3.4) gIf (σ,Qσ) = inf
Q∈Y

gIf (σ,Q).

Notation 3.1. For the rest of this section we will use the notation

E(σ) = gEf (σ) and I(σ) = I(σ,Q) = gIf (σ,Q),

if Q is a generic point. Furthermore in all statements up to (including)
Corollary 3.2, we will make the additional assumption that the metric g is
normalized.

If we assume that the domain is a Riemannian manifold and replace
B(σ) by a geodesic σ-ball, it is shown in [9] that

(3.5) σ 0→ eCσ σE(σ)
I(σ)

is a non-decreasing function where C is some constant depending on the
metric. Note that in our case B(σ) is a σ-ball with respect to the Euclidean
metric δ on B. The reason Euclidean balls are considered here is the possible
incompatibility of the induced distance functions of the metrics given on two
different wedges along a shared face. More specifically, let g1 and g2 be the
metrics defined on wedges W1 and W2 sharing a face F . Since we do not
assume that F is totally geodesic in W1 or W2, the induced distance functions
in W1 and W2 do not necessarily agree in F .

We are thus considering a general Lipschitz metric g with no restriction
on the faces and this leads to a modified version of the monotonicity formula
which in turn gives a well-defined version of the order (cf. Corollary 3.2).
For a model space B with a Euclidean metric δ, the monotonicity of (3.5)
follows from [13].
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We say a continuous function η defined on B(r) is smooth if the restric-
tion of η to each wedge W of B(r) is smooth up to the boundary of W . The
set of smooth functions with compact support in B(r) will be denoted by
C∞

c (B(r)).

Lemma 3.1. Let f : (B(r), g) → (Y, d) be a harmonic map. For any σ ∈
(0, r) and η ∈ C∞

c (B(σ)),

∫

B(σ)

(
|∇f |2g(2 − n)η − |∇f |2g

∑

i

xi ∂η

∂xi

+2
∑

i,j,k

gik ∂η

∂xi
xj ∂f

∂xj
· ∂f

∂xk



 dµg

+ O(σ)E(σ) = 0(3.6)

where |O(σ)| ≤ cσ and c depends on B(r) and the Lipschitz bound of g.

Proof. For t sufficiently small, we define Ft : B(r) → B(r) by setting

Ft(x) = (1 + tη(x))x

for each x = (x1, . . . , xn) in a wedge W . For ft : B(r) → Y defined as ft =
f ◦ Ft, a direct computation (cf.[9, Section 2]) on each wedge W of B(r)
gives

d

dt
gEft [W ]|t=0

=
∫

W

(
|∇f |2g(2 − n)η − |∇f |2g

∑

i

xi ∂η

∂xi

+2
∑

i,j,k

gik ∂η

∂xi
xj ∂f

∂xj
· ∂f

∂xk



 dµg

+ remainder.

Here, the remainder term is given by

∫

W



−η
∑

i,j,k

∂gij

∂xk
xk ∂f

∂xi
· ∂f

∂xj

√
g + |∇f |2gη

∑

i

xi∂
√

g

∂xi



 dx.
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Since we assume the metric g is Lipschitz, there exists a constant c so that∣∣∣∂gij

∂xk

∣∣∣ ,
∣∣∣∂

√
g

∂xi

∣∣∣ ≤ c, which then implies that the remainder term is bounded by
cσ × E(σ). Summing over all the wedges W of B(r) we get the right-hand
side of (3.6) and this equals to 0 since f0 = f is harmonic. !

Lemma 3.2. If f : (B(r), g) → (Y, d) satisfies (3.6), then for σ ∈ (0, r)

(3.7)

∣∣∣∣∣∣
E′(σ)
E(σ)

− n − 2
σ

− 2
E(σ)

∫

∂B(σ)

∑

i,k

gik xi

|x|
∂f

∂xk
· ∂f

∂r
dΣg

∣∣∣∣∣∣
≤ c1

for some constant c1 depending on B(r) and the Lipschitz bound of g,

(3.8) E′(σ) = (1 + O(σ))

(
n − 2 + O(σ)

σ
E(σ) + 2

∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg

)

and

(3.9) (1 + cσ)
E′(σ)
E(σ)

≥ n − 2
σ

+
2

E(σ)

∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg − c1,

where c is as in (3.1).

Proof. Let η in (3.6) approximate the characteristic function of B(σ) to
obtain

(3.10) E′(σ) − n − 2 + O(σ)
σ

E(σ) − 2
∫

∂B(σ)

∑

i,j,k

gik xi

|x|
∂f

∂xk
· ∂f

∂r
dΣg = 0

which immediately implies inequality (3.7). Next, we use the inequality gik ≤
δik + cσ to show

∑

i,k

gik xi

|x|
∂f

∂xk
· ∂f

∂r
≤
∣∣∣∣
∂f

∂r

∣∣∣∣
2
+ cσ

∑

k

∣∣∣∣
∂f

∂xk
· ∂f

∂r

∣∣∣∣ ≤
∣∣∣∣
∂f

∂r

∣∣∣∣
2
+ cσ |∇f |2 .

Using this, inequalities (3.8) and (3.9) follow again from (3.10). !
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Lemma 3.3. Let f : (B(r), g) → (Y, d) be a harmonic map. For any Q ∈ Y ,
3d2(f, Q) − 2|∇f |2g ≥ 0 weakly, i.e.,

(3.11) 2
∫

B(r)
|∇f |2gη dµg ≤ −

∫

B(r)
< ∇d2(f, Q),∇η >g dµg

for any η ∈ C∞
c (B(r)).

Proof. This inequality follows from a target variation of the harmonic map
and hence the singular nature of the domain is not essential in the proof.
Details can be found in the proof of [9, Proposition 2.2.] !

Lemma 3.4. If f : (B(r), g) → (Y, d) satisfies (3.11), then

(3.12) E(σ) ≤ I(σ)
1
2




(∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dσg

) 1
2

+ cσ(E′(σ))
1
2





and

(3.13) 2E(σ) ≤
∫

∂B(σ)

∂

∂r
d2(f, Q))dΣg + I(σ) + kσ2E′(σ)

for some constants c, k depending on B(r) and the Lipschitz bound of g and

(3.14)
1

I(σ)

∫

∂B(σ)

∂

∂r
d2(f, Q)dΣg ≤ 2

E(σ)

∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dµg + 2cσ

E′(σ)
E(σ)

,

where c is as in (3.1).

Proof. Let η in (3.11) approximate the characteristic function of B(σ) to
obtain

2E(σ) ≤
∫

∂B(σ)
< ∇d2(f, Q), ∇|x| >g dΣg =

∫

∂B(σ)
gij ∂

∂xi
d2(f, Q)

xj

|x|dΣg.
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Using the estimate gij ≤ δij + cσ, we obtain

2E(σ) ≤
∫

∂B(r)

∂

∂r
d2(f, Q))dΣg

+ cσ

∫

∂B(r)

∑

i

∣∣∣∣
∂

∂xi
d2(f, Q))

∣∣∣∣ dΣg(3.15)

≤ 2
∫

∂B(r)
d(f, Q)

∂

∂r
d(f, Q))dΣg

+ 2cσ

∫

∂B(σ)
d(f, Q)

∑

i

∣∣∣∣
∂

∂xi
d(f, Q)

∣∣∣∣ dΣg

≤ 2I(σ)
1
2

(∫

∂B(r)

∣∣∣∣
∂

∂r
d(f, Q))

∣∣∣∣
2
dΣg

) 1
2

+ 2cσI(σ)
1
2

(∫

∂B(σ)

∑

i

∣∣∣∣
∂

∂xi
d(f, Q)

∣∣∣∣
2
dΣg

) 1
2

.

The triangle inequality implies that

∣∣∣∣
∂

∂xi
d(f, Q)

∣∣∣∣
2

≤
∣∣∣∣
∂f

∂xi

∣∣∣∣
2

and
∣∣∣∣
∂

∂r
d(f, Q)

∣∣∣∣
2

≤
∣∣∣∣
∂f

∂r

∣∣∣∣
2
.

From this, (3.12) follows immediately. Additionally, use the Cauchy–
Schwarz inequality to obtain

2cσd(f, Q)
∣∣∣∣
∂

∂xi
d(f, Q)

∣∣∣∣ ≤ d2(f, Q) + c2σ2
∣∣∣∣
∂f

∂xi

∣∣∣∣
2

which implies

2E(σ) ≤
∫

B(r)

∂

∂r
d2(f, Q))dΣg +

∫

∂B(σ)
d2(f, Q)dΣg

+ c2σ2
∫

∂B(σ)
|∇f |2dΣg.
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From this, (3.13) follows immediately. Lastly, again use (3.15) to obtain

E(σ)
∫

∂B(σ) ∂
∂r

d2(f,Q)dΣg

≤ 2

(∫

∂B(σ)
d(f, Q)

∂

∂r
d(f, Q)dΣg

)2

+ 2cσ

(∫

∂B(σ)
d(f, Q)

∂

∂r
d(f, Q)dΣg

)

×
(∫

∂B(σ)
d(f, Q)

∑

i

∣∣∣∣
∂

∂xi
d(f, Q)

∣∣∣∣ dΣg

)

≤ 2I(σ)
∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg + 2cσI(σ)

∫

∂B(σ)
|∇f |2dΣg.

This immediately implies (3.14). !
The following energy growth estimate is also given in [2] with geodesic

balls (and not Euclidean balls as it is here).

Lemma 3.5. Let f : (B(r), g) → (Y, d) be a harmonic map. There exist
σ0 > 0 and γ > 0 depending on B(r), the Lipschitz bound and the ellipticity
constant of g so that

σ 0→ E(σ)
σn−2+2γ , σ ∈ (0, σ0)

is non-decreasing.

Proof. Let Qσ ∈ Y so that

I(σ,Qσ) = inf
Q∈Y

I(σ,Q).

Thus, the Poincaré inequality (cf. Corollary 2.1) implies that there exists
C0 > 0 so that

I(σ,Qσ) ≤ C0σ
2
∫

∂B(σ)
|∇∂f |2gdΣg,

where |∇∂f |2g is the tangential part of |∇f |2g. If we write

hij = g

(
∂

∂θi
,
∂

∂θj

)
,
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then

|∇∂f |2g =
1
r2 hij ∂f

∂θi
· ∂f

∂θj
= (1 + O(σ))

(
|∇f |2 −

∣∣∣∣
∂f

∂r

∣∣∣∣
2
)

.

Thus,

(3.16) I(σ,Qσ) ≤ C0σ
2(1 + O(σ))

∫

∂B(σ)

(
|∇f |2 −

∣∣∣∣
∂f

∂r

∣∣∣∣
2
)

dΣg.

Therefore,

E2(σ) ≤ I(σ,Qσ)




(∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg

) 1
2

+ cσE′(σ)
1
2




2

by (3.12)

≤ 2I(σ,Qσ)

(∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg + c2σ2E′(σ)

)

≤ Cσ2

(
(1 + O(σ))

(
E′(σ) −

∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg

))
by (3.16)

×
(∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg + c2σ2E′(σ)

)

≤ Cσ

(
(n − 2 + O(σ))E(σ) + σ(1 + O(σ))

∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg

)
by (3.8)

×
(

(1 + O(σ))
∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg + c2σ(n − 2 + O(σ))E(σ)

)

≤ C ′



σ2E2(σ) + σE(σ)
∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg + σ2

(∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg

)2




≤ C ′



(σ2 + ε)E2(σ) +
(

4
ε

+ 1
)
σ2

(∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg

)2


 .

Note that the constant C and C ′ depend only on the Lipschitz constant of g
and the constant coming from the Poincaré inequality which only depends
on the ellipticity constant of g and the number of wedges of B(r). Thus, the
constants below also depend only on these quantities. By choosing σ > 0
sufficiently small (depending on C ′), we see that there exists a constant K



278 Georgios Daskalopoulos & Chikako Mese

so that

E(σ) ≤ Kσ

∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg.

Using (3.8), we also have

σE′(σ) = (n − 2 + O(σ))E(σ) + (2σ + O(σ2))
∫

∂B(σ)

∣∣∣∣
∂f

∂r

∣∣∣∣
2
dΣg

≥ (n − 2 + O(σ))E(σ) +
2 + O(σ)

K
E(σ)

= (n − 2 +
2
K

+ O(σ))E(σ)

≥ (n − 2 + 2γ)E(σ)

for γ, σ > 0 sufficiently small. This implies

d

dσ

(
log

E(σ)
σn−2+2γ

)
≥ 0

for σ > 0 sufficiently small. !

Lemma 3.6. For sufficiently small σ > 0 depending on the Lipschitz bound
of g and B and for any map f : B(r) → (Y, d), we have

(3.17)

∣∣∣∣∣
I ′(σ)
I(σ)

− n − 1
σ

− 1
I(σ)

∫

∂B(σ)

∂

∂r
d2(f, Q)dΣg

∣∣∣∣∣ ≤ c2

for some constant c2 depending on B(r) and the Lipschitz bound of g.

Proof. Let { ∂
∂r , ∂

∂θ1
, . . . , ∂

∂θn−1
} be the tangent basis corresponding to the

polar coordinates (r, θ1, . . . , θn−1) on W . We define

v(r, θ) =
1

rn−1

√∣∣∣∣det
(

g

(
∂

∂θi
,
∂

∂θj

))∣∣∣∣.

By the fact that gij(0) = δij , we have

(3.18) |v(σ, θ) − 1| = |v(σ, θ) − lim
r→0

v(r, θ)| ≤ c′σ

for some constant c′ depending on the Lipschitz bound of g. Since the mea-
sure induced on ∂B(σ) by g can be written dΣg = σn−1v(σ, θ)dθ where dθ
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is volume form on the standard (n − 1)-sphere, we have

∂

∂σ
dΣg = (n − 1)σn−2v(σ, θ)dθ + σ(n−1) ∂v

∂σ
(σ, θ)dθ

and
dΣg ≥ σn−1(1 − c′σ)dθ ≥ 1

2σ
n−1dθ

for sufficiently small σ > 0. Thus,

d

dσ

∫

∂B(σ)
d2(f, Q)dΣg

=
∫

∂B(σ)

∂

∂r
(d2(f, Q))dΣg +

n − 1
σ

∫

∂B(σ)
d2(f, Q)dΣg

+
∫

∂B(1)
d2(f, Q)σn−1∂v

∂r
(σ, θ)dθ

which in turn implies
∣∣∣∣∣
I ′(σ)
I(σ)

− n − 1
σ

− 1
I(σ)

∫

∂B(σ)

∂

∂r
(d2(f, Q))dΣg

∣∣∣∣∣

=
1

I(σ)

∣∣∣∣∣

∫

∂B(1)
d2(f, Q)σn−1∂v

∂r
(σ, θ)dθ

∣∣∣∣∣

≤ c

I(σ)

∫

∂B(1)
d2(f, Q)σn−1dθ

≤ 2c

I(σ)

∫

∂B(σ)
d2(f, Q)dΣg = 2c

for sufficiently small σ. This immediately implies (3.17). !
Let f : (B(r), g) → (Y, d) be a harmonic map. Inequality (3.17) implies

that there exists σ0 sufficiently small so that for σ < σ0,

(3.19)
I ′(σ)
I(σ)

≤ n − 1
σ

+
1

I(σ)

∫

∂B(σ)

∂

∂r
d2(f, Q) dΣg + c2.

Together, (3.9), (3.14) and (3.19) imply

(3.20) (1 + 3cσ)
E′(σ)
E(σ)

− I ′(σ)
I(σ)

+
1
σ

+ c3 ≥ 0,

where c3 = c1 + c2. We use this inequality to prove a modified monotonicity
which we describe below. For notational simplicity by rescaling the metric
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g, we may assume that 3c ≤ 1 and σ0 = 1. Let

J(σ) = max
s∈[0,σ]

I(s)

and set

A =
{
σ :

E′(σ)
E(σ)

− J ′(σ)
J(σ)

+
1
σ

+ c3 ≤ 0
}

.

Roughly speaking, A is the bad set where the ordinary monotonicity formula
fails. Note that if J ′(s) (= 0 then I(s) is increasing and hence I(s) = J(s),
I ′(s) = J ′(s). If J ′(s) = 0, then I ′(s) ≤ 0 (for, if I ′(s) > 0 then J would
be strictly increasing near s). Therefore, we obtain the following pair of
inequalities:

E′(σ)
E(σ)

− I ′(σ)
I(σ)

+
1
σ

+ c3 ≥ 0 for σ /∈ A,(3.21)

(1 + σ)
E′(σ)
E(σ)

− I ′(σ)
I(σ)

+
1
σ

+ c3 ≥ 0 for σ ∈ A.(3.22)

For σ ∈ (0, 1), set

F (σ) = E(σ) exp

(
−
∫

A∩(σ,1)
s
E′(s)
E(s)

ds

)
.

Lemma 3.7. For F (σ) defined above,

(3.23)
F ′(σ)
F (σ)

=

{
E′(σ)
E(σ) for σ /∈ A,

(1 + σ)E′(σ)
E(σ) for σ ∈ A.

Consequently,

σ 0→ ec3σ σF (σ)
I(σ)

is non-decreasing for σ sufficiently small. Furthermore, for Qσ as in (3.4)

σ 0→ ec3σ σF (σ)
I(σ,Qσ)

is also non-decreasing for σ sufficiently small.
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Remark. If g is the Euclidean metric δ, then c = 0 above and

σ 0→ σE(σ)
I(σ)

is non-decreasing.

Proof. We first note that as it is an integral of an L1 function σ 0→ E(σ) is
absolutely continuous on [0, r]. Let

ϕ(σ) = −
∫

A∩(σ,1)
s
E′(s)
E(s)

ds.

Then, for a ≤ σ < σ′ ≤ b, we have
∣∣ϕ(σ) − ϕ(σ′)

∣∣

≤

∣∣∣∣∣

∫

A∩(σ,σ′)
s
E′(s)
E(s)

ds

∣∣∣∣∣ ≤
b

E(a)

∣∣∣∣∣

∫ σ′

σ
E′(s)ds

∣∣∣∣∣ =
b

E(a)
|E(σ′) − E(σ)|,

which implies that the function ϕ(σ) and hence also F (σ) is absolutely
continuous. Here we are assuming that f is non-constant hence E(a) (= 0.
Thus,

ϕ′(σ) = lim
ε→0

ϕ(σ + ε) − ϕ(σ − ε)
2ε

= lim
ε→0

1
2ε

∫

A∩[σ−ε,σ+ε]
−s

E′(s)
E(s)

ds.

Therefore ϕ′(σ) = 0 for a.e. σ /∈ A and ϕ′(σ) = −σE′(σ)
E(σ) for a.e. σ ∈ A. This

implies (3.23). Finally, note that the function σ 0→ log
(
ec3σ σF (σ)

I(σ)

)
is abso-

lutely continuous on any interval [a, b] ⊂ (0, r). Hence by combining (3.21–
3.23), we obtain

d

ds
log

σF (σ)
I(σ)

≥ F ′(σ)
F (σ)

− I ′(σ)
I(σ)

+
1
σ

≥ −c3,

which implies the monotonicity of σ 0→ ec3σ σF (σ)
I(σ) . Furthermore, since

I(σ2, Qσ1) ≥ I(σ2, Qσ2), we have for σ1 < σ2,

ec3σ1
σ1F (σ1)

I(σ1, Qσ1)
≤ ec3σ2

σ2F (σ2)
I(σ2, Qσ1)

≤ ec3σ2
σ2F (σ2)

I(σ2, Qσ2)
.

This implies the monotonicity of σ 0→ ec3σ σF (σ)
I(σ,Qσ) . !
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Lemma 3.7 shows the monotonicity involving a corrected energy term
F (σ). We now want to show that the correction factor is well-behaved as
σ → 0.

Lemma 3.8.
∫

A∩(0,1)
s
E′(s)
E(s)

ds := lim
σ→0+

∫

A∩(σ,1)
s
E′(s)
E(s)

ds < ∞.

Proof. For s ∈ A,

(3.24) s
E′(s)
E(s)

≤ s
J ′(s)
J(s)

− 1 − c3s ≤ s
J ′(s)
J(s)

.

by the definition of the set A. Thus, it is sufficient to prove

(3.25) lim
σ→0+

∫

A∩(σ,1)
s
J ′(s)
J(s)

ds < ∞.

We follow the argument of Proposition 3.1 in [14]. Let M be sufficiently
large so that for σ ∈ (0, 1],

∫

B(σ)
|∇f |2dµg ≤ ME(σ),

N := ec3
F (1)
J(1)

≥ ec3σ σF (σ)
J(σ)

≥ σF (σ)
J(σ)

and K = MN . Furthermore, let 0 < θ1 < θ2 ≤ 1 and r0 ∈ (θ1, θ2]. For s ∈
(θ1, r0), we have by (3.17) that

I ′(s) ≤
∫

∂B(s)
2d(f, P )

∂

∂r
d(f, P )dΣg +

n − 1 + c2s

s
I(s)

≤
∫

∂B(s)

(
1
ε
d2(f, P ) + ε

(
∂

∂r
d(f, P )

)2
)

dΣg +
n − 1 + c2s

θ1
I(s)

≤
∫

∂B(s)

(
1
ε
d2(f, P ) + ε|∇f |2

)
dΣg +

n − 1 + c2s

θ1
I(s)

≤ ε

∫

∂B(s)
|∇f |2dΣg +

(
1
ε

+
C

θ1

)
I(s)

for some sufficiently large C. Therefore,

(3.26) I(r0) − I(θ1) =
∫ r0

θ1

I ′(s)ds ≤ εME(r0) +
(

1
ε

+
C

θ1

)∫ r0

θ1

I(s) ds.
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Hence

I(r0) − εME(r0) ≤ I(θ1) +
(

1
ε

+
C

θ1

)
(r0 − θ1) max

s∈[θ1,r0]
I(s).

Since r0 ∈ (θ1, θ2] is arbitrary,

max
s∈[θ1,θ2]

I(s) − εME(θ2) ≤ I(θ1) +
(

1
ε

+
C

θ1

)
(θ2 − θ1) max

s∈[θ1,θ2]
I(s),

which then implies
[
1 −

(
1
ε

+
C

θ1

)
(θ2 − θ1)

]
max

s∈[θ1,θ2]
I(s) − εME(θ2) ≤ I(θ1).

If maxs∈[0,θ1] I(s) ≥ maxs∈[θ1,θ2] I(s) then J(σ) is identically equal to a con-
stant in [θ1, θ2]. If maxs∈[0,θ1] I(s) ≤ maxs∈[θ1,θ2] I(s), then maxs∈[θ1,θ2] J(s) =
maxs∈[θ1,θ2] I(s). Either way, we have

[
1 −

(
1
ε

+
C

θ1

)
(θ2 − θ1)

]
max

s∈[θ1,θ2]
J(s) − εME(θ2) ≤ J(θ1),

which immediately implies
[
1 −

(
1
ε

+
C

θ1

)
(θ2 − θ1)

]
J(θ2) − εME(θ2) ≤ J(θ1).

For θ0 ∈ (0, 1) to be determined later, we set

ε =
θ

j(1−θn
0 )

1−θ0
+n

0
2K

to obtain
[
1 −

(
2Kθ

−j(1−θn
0 )

1−θ0
−n

0 +
C

θ1

)
(θ2 − θ1)

]
J(θ2)(3.27)

− E(θ2)
2N

θ
j(1−θn

0 )
1−θ0

+n

0 ≤ J(θ1)

Let

φ(θ, n, j) =
1
2

−
(

2Kθ
−j(1−θn)

1−θ +
C

θ

)
(1 − θ).
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Then
lim
θ→1

φ(θ, n, j) = 1
2

uniformly independently of j, n. Therefore, there exists θ0 sufficiently close to
1 so that φ(θ0, n, j) > 1

4 independently of n and j. Choose j so that θj
0 < 1

4 .
Then

(3.28)
1
2

−
(

2Kθ
−j(1−θ2n

0 )
1−θ0

0 +
C

θ0

)
(1 − θ0) > θj

0

for any n.
Since F (1) = E(1) by definition, we have that

E(1)
N

=
J(1)
ec3

≤ J(1).

Thus, (3.27) with n = 0, θ1 = θ0 and θ2 = 1 implies
[
1
2

−
(

2Kθ
−j

1−θ0
0 +

C

θ0

)
(1 − θ0)

]
J(1) ≤ J(θ0)

and by inequality (3.28), θj
0J(1) < J(θ0). Now suppose θj

0J(θk
0) < J(θk+1

0 )
for k = 0, . . . , n − 1. Then

∫ 1

θn
0

s
d

ds
log J(s) ds =

n−1∑

k=0

∫ θk
0

θk+1
0

s
d

ds
log J(s) ds

≤
n−1∑

k=0

θk
0

∫ θk
0

θk+1
0

d

ds
log J(s) ds

≤
n−1∑

k=0

θk
0 log

J(θk
0)

J(θk+1
0 )

≤
n−1∑

k=0

θk
0 log θ−j

0 (by the inductive hypothesis)

=
n−1∑

k=0

log θ−jθk
0

0

= log θ−j
∑n−1

k=0 θk
0

0

= log θ
−j(1−θn

0 )
1−θ0

0
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Using the fact that J ′(s)
J(s) ≥ 0, we obtain

log
F (1)
F (θn

0 )
= log

E(1)
E(θn

0 )
+
∫

A∩(θn
0 ,1)

s
E′(s)
E(s)

ds

≤ log
E(1)
E(θn

0 )
+
∫

A∩(θn
0 ,1)

s
J ′(s)
J(s)

ds (by (3.24))

≤ log
E(1)
E(θn

0 )
+
∫ 1

θn
0

s
J ′(s)
J(s)

ds

≤ log
E(1)
E(θn

0 )
+ log θ

−j(1−θn
0 )

1−θ0
0 .

Therefore, using the fact that E(1) = F (1) and the definition of N , we obtain

θ
j(1−θn

0 )
1−θ0

0 E(θn
0 ) ≤ F (θn

0 ) ≤ NJ(θn
0 )

θn
0

.

Thus, we can use the inequality

E(θn
0 )

2N
θ

j(1−θn
0 )

1−θ0
+n

0 ≤ J(θn
0 )

2

in (3.27) with θ1 = θn+1
0 and θ2 = θn

0 to obtain
[

1
2

−
(

2Kθ
−j(1−θ2n

0 )
1−θ0

0 +
C

θ0

)
(1 − θ0).

]
J(θn

0 ) ≤ J(θn+1
0 )

Hence, by inequality (3.28), we have

(3.29) θj
0J(θn

0 ) < J(θn+1
0 ).

By induction, inequality (3.29) holds for all n which in turn implies that
∫ 1

θn
0

s
d

ds
log J(s)ds ≤ log θ0

−j(1−θn
0 )

1−θ0

holds for all n. Letting n → ∞, we obtain
∫

A∩(0,1)
s

d

ds
log J(s)ds ≤

∫ 1

0
s

d

ds
log J(s)ds ≤ log θ0

−j

1−θ0 < ∞.

This proves (3.25) and the proof is complete. !
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Corollary 3.1.

α := lim
σ→0

σE(σ)
I(σ,Qσ)

< ∞

exists.

Proof. By Lemmas 3.7 and 3.8

lim
σ→0

σE(σ)
I(σ,Qσ)

= lim
σ→0

(
σF (σ)

I(σ,Qσ)
· E(σ)
F (σ)

)

= lim
σ→0

ec3σ σF (σ)
I(σ,Qσ)

lim
σ→0

exp

(∫

A∩(σ,1)
s
E′(s)
E(s)

ds

)
< ∞.

!

Definition 3.1. We call α of Corollary 3.1 the order of f at 0 denoted by
α = ordf (0).

Lemma 3.9. Let α = ordf (0). There exist constants c0 and σ0 depending
only on B(r), the Lipschitz bound and the ellipticity constant of g so that if

Ẽ(σ) := E(σ) exp

(
c0

∫

A∩(0,σ)
s
E′(s)
E(s)

ds

)
,

then

σ 0→ ec0σ Ẽ(σ)
σ2α+n−2

is non-decreasing for σ ∈ (0, σ0).

Proof. Set

G(σ) = E(σ) exp

(∫

A∩(0,σ)
s
E′(s)
E(s)

ds

)
.

Since

G(σ) = F (σ) exp

(∫

A∩(0,1)
s
E′(s)
E(s)

ds

)
,

Lemma 3.7 implies that

σ 0→ ec3σ σG(σ)
I(σ,Qσ)
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is non-decreasing. Since

lim
σ→0

E(σ)
G(σ)

= lim
σ→0

exp

(
−
∫

A∩(0,σ)
s
E′(s)
E(s)

ds

)
≤ 1,

we have

α = lim
σ→0

σE(σ)
I(σ,Qσ)

≤ lim
σ→0

σG(σ)
I(σ,Qσ)

= lim
σ→0

ec3σ σG(σ)
I(σ,Qσ)

.

Therefore, we obtain that

(3.30) α ≤ ec3σ σG(σ)
I(σ,Qσ)

= ec3σ σE(σ)
I(σ,Qσ)

exp

(∫

A∩(0,σ)
s
E′(s)
E(s)

ds

)

and

(3.31)
σE(σ)

I(σ,Qσ)
≤ ec3σ σG(σ)

I(σ,Qσ)
≤ eσ3

G(1)
I(1)

=: K.

Now by the proof of Lemma 3.8, if θn+1
0 ≤ σ < θn

0 , then
∫

A∩(0,σ)
s
E′(s)
E(s)

ds ≤
∫ σ

0
s
J ′(s)
J(s)

ds

≤
∫ θn

0

0
s
J ′(s)
J(s)

ds

≤
∞∑

k=n

∫ θk
0

θ0
k+1

s
J ′(s)
J(s)

ds

≤ log θ−j
∑∞

k=n θ0
k

0

= log θ0
− jθ0

n

1−θ0

≤ c4θ
n
0

≤ c4

θ0
σ =: c5σ.(3.32)

Thus, this implies that for any c0 ≥ 1 and for

Ẽ(σ) := E(σ) exp

(
c0

∫

A∩(0,σ)
s
E′(s)
E(s)

ds

)
,

E(σ) ≤ Ẽ(σ) ≤ ec0c5σE(σ),(3.33)
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and by (3.30)

(3.34) α ≤ e(c3+c5)σ σE(σ)
I(σ,Qσ)

.

Furthermore, (3.13) and (3.17) imply that

2E(σ) ≤
∫

∂B(σ)

∂

∂r
d2(f, Q)dΣg + I(σ) + kσ2E′(σ)

≤ I ′(σ) − n − 1
σ

I(σ) + (1 + c2)I(σ) + kσ2E′(σ),(3.35)

where the constants c2 and k depend on the Lipschitz bound of g. Inequality
(3.35) implies

2σE(σ)
I(σ) + n − 1 − O(σ)

σ
≤ I ′(σ)

I(σ)
+ kσ2 E′(σ)

I(σ)

≤ I ′(σ)
I(σ)

+ kKσ
E′(σ)
E(σ)

≤ G′(σ)
G(σ)

+
1
σ

+ kKσ
E′(σ)
E(σ)

.(3.36)

for any Q ∈ Y . By combining (3.36) with (3.34) and absorbing the exponen-
tial terms in O(σ) we obtain

2α+ n − 1 − O(σ)
σ

≤G′(σ)
G(σ)

+
1
σ

+ kKσ
E′(σ)
E(σ)

.(3.37)

If c0 ≥ kK + 1, then

Ẽ′(σ)
Ẽ(σ)

≥ (1 + c0σ)
E′(σ)
E(σ)

≥ (1 + (kK + 1)σ)
E′(σ)
E(σ)

=
G′(σ)
G(σ)

+ kKσ
E′(σ)
E(σ)

.

Therefore, using (3.37), we can choose c0 sufficiently large so that

2α+ n − 2
σ

− c0 ≤ Ẽ′(σ)
Ẽ(σ)

and hence

σ 0→ ec0σ Ẽ(σ)
σ2α+n−2

is non-decreasing. !
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By combining Lemma 3.7 and Corollary 3.9 we obtain

Corollary 3.2. Let B be a dimension-n, codimension-ν local model, g a
normalized Lipschitz Riemannian metric defined on B(r), (Y, d) an NPC
space, f : (B(r), g) → Y a harmonic map and α = ordf (0). Then there exist
constants k and σ0 ≤ 1 depending on B(r), the Lipschitz bound and the
ellipticity constant of g so that

(3.38)
σE(σ)

I(σ,Qσ)
≤ ekρ ρE(ρ)

I(ρ, Qρ)
for 0 < σ ≤ ρ ≤ σ0

and

(3.39)
E(σ)

σ2α+n−2 ≤ ekρ E(ρ)
ρ2α+n−2 for 0 < σ ≤ ρ ≤ σ0.

Proof. Formula (3.38) immediately follows from Lemma 3.7. Furthermore,
Lemma 3.9 and (3.33) immediately imply (3.39). !

So far in this section, we assumed that our metric g is normalized at 0
(i.e., gij(0) = δij). We will relax this assumption and still show the mono-
tonicity formula for the energy of a harmonic map (cf. Proposition 3.1
below). Let B be a dimension-n, codimension-(n − k) local model and g
a Lipschitz metric on B(r) with ellipticity constant λ ∈ (0, 1]. For x ∈ B(r),
recall that R(x) is defined to be the radius of the largest homogeneous ball
centered at x contained in B(r). Assume that x is a codimension- (n − j)
singular point. Let B′ be a dimension-n, codimension- (n − j) local model
and Lx : B′(λR(x)) → Lx(B′(λR(x))) ⊂ B be a homeomorphism satisfying
properties (i) through (iv) of Proposition 2.1. In particular, recall this implies
that h := L∗

xg is a normalized metric. If f : B(r) → Y is any finite energy
map, then f ◦ Lx is defined on B′(λR(x)). Moreover,

(3.40)
∫

Bx(σ)
|∇f |2dµg =

∫

L−1
x (Bx(σ))

|∇(f ◦ Lx)|2dµh

and

(3.41)
∫

B′(σ)
|∇(f ◦ Lx)|2dµh =

∫

Lx(B′(σ))
|∇f |2dµg.

This in turn implies that if f is a harmonic map with respect to the metric
g, then f ◦ Lx is a harmonic map with respect to the metric h. We call
f ◦ Lx the normalized harmonic map at x. Recall that σ0 was defined above
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as the upper bound for which monotonicity formulae of Lemma 3.5 and
Corollary 3.2 are valid for any harmonic map from a local model with a
normalized metric. Therefore, these monotonicity formulae for f ◦ Lx are
valid for balls B′(σ) contained in B′(r0(x)) for

(3.42) r0(x) := min{σ0, λR(x)}.

For a harmonic map f , we define the order of f at x as

ordf (x) := ordf◦Lx(0).

We also define Ex(σ) and Ix(σ) for σ sufficiently small by setting

Ex(σ) =
∫

Bx(σ)
|∇f |2dµg

and

Ix(σ) =
∫

∂Bx(σ)
d2(f, Q)dΣg.

Proposition 3.1. Let B be a dimension-n, codimesion-(n − k) local model,
g a Lipschitz metric defined on B(r) with ellipticity constant λ ∈ (0, 1], (Y, d)
an NPC space and f : (B(r), g) → Y a harmonic map. Then there exist con-
stants γ > 0 and C ≥ 1 depending on B(r), the Lipschitz bound and the
ellipticity constant of g so that for every x ∈ B(r),

(3.43)
Ex(σ)
σn−2+2γ ≤ C

Ex(ρ)
ρn−2+2γ , 0 < σ < ρ ≤ r(x)

and

(3.44)
Ex(σ)

σn−2+2αx
≤ C

Ex(ρ)
ρn−2+2αx

, 0 < σ < ρ ≤ r(x),

where

(3.45) r(x) = λr0(x) = min{λσ0, λ
2R(x)}.

Here, recall that R(x) is the radius of the largest homogeneous ball contained
in St(x) and σ0 > 0 defined in Corollary 3.2 is the number associated with
the monotonicity formulae.
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Proof. Let Lx be as above and set

E(σ) =
∫

B′(σ)
|∇(f ◦ Lx)|2dµh.

Lemma 3.5 and Corollary 3.2 imply that there exists a constant c ≥ 1 so
that

(3.46)
E(s)

sn−2+2γ ≤ c
E(r)

rn−2+2γ , 0 < s < r ≤ r0(x)

and

(3.47)
E(s)

sn−2+2αx
≤ c

E(r)
rn−2+2αx

, 0 < s < r ≤ r0(x)

with r0(x) as in (3.42). Let Γ = n − 2 + 2γ or Γ = n − 2 + 2αx. Fix σ, ρ so
that 0 < σ < ρ ≤ r(x). Then, since λ ≤ 1, 0 < λ−1σ, λρ ≤ r0(x). We prove
(3.43) and (3.44) by considering the following two cases. In the first case,
we assume λ−1σ ≤ λρ. We then have

Ex(σ)
σΓ ≤ E(λ−1σ)

σΓ by (3.40) and the fact that L−1
x (Bx(σ)) ⊂ B′(λ−1σ)

≤ 1
λΓ

E(λ−1σ)
(λ−1σ)Γ

≤ c

λΓ
E(λρ)
(λρ)Γ

by (3.46) or (3.47) and the assumption that λ−1σ ≤ λρ

≤ c

λΓ
Ex(ρ)
(λρ)Γ

by (3.41) and the fact that Lx(B′(λρ)) ⊂ Bx(ρ)

≤ c

λ2Γ
Ex(ρ)
ρΓ .

In the second case, we assume λ−1σ > λρ. We then have

Ex(σ)
σΓ ≤ Ex(ρ)

σΓ by the fact that Bx(σ) ⊂ Bx(ρ)

≤ Ex(ρ)
(λ2ρ)Γ

by the fact that
1
σ

<
1
λ2ρ

≤ 1
λ2Γ

Ex(ρ)
ρΓ .

In either case, we have proven our assertion by setting C = c
λ2Γ . !
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4. Hölder continuity

In this section, we prove the Hölder continuity of a harmonic map from a
Riemannian complex into an NPC space (Y, d). Such a result in the case
when the domain metric is smooth was discussed in [2, 7]. Using the results
of the previous section, we are able to consider a Lipschitz metric g. More-
over, we provide the explicit dependence of the Hölder exponent and Hölder
constant on g, Ef and B. By dependence on B, we mean the dependence on
the dimension of B, the number of wedges as well as the wedge angles of B.
In the later sections, we give a condition for which the Hölder continuity can
be improved to Lipschitz continuity. Our proof follows the approach in [2, 9].
The main technical difficulty is that monotonicity only works for small balls
(cf. Remark 3.3 [4]). Therefore in order to obtain the energy decay estimate
for large balls (cf. Proposition 4.3), we need the rather technical inductive
process described in Proposition 4.2 and Corollary 4.2. We first prove some
results pertaining to the geometry of local models.

Proposition 4.1. Fix integers k, n so that 0 ≤ k < n. Assume that the
sets Bk, . . . ,Bn have the following properties:

(1) for each j ∈ {k, k + 1, . . . , n}, Bj is a finite set of dimension-n,
codimension-(n − j) local models, and

(2) if B ∈ Bj for some j ∈ {k, k + 1, . . . , n − 1}, then for any x ∈ B and
σ ≤ R(x), we have Bx(σ) is isometric to B′(σ) where B′ ∈ Bi for some
i ∈ {j, j + 1, . . . , n}.

Then for all j ∈ {k, . . . , n} and B ∈ Bj, there exists κ(B) ≥ 1 so that for all
i ∈ {j, . . . , n},

|x − x̄|
R(x)

< κ(B), ∀x ∈ Si − Si−1 ⊂ B,∀x̄ ∈ πi−1(x).

Proof. We first make the following observation. Let B be any dimension-
n, codimension-(n − k) local model and x ∈ B. Recall that D = Sk is iso-
metric to Rk and hence the closest point projection map πD : B → D is
well-defined. For any x ∈ B − D, let t 0→ xt be the constant speed parame-
terization of a ray starting from πD(x) and going through x = x1. Assume
x ∈ Si − Si−1 and let x̄ ∈ πi−1(x). Since t 0→ xt and t 0→ xt are rays from
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πD(x) = πD(x), we see that xt ∈ πi−1(xt) and t|x − x| = |xt − xt|. Further-
more, we also see that tR(x) = R(xt). Thus, we observe that

(4.1)
|x − x̄|
R(x)

=
|xt − xt|
R(xt)

, ∀t ∈ (0,∞).

We now proceed with the proof of the assertion by reverse induction on j.
First note that there is nothing to prove for j = n since Bn = {Rn}. Assume
that the assertion is true for Bn,Bn−1, . . . ,Bj+1. By (4.1), we only need to
show that for each B ∈ Bj , there exists κ(B) so that for any i ∈ {j, . . . , n},

|x − x̄|
R(x)

< κ(B), ∀x ∈ U ∩ (Si − Si−1) ⊂ B,∀x̄ ∈ πi−1(x),

where U is the set of points of B at a distance 1 from D. Suppose this
is not true, i.e. for some fixed i, there exist B ∈ Bj and a sequence yn ∈
U ∩ (Si − Si−1) so that

(4.2)
|yn − yn|
R(yn)

→ ∞

with yn ∈ πi−1(yn). Since U is a compact set, we may assume (by choosing
a subsequence if necessary) that yn → y. By the definition of U , y ∈ Sm −
Sm−1 for m > j. Let us also assume i > j + 1. By the facts that y ∈ Sm −
Sm−1, |yn − y| → 0 and assumption (2.2), we can assume that yn and yn are
points in a local model B′ ∈ Bm. Since m > j then the inductive hypothesis
implies that |yn−yn|

R(yn) is bounded which contradicts (4.2). Now consider the
case i = j + 1, hence m = j + 1. Since in this case |yn − yn| = 1 and because
U ∩ Sj+1 is compact and hence R(yn) ≥ c independent of n, we also obtain
a contradiction to (4.2). This completes the proof. !

Corollary 4.1. Let B be a dimension-n, codimension-(n − k) local model.
There exists κ ≥ 1 so that for any i = {k, . . . , n},

|x − πi−1(x)|
R(x)

< κ, ∀x ∈ Si − Si−1 ⊂ B.

Proof. Apply Proposition 4.2 with Bj for j = k, .., n defined to be the set of
model spaces so that B′ ∈ Bj if and only if there exists x ∈ Sj − Sj−1 so that
Bx(R(x)) is isometric to B′(R(x)). We are done by setting κ = maxκ(B)
where the maximum is taken over B ∈ Bj and j = k, . . . , n. !
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Proposition 4.2. Fix λ ∈ (0, 1] and integers k, n so that 0 ≤ k < n.
Assume that the sets Bk, . . . ,Bn have the following properties:

(1) for each j ∈ {k, k + 1, . . . , n}, Bj is a finite set of dimension-n,
codimension-(n − j) local models, and

(2) if B ∈ Bj for some j ∈ {k, k + 1, . . . , n − 1}, then for any x ∈ B and
σ ≤ R(x), we have Bx(σ) is isometric to B′(σ) where B′ ∈ Bi for some
i ∈ {j, j + 1, . . . , n}.

Then, there exists C ≥ 1 so that for any B ∈ Bj, j ∈ {k, k + 1, . . . , n}, and
x ∈ B, there exist an ordered sequence

x1 ! x2 ! · · · ! xm

of points in B with x1 = x, xm ∈ Sj and positive numbers σ1, . . . , σm−1 with
the property that

(4.3)
σi

R(xi)
≤ C,

σi

R(xi+1)
≤ 1 and Bxi(R(xi)) ⊂ Bxi+1(λ

2σi).

Proof. We first need some preliminary constructions on each element B of
∪n

j=kBj . So fix j and B ∈ Bj . Let U be the set of points of B at a distance
1 from D = Sj . Set

Un = U, Un−1 = πn−1(Un), . . . , Uj = πj(Uj+1).

By the convexity of the faces of B, we see that Uj+1 ⊂⊂ B − Sj .
For i = j + 1, . . . , n − 1, we define a positive number Ri and a subset Ni

of B by an inductive procedure.

• First we define Rj+1 and Nj+1.

Let Vj+1 be so that

Uj+1 ⊂⊂ Vj+1 ⊂⊂ Sj+1 − Sj .

Thus, there exists Rj+1 > 0 so that

R(x′) ≥ Rj+1, ∀x′ ∈ Vj+1.

We can choose a neighborhood Nj+1 ⊂⊂ B − Sj of Uj+1 so that

Bx′(2σ′) ⊂ B − Sj ,∀x′ ∈ Πj+1(x) where x ∈ Nj+1 and σ′ = |x − x′|,
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Πj+1(Nj+1) ⊂ Vj+1

and
Uj+1 ⊂⊂ Nj+1.

• Assuming we have chosen positive numbers Rj+1, . . . , Ri−1, open sets
Nj+1 ⊂⊂ B − Sj , . . . , Ni−1 ⊂⊂ B − Si−2 and sets Vj+1, . . . , Vi−1 so that for
l ∈ {j + 1, . . . , i − 1},

Bx′(2σ′) ⊂ B − Sl−1, ∀x′ ∈ Πl(x) where x ∈ Nl and σ′ = |x − x′|,

Πl(Nl) ⊂ Vl,

Ul −
l−1
∪

m=j+1
Nm ⊂⊂ Nl,

and
R(x′) ≥ Rl, ∀x′ ∈ Vl,

we define Ri and Ni as follows:

First note that

Ui −
i−1
∪

m=j+1
Nm ⊂⊂ Ui − Si−1,

hence, we can choose Vi ⊂ Si be so that

Ui −
i−1
∪

m=j+1
Nm ⊂⊂ Vi ⊂⊂ Ui − Si−1.

Thus, there exists Ri > 0 so that

R(x′) ≥ Ri, ∀x′ ∈ Vi.

We can choose a neighborhood Ni ⊂⊂ B − Si−1 of Ui − ∪i−1
l=j+1 Nl so that

Bx′(2σ′) ⊂ B − Si−1, ∀x′ ∈ Πi(x) where x ∈ Ni and σ′ = |x − x′|,

Πi(Ni) ⊂ Vi

and

Ui −
i−1
∪

l=j+1
Nl ⊂⊂ Ni.

In summary, we have constructed sets U = Un, . . . , Uj+1, Vn, . . . , Vj+1,
positive numbers Rj+1, . . . , Rn−1 and open sets Nj+1 ⊂⊂ B − Sj , . . .,
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Nn−1 ⊂⊂ B − Sn−2 so that for each l = j + 1, . . . , n − 1,

Bx′(2σ′) ⊂ B − Sl−1

for x ∈ Nl, x′ ∈ Πl(x), σ′ = |x − x′|,

Πl(Nl) ⊂ Vl

and

R(x′) ≥ Rl,∀x′ ∈ Vl.

By assumption 2, and by shrinking Nj+1, . . . , Nn−1 if necessary, we assume
the following for x ∈ Nl, x′ ∈ Πl(x), σ′ = |x − x′|:

(4.4) we can identify Bx′(σ′) with B′(σ′) where B′ ∈ Bl.

Since

N =
n−1
∪

l=j+1
Nl

covers the singular set of U , there exists Rn > 0 so that

R(x) ≥ Rn, ∀x ∈ U − N.

In the above, for each j ∈ {k, . . . , n} and B ∈ Bj , we associated sets

U = U(B), Un−1 = Un−1(B), . . . , Uj+1 = Uj+1(B),

positive numbers

Rj+1 = Rj+1(B), . . . , Rn = Rn(B)

and open sets

Nj+1 = Nj+1(B), . . . , Nn−1 = Nn−1(B), N = N(B).

Let

C(B) = max
{

2
Rj+1(B)

, . . . ,
2

Rn(B)
, 1
}

,

and

C = λ−2 max{C(B) : B ∈ Bj , j = k, . . . , n}.
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Furthermore, for l = k, . . . , n, let

R̂l = min{Rl(B) : B ∈ Bj , j = k, . . . , n}.

We now proceed with the proof of the proposition. Since Bn = {Rn},
there is nothing to prove for Bn. We now prove the assertion for Bj for any
j = k, . . . , n by doing a reverse induction; more specifically, assume that the
assertion is true for Bn, Bn−1, . . . ,Bj+1 and prove the assertion for Bj .

Now given x ∈ B ∈ Bj , we need to show that there exist an ordered
sequence

x1 ! x2 ! · · · ! xm

of points in B with x1 = x, xm ∈ Sj and positive numbers σ1, . . . , σm−1
satisfying (4.3); i.e.,

σi

R(xi)
≤ C,

σi

R(xi+1)
≤ 1 and Bxi(R(xi)) ⊂ Bxi+1(λ

2σi).

If x is in the lowest dimensional stratum D = Sj , there is nothing to
prove so assume x ∈ B − Sj . By the scale invariance of the assertion, we may
assume that x ∈ U(B). If x ∈ U(B) − N(B), then let x1 = x, x2 ∈ Πj(x1)
and σ1 = 2λ−2. Since

σ1

R(x1)
=

2λ−2

R(x1)
≤ 2λ−2

R̂n

≤ C,

R(x1) ≤ 1 and R(x2) = ∞, we are done.
So assume x ∈ N(B); in particular, x ∈ Nl(B) for some l = j + 1, . . .,

n − 1. In this case, we use the inductive hypothesis. More specifically, choose
x′ ∈ Πl(x), let σ′ = |x − x′|, use (4.4) and note that the inductive hypothesis
implies that for any B′ ∈ Bl and any x ∈ B′, there exist a sequence

x1 = x ! x2 ! · · · ! xm ∈ Sl

and σ1, . . . , σm−1 with the property that

σi

R(xi)
≤ Cl(B′) ≤ C,

σi

R(xi+1)
≤ 1

and

Bxi(R(xi)) ⊂ Bxi+1(λ
2σi).
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Since x ∈ U(B), we have that xm ∈ Ul(B) = Πl(U(B)). Thus, R(xm) ≥
Rl(B) ≥ R̂l. Therefore, if we set σm = 2λ−2, then

σm

R(xm+1)
≤ 1

since R(xm+1) = ∞ and

σm

R(xm)
=

2λ−2

R(xm)
≤ 2λ−2

R̂l

≤ C.

Furthermore, since the distance of x to Sj is equal to 1, R(xm) ≤ 1. Hence

Bxm(R(xm)) ⊂ Bxm+1(λ
2σm).

This completes the inductive step and finishes the proof of Proposition 4.2.
!

Corollary 4.2. Let B be a dimension-n, codimension-(n − k) local model,
g a Lipschitz Riemannian metric defined on B(r), (Y, d) an NPC space and
f : (B(r), g) → Y a finite energy map. Fix " ∈ (0, 1). Then there exist C ≥ 1
and R0 > 0 depending on g, B(r) and " so that for every x ∈ B("r), there
exist a sequence of points

x = x1 ! · · · ! xm

and a sequence of positive numbers

σ1, . . . , σm−1

so that for i = 1, . . . , m − 1,

(4.5)
σi

r(xi)
≤ C,

σi

r(xi+1)
≤ 1, Exi(r(xi)) ≤ Exi+1(σi)

and

(4.6) r(xm) ≥ R0,

where r(x) = min{λσ0, λ2R(x)} is as defined in (3.45).

Proof. We define Bj for j = k, . . . , n to be the set of model spaces so that
B′ ∈ Bj if and only if there exists x ∈ Sj − Sj−1 so that Bx(R(x)) is isometric
to B′(R(x)). Then Bk, . . . ,Bn satisfy conditions (1) and (2) of Proposition 4.2.
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Let y ∈ B("r) and assume y ∈ Sj − Sj−1. Choose ry > 0 sufficiently
small so that By(ry) is compactly supported away from Sj−1 and ry << σ0.
In this way, we see that λ2R(y′) = r(y′) for y′ ∈ By(ry) and Ry := inf{r(y′) :
y′ ∈ By(ry) ∩ Sj} > 0. Choose a finite covering {Byl(ryl) : l = 1, . . . , N} of
B
(

r
2
)
. Thus, given x ∈ B("r), there exists l ∈ {1, . . . , N} so that

x ∈ Byl(ryl). By construction, the point yl is an element of Sj for some
j ∈ {k, . . . , n} and Byl(ryl) is isometric to B(ryl) for some B ∈ Bj . Applying
Proposition 4.2 and noting that r = λ2R, we obtain sequences x1 ! · · · ! xm

and σ′
1, . . . , σ

′
m−1 which satisfy

σ′
i

λ−2r(xi)
≤ C,

σ′
i

λ−2r(xi+1)
≤ 1 and Bxi(λ

−2r(xi)) ⊂ Bxi+1(λ
2σ′

i)

by (4.3). If we set σi = λ2σ′
i, we obtain

σi

r(xi)
≤ C,

σi

r(xi+1)
≤ 1 and Bxi(λ

−2r(xi)) ⊂ Bxi+1(σi).

Since λ ∈ (0, 1], the inclusion above shows that

Bxi(r(xi)) ⊂ Bxi+1(σi)

which in turn implies

Exi(r(xi)) ≤ Exi+1(σi).

Finally, if we set R0 = min{Ry1 , .., RyN }, then we obtain r(xm) ≥ R0 > 0.
!

Proposition 4.3. Let B be a dimension-n, codimension-(n − k) local
model, g a Lipschitz Riemannian metric defined on B(r), (Y, d) a metric
space and f : (B(r), g) → Y a finite energy map. Fix " ∈ (0, 1) and suppose
that for x ∈ B ("r) there exist β > 0 and Ĉ ≥ 1 so that

(4.7)
Ex(σ)
σn−2+2β ≤ Ĉ

Ex(ρ)
ρn−2+2β , 0 < σ ≤ ρ ≤ r(x),

where r(x) = min{λσ0, λ2R(x)} is as defined in (3.45). Then there exist K
and R > 0 depending only on the total energy Ef of f , the ellipticity constant
λ ∈ (0, 1], the Lipschitz bound of g, B(r) and " so that

Ex(σ) ≤ K2σn−2+2β , ∀x ∈ B("r), σ < R.
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Proof. Set

R := min {R0, σ0} ,

where R0 > 0 is as in Corollary 4.2 and σ0 ∈ (0, 1] as in Corollary 3.2,

K0 := (ĈCn−2+2β)
n Ef

Rn−2+2β ,

where C ≥ 1 as in Corollary 4.2 and

K :=
(

2nκn

λ4σ0

)n
2 −1+β

max{
√

K0,
√

Ef},

where κ ≥ 1 is defined in Corollary 4.1. Let x ∈ B("r) and σ < R.

Case 1. Assume that σ ≤ r(x). By (4.7),

Ex(σ)
σn−2+2β ≤ Ĉ

Ex(r(x))
r(x)n−2+2β .

Let x = x1 ! · · · ! xm and σ1, . . . , σm−1 be as in Corollary 4.2. By (4.5) and
(4.7),

Exi(r(xi))
r(xi)n−2+2β ≤

Exi+1(σi)
r(xi)n−2+2β

≤ Cn−2+2β Exi+1(σi)
σn−2+2β

i

≤ ĈCn−2+2β Exi+1(r(xi+1))
r(xi+1)n−2+2β

for i = 1, . . . , m − 1. Additionally, by (4.6), we have that

Exm(r(xm))
r(xm)n−2+2β ≤ Exm(r(xm))

Rn−2+2β ≤ Ef

Rn−2+2β

and hence
Ex1(σ)
σn−2+2β ≤ (ĈCn−2+2β)

m Ef

Rn−2+2β .

This implies

Ex(σ) ≤ K2σn−2+2β whenever σ ≤ r(x).
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Case 2. Alternately, assume r(x) < σ. Since r(x) = min{λσ0, λ2R(x)},
either

λσ0 < σ or R(x) <
σ

λ2 .

First consider the case when λσ0 < σ. Then

Ex(σ) ≤ Ex(σ)
(

σ

λσ0

)n−2+2β
≤ Ef

(λσ0)n−2+2β σ
n−2+2β ≤ K2σn−2+2β .

Next assume R(x) < σ
λ2 . The fact that R(x′) = ∞ for every x′ ∈ D = Sk

implies that x /∈ D = Sk. So let i ∈ {k + 1, . . . , n} be so that x ∈ Si − Si−1.
Furthermore, let x = yi, . . . , yk ∈ D = Sk where yj−1 ∈ Πj−1(yj). We now
follow the following finite step procedure.

Step 1. Since R(yi) < σ
λ2 , there exists l1 ∈ {k + 1, . . . , i − 1} so that

R(ym) <
2i−mσ

λ2 , ∀m = l1 + 1, . . . , i.

Thus, we can apply Corollary 4.1 to obtain

|ym − ym−1| < κR(ym) <
2i−mκ

λ2 σ.

This implies

Byi

( κ

λ2σ
)

⊂ Byi−1

(
2κ
λ2 σ

)
⊂ · · · ⊂ Byl1

(
2i−l1κ

λ2 σ

)
.

Since κ
λ2 ≥ 1, we also have

Byi (σ) ⊂ Byi

( κ

λ2σ
)

.

The above inclusions imply

(4.8) Ex(σ) ≤ Eyl1

(
2i−l1κ

λ2 σ

)
.

Now we consider the two possibilities, either

2i−l1κ

λ2 σ ≤ r(yl1) or r(yl1) <
2i−l1κ

λ2 σ.
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In the former possibility, we use (4.8) and Case 1 to see that

Ex(σ) ≤ Eyl1

(
2i−l1κ

λ2 σ

)
≤ K2

0

(
2i−l1κ

λ2 σ

)n−2+2β

≤ K2σn−2+2β .

In the latter possibility, either

(A) σ0 <
2i−l1κ

λ4 σ or (B) R(yl1) <
2i−l1κ

λ4 σ.

In Case (A), we use (4.8) and the fact that 1 ≤ 2i−l1κ
λ4σ0

σ to obtain

Ex(σ) ≤ Eyl1

(
2i−l1κ

λ2 σ

)(
2i−l1κ

λ4σ0

)n−2+2β

σn−2+2β ≤ K2σn−2+2β .

If (B) is true, then we proceed to Step 2.
Step 2. Since we are assuming R(yl1) < 2i−l1κ

λ4 σ, there exists l2 ∈ {k + 1, . . . ,
l1 − 1} so that

R(ym) <
2i−mκ

λ4 σ, ∀m = l2 + 1, . . . , l1.

Thus, we can apply Corollary 4.1 to obtain

|ym − ym−1| < κR(ym) <
2i−mκ2

λ4 σ, ∀m = l2 + 1, . . . , l1.

Hence

Byl1

(
2i−l1κ2

λ4 σ

)
⊂ · · · ⊂ Byl2

(
2i−l2κ2

λ4 σ

)
.

Combined with (4.8), this implies

Ex(σ) ≤ Eyl2

(
2i−l2κ2

λ4 σ

)
.

We now continue. In the similar way as in Step 1, we prove Ex(σ) ≤ K2

σn−2+2β or we continue to Step 3 where we assume R(yl2) < 2i−l2κ2

λ4 σ. At
Step S of this procedure, we produce an integer lS ∈ {k, . . . , i} and this
procedure terminates after a finite number of steps since lS > lS+1. Finally,
observe that in order to prove our assertion, we must show that if N is the
number of steps taken and if ylN = yk then the case corresponding to (B)
(i.e., the case that R(ylN ) < 2i−lN κN

λ4 σ ) does not occur. This is true because
R(ylN ) = R(yk) = ∞ and this completes the proof. !
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The following is a version of the Campanato Lemma (cf.[16, Lemma 1]).

Lemma 4.1. Let B be a dimension-n, codimension-(n − k) local model,
g a Lipschitz Riemannian metric defined on B(r), (Y, d) an NPC space
and f : (B(r), g) → Y an L2-map. Fix " ∈ (0, 1). If there exist K > 0, R ∈
(0, (1 − ")r) and β ∈ (0, 1] such that

(4.9) inf
Q∈Y

σ−n
∫

Bx(σ)
d2(f, Q) dµg ≤ K2σ2β,∀x ∈ B("r) and σ ∈ (0, R),

then (there exists a representative in the L2-equivalence class of f which we
still denote by f) such that

d(f(x), f(y)) ≤ C|x − y|β, ∀x, y ∈ B("r)

with C depending on K, r, R, β, " and B(r).

Proof. We will use C to denote a generic constant that depends only on K,
r, R, β, " and B. For x ∈ B("r) and σ ∈ (0, R), let Qx,σ ∈ Y be such that

1
Vol(Bx(σ))

∫

Bx(σ)
d2(f, Qx,σ) dµg = inf

Q∈Y

1
Vol(Bx(σ))

∫

Bx(σ)
d2(f, Q) dµg.

For the existence of Qx,σ, see Lemma 2.5.1 of [11]. Furthermore,

(σ
2

)−n
∫

Bx(σ/2)
d2(f, Qx,σ/2) dµg ≤

(σ
2

)−n
∫

Bx(σ/2)
d2(f, Qx,σ) dµg

≤
(σ

2

)−n
∫

Bx(σ)
d2(f, Qx,σ) dµg

≤ 2nCσ2β.

Thus,
(σ

2

)−n
∫

Bx(σ/2)
d2(Qx,σ, Qx,σ/2) dµg

≤
(σ

2

)−n
∫

Bx(σ/2)
2d2(f, Qx,σ) + 2d2(f, Qx,σ/2) dµg

≤ 2n+2Cσ2β

which implies
d(Qx,σ, Qx,σ/2) ≤ Cσβ.
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Apply the above inequality with σ = R/2k and sum to obtain

d(Qx,R/2ν , Qx,R/2ν′ ) ≤
ν′−1∑

k=ν

d(Qx,R/2k , Qx,R/2k+1)

≤ C
ν′−1∑

k=ν

(
1
2β

)ν

.(4.10)

The sum on the right-hand side is a partial sum of a geometric series and
hence {Qx,R/2ν }ν=0,1,... is a Cauchy sequence. Since Y is complete, there
exists Qx ∈ Y such that

lim
ν→∞

d(Qx, Qx,R/2ν ) = 0.

Again using (4.10), we obtain

d(Qx,R/2ν , Qx) = lim
ν′→∞

d(Qx,R/2ν , Qx,R/2ν′ )

= lim
ν′→∞

ν′−1∑

k=ν

d(Qx,R/2k , Qx,R/2k+1)

≤ C

(
1
2ν

)β

.

Thus, using d2(f, Qx) ≤ 2d2(f, Qx,σ) + 2d2(Qx,σ, Qx), we obtain

(4.11) σ−n
∫

Bx(σ)
d2(f, Qx) dµg ≤ Cσ2β

for every σ = R
2ν , ν = 0, 1, . . . . On the other hand, for an σ ∈ (0, R], there

is an integer ν ≥ 0 such that R/2ν+1 < σ ≤ R/2ν and we can conclude that
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(4.11) holds for all σ ∈ (0, R]. Let x, y ∈ B("r) with |x − y| < R and let x 1
2

be a point in B(r) such that 2|x − x 1
2
| = 2|y − x 1

2
| = |x − y| =: σ. Using the

fact that Bx 1
2
(σ2 ) ⊂ Bx(σ) ∩ By(σ), we obtain

d2(Qx, Qy)

≤ 1
Vol(Bx 1

2
(σ2 ))

∫

Bx 1
2
( σ

2 )
d2(Qx, Qy) dµg

≤ Cσ−n
∫

Bx 1
2
( σ

2 )
2d2(f, Qx) + 2d2(f, Qy) dµg

≤ C

(
σ−n

∫

Bx(σ)
d2(f, Qx) dµg + σ−n

∫

By(σ)
d2(f, Qy) dµg

)

≤ Cσ2β = C|x − y|2β.

For a pair of points x, y ∈ B("r), we can choose a sequence z0 = x, . . . , zk = y
such that |zi − zi+1| ≤ R and k ≤ 2"r/R. Applying the above inequality to
pairs zi, zi+1 and summing, we obtain

d2(Qx, Qy) ≤ 2"r
R

C|x − y|2β, ∀x, y ∈ B("r).

Finally, we will show that f(x) = Qx for a.e. x ∈ B("r). This of course
will complete the proof of the lemma. It suffices to show that f(x) = Qx

for a.e. x contained in an interior of a wedge. In fact, by using compact
exhaustion, it suffices to show f(x) = Qx for x ∈ Ω where Ω is an Euclidean
domain contained in the interior of every wedge of B("r). We first
prove:

Claim. If

Eε =

{
x ∈ Ω : lim sup

σ→0

1
Vol(Bx(σ))

∫

Bx(σ)
d2(f, f(x)) dµg > 4ε

}

then

µg(Eε) = 0.
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To prove this claim, we let g : Ω → Y be a Lipschitz map which approx-
imates f in L2 (cf. Section 1.5 of [12]). Then

1
Vol(Bx(σ))

∫

Bx(σ)
d2(f, f(x)) dµg

≤ 2
Vol(Bx(σ))

∫

Bx(σ)
d2(f, g) dµg +

2
Vol(Bx(σ))

∫

Bx(σ)
d2(g, g(x)) dµg

+
2

Vol(Bx(σ))

∫

Bx(σ)
d2(g(x), f(x)) dµg

≤ 2
Vol(Bx(σ))

∫

Bx(σ)
d2(f, g) dµg +

2
Vol(Bx(σ))

∫

Bx(σ)
d2(g, g(x)) dµg

+ 2d2(g(x), f(x)).

Since g is continuous, the second term on the right-hand side approaches 0
as σ → 0. Thus,

lim sup
σ→0

1
Vol(Bx(σ))

∫

Bx(σ)
d2(f, f(x)) dµg ≤ 2HL(x) + 2d2(g(x), f(x)),

where
HL(x) := sup

r>0

1
Vol(Bx(r))

∫

Bx(r)
d2(f, g) dµg.

If
lim sup
σ→0

1
Vol(Bx(σ))

∫

Bx(σ)
d2(f, f(x)) dµg > 4ε,

then either
HL(x) > ε or d2(g(x), f(x)) > ε.

By the Hardy–Littlewood maximal theorem there exists a constant c > 0
such that

µg

(
{x ∈ Ω : HL(x) > ε}

)
≤ c

ε

∫

Ω
d2(f, g)dµg

and the Markov inequality says

µg

(
{x ∈ Ω : d2(f, g) > ε}

)
≤ 1

ε

∫

Ω
d2(f, g)dµg.

Hence
µg(Eε) <

c + 1
ε

∫

Ω
d2(f, g) dµg.

Since g can be chosen such that the integral on the right-hand side is arbi-
trarily small, we have proved the claim.
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It follows that

lim
σ→0

1
Vol(Bx(σ))

∫

Bx(σ)
d2(f, f(x)) dµg = 0 for a.e. x ∈ Ω.

Furthermore,

d(f(x), Qx)

=
1

Vol(Bx(σ))

∫

Bx(σ)
d(f(x), Qx) dµg

≤ 2
Vol(Bx(σ))

∫

Bx(σ)
d2(f, f(x)) dµg +

2
Vol(Bx(σ))

∫

Bx(σ)
d2(f, Qx) dµg

≤ 2
Vol(Bx(σ))

∫

Bx(σ)
d2(f, f(x)) dµg +

4
Vol(Bx(σ))

∫

Bx(σ)
d2(f, Qx,σ) dµg

+
4

Vol(Bx(σ))

∫

Bx(σ)
d2(Qx, Qx,σ) dµg

≤ 6
Vol(Bx(σ))

∫

Bx(σ)
d2(f, f(x)) dµg + 4d2(Qx, Qx,σ).

Hence,

d(f(x), Qx)

≤ 6 lim
ν→∞

1
Vol(Bx(R/2ν))

∫

Bx(R/2ν)
d2(f, f(x)) dµg

+ 4 lim
ν→∞

d2(Qx, Qx,R/2ν )

= 0 for a.e. x ∈ Ω.

This completes the proof. !

By combining the previous lemma with the Poincare Lemma 2.1, we
obtain

Proposition 4.4. Let B be a dimension-n, codimension-(n − k) local
model, g a Lipschitz Riemannian metric defined on B(r), (Y, d) an NPC
space and f : (B(r), g) → Y a finite energy map. Fix " ∈ (0, 1). Suppose that
there exists R > 0 so that for every x ∈ B("r), σ < R,

(4.12) Ex(σ) ≤ K2σn−2+2β .
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Then
d(f(x), f(y)) ≤ C|x − y|β,∀x, y ∈ B("r)

with C depending on K, R, ", B(r) and the ellipticity constant of g.

Theorem 4.1. Let B be a local model, g a Lipschitz Riemannian metric
defined on B(r), (Y, d) an NPC space, f : (B(r), g) → Y a harmonic map
and αx the order of f at x. If αx ≥ α > 0 for all x ∈ B("r) where " ∈ (0, 1),
then there exists C depending only on the Lipchitz bound and ellipticity con-
stant of g, Ef , B(r) and " such that

d(f(x), f(y)) ≤ C|x − y|α, ∀x, y ∈ B("r).

Proof. The result follows immediately from inequality (3.43) of Proposi-
tions 3.1, 4.3 and 4.4. !

Theorem 4.2. Let B be a local model, g a Lipschitz Riemannian metric
defined on B(r), (Y, d) an NPC space and f : (B(r), g) → Y a harmonic
map. For " ∈ (0, 1), there exist C and γ > 0 depending only on the Lipchitz
bound and ellipticity constant of g, Ef , B(r) and " such that

d(f(x), f(y)) ≤ C|x − y|γ , ∀x, y ∈ B("r).

Proof. The result follows immediately from inequality (3.44) of Proposi-
tions 3.1, 4.3 and 4.4. !

By using Proposition 2.1 we obtain the following:

Theorem 4.3. Let B(r) be a ball or radius r around a point in an admis-
sible complex X endowed with a Lipschitz Riemannian metric g and (Y, d)
an NPC space. If f : (B(r), g) → Y is a harmonic map and " ∈ (0, 1), then
there exist C and γ > 0 so that

d(f(x), f(y)) ≤ C|x − y|γ , ∀x, y ∈ B("r).

Here, C and γ only depend the total energy Ef of the map f , (B(r), g) and ".

5. Convergence in the pull back sense

Given a metric space (Y, d) and a map u : B(r) → (Y, d), we recall the fol-
lowing construction of [12]. First, we let Ω0 = B(r), u0 = u and d0 : Ω0 ×
Ω0 → R+ ∪ {0} be the pseudodistance function d0(x, y) = d(u0(x), u0(y)).
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Next, we inductively define Ωi+1 = Ωi × Ωi × [0, 1] and identify Ωi as a sub-
set of Ωi+1 by the inclusion map x 0→ (x, x, 0). Extend ui : Ω → (Y, d) to
ui+1 : Ω → (Y, d) by

ui+1(x, y, λ) = (1 − λ)ui(x) + λui(y)

and let

di+1(x, y) = d(ui+1(x), ui+1(y)).

Thus,

di+1((x, x, 0), (y, y, 0)) = di(x, y),

di+1((x, y, λ), (x, y, µ)) = |λ− µ|di(x, y)

and

di+1(z, (x, y, λ)) ≤ (1 − λ)di+1(z, (x, x, 0))
+λdi+1(z, (y, y, 0)) − λ(1 − λ)di+1((x, x, 0), (y, y, 0)).(5.1)

Let Ω∞ = ∪Ωi and define u∞ : Ω∞ → (Y, d) by setting u∞ = ui on Ωi. With
d∞(x, y) := d(u∞(x), u∞(y)), define (Y∞, d∞) as the completion of the quo-
tient space from (Ω∞, d∞) and let π : Ω∞ → Y∞ be the natural projection
map. Equation (5.1) implies that the metric space (Y∞, d∞) is an NPC
space. The unique extension of u∞ to Y∞ is an isometry U : (Y∞, d∞) →
C(u(B(r))) ⊂ Y to the closed convex hull of the image of u. Furthermore, if
ι : B(r) = Ω0 → Ω∞ is the inclusion map, then u = U ◦ π ◦ ι, (cf.[12]).

Definition 5.1. Let vk : B(r) → (Yk, dk) be a sequence of maps to NPC
spaces. We say vk converges to v∗ in the pullback sense if there exists a pseu-
dodistance function d∗ : Ω∞ × Ω∞ → R+ ∪ {0} with the following property.
Let (Y∗, d∗) be the completed quotient space from (Ω∞, d∗) and π : Ω∞ → Y∗
the natural projection map. Furthermore, let vk = u in the above paragraph
and let dk,∞ : Ω∞ × Ω∞ → R+ ∪ {0} the corresponding pullback distance
function of vk,∞ replacing u∞ above. Then dk,∞ converges pointwise to d∗
and v∗ = π ◦ ι.

Remark 5.1. If we let v∗ = u with u as in the paragraph preceeding the
definition above and d∗,i (d∗,∞ resp.) the corresponding pullback distance
function of v∗,i = ui (v∗,∞ = u∞ resp.), then d∗ = d∗,∞.
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Definition 5.2. Suppose vk converge to v∗ in the pullback sense. Let dk,i

(resp. d∗,i) be the corresponding pullback distance function to vk,i : Ωi →
(Yk, dk) (resp. v∗,i : Ωi → (Y∗, d∗)). We say that the convergence is locally
uniform if the convergence of dk,i to the limit d∗,i is uniform on each compact
subset of Ωi × Ωi. In this case, we also say that v∗ is a locally uniform limit
of vk.

Proposition 5.1. Let vk : B(r) → (Yk, dk) be a sequence of maps to NPC
spaces for which there is uniform modulus of continuity control, i.e., assume
for each x ∈ B(r) and R > 0 there is a positive function ω(x, R) which is
monotone in R, satisfying

lim
R→0

ω(x, R) = 0,

and so that for each k ∈ Z

max
y∈B(x,R)

d(vk(x), vk(y)) ≤ ω(x, R).

Then there is an NPC space (Y∗, d∗) and a subsequence vk′ of the vk which
converges locally uniformly in the pullback sense to a limit map v∗ : B(r) →
(Y∗, d∗), and v∗ satisfies the same modulus of continuity estimates. Here,
(Y∗, d∗) is the completed quotient of (Ω∞, d∗,∞) where d∗,∞ = limk′→∞ dk′,∞.

Proof. The proposition follows from the argument of the proof of Lemma
3.1 and Proposition 3.7 in [12] since the fact that B(r) is not a Riemannian
domain plays no consequence in the argument. !

6. The tangent map

Let B be a dimension-n, codimension-ν local model and g a normalized (i.e.,
gij(0) = δij) Lipschitz metric on B(1). Given r ∈ (0, 1), f : B(r) → (Y, d)
and λ > 0, define the λ-blow up map fλ : B( r

λ) → (Y, dλ) by setting

gλ(x) = g(λx),

µλ = (λ1−nI(λ))1/2,

dλ(p, q) = µ−1
λ d(p, q),

fλ(x) = f(λx),

Definition 6.1. If there exist λk → 0 and an NPC space (Y∗, d∗) so that
fλk

converges locally uniformly in the pullback sense to f∗ : B → (Y∗, d∗),
then f∗ is called a tangent map of f .



Harmonic maps between singular spaces I 311

Lemma 6.1. A harmonic map f : (B, g) → (Y, d) has a non-constant tan-
gent map f∗ which satisfies

d(f∗(x), f∗(y)) ≤ C ′|x − y|γ ,

where C ′ and γ are only depending on the Lipschitz bound of g and Ef .

Proof. By change of variables
∫

B(σ)
|∇fλ|2gλ

dµgλ = µ−2
λ λ2−n

∫

B(λσ)
|∇f |2gdµg

and
∫

∂B(σ)
d2
λ(fλ, fλ(0))dΣgλ = µ−2

λ λ1−n
∫

∂B(λσ)
d2(f, f(0))dΣg.

Thus, the definition of µλ implies
∫

∂B(1)
d2
λ(fλ, fλ(0))dΣgλ = 1

and Corollary 3.2 implies

lim
λ→0

∫
B(1) |∇fλ|2gλ

dµgλ∫
∂B(1) d2

λ(fλ, fλ(0))dΣgλ

= lim
λ→0

λE(λ)
I(λ)

= α.

Consequently, by choosing λ sufficiently small, we have

(6.1)
∫

B(1)
|∇fλ|2dµgλ ≤ 2α.

Since gij is Lipschitz, we have

(6.2) |gij(x) − δij | ≤ c|x| and |gij(x) − δij | ≤ c|x|.

Hence,

(6.3) |(gλ)ij(x) − δij | ≤ cλ|x| and |(gλ)ij − δij | ≤ cλ|x|.

Therefore, there exists a uniform Lipschitz bound of the family of metrics
{gλ} independent of λ. This implies

dλ(fλ(x), fλ(y)) ≤ C|x − y|γ ∀x, y ∈ B(r),
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where C and γ are independent of λ by Theorem 4.2. Thus, we have uni-
form modulus of continuity control for the sequence fλ, then by Propo-
sition 5.1, there exists a sequence λk → 0 and an NPC space (Y∗, d∗) so
that fλk

converges locally uniformly in the pullback sense to a limit map
f∗ : B(1) → (Y∗, d∗). The fact that f∗ is non-constant follows immediately
from the proof of Proposition 3.3 of [9]. !

Lemma 6.2. Let g be a normalized metric on B(r), f : (B(r), g) → (Y, d)
a harmonic map and fλ : B( r

λ) → (Y, dλ) be the λ-blow up map. Let hλ :
B(1) → (Y, dλ) be a map which is harmonic with respect to the Euclidean
domain metric and with the boundary condition hλ|∂B(1) = fλ|∂B(1). Then

(6.4) (1 − cλ) δEfλ ≤ gλEfλ ≤ (1 + cλ) δEfλ

and

(6.5) (1 − cλ) δEhλ ≤ gλEhλ ≤ (1 + cλ) δEhλ .

Proof. By inequality (6.3), we have

(1 − cλ)
n∑

i,j=1

δij ∂fλ
∂xi

· ∂fλ
∂xj

≤
n∑

i,j=1

(gλ)ij ∂fλ
∂xi

· ∂fλ
∂xj

(6.6)

≤ (1 + cλ)
n∑

i,j=1

δij ∂fλ
∂xi

· ∂fλ
∂xj

and

(1 − cλ)
n∑

i,j=1

δij ∂hλ

∂xi
· ∂hλ

∂xj
≤

n∑

i,j=1

(gλ)ij ∂hλ

∂xi
· ∂hλ

∂xj
(6.7)

≤ (1 + cλ)
n∑

i,j=1

δij ∂hλ

∂xi
· ∂hλ

∂xj
.

The assertion follows immediately. !
In particular, Lemma 6.2 and (6.1) imply that

(6.8) δEhλ ≤ δEfλ ≤ 1
1 − cλ

gλEfλ ≤ 2α
1 − cλ

.

Thus, Proposition 5.1 and Theorem 4.2 imply that there exists a subsequence
of λk (which we will still denote λk by an abuse of notation) and an NPC
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space (Ȳ∗, d̄∗) so that hλk
converge locally uniformly in the pullback sense to

h∗ : B(1) → (Ȳ∗, d̄∗). Set hk := hλk
, fk := fλk

and gk = gλk
. Furthermore, let

dk(x, y) = dλk
(fk(x), fk(y)) and d̄k(x, y) = dλk

(hk(x), hk(y)). Then in any
compactly contained subset of B(1) × B(1), dk, d̄k converge uniformly to
(the restriction to B(1) = Ω0 of) d∗, d̄∗ respectively.

Proposition 6.1. Under the notation above, the pseudodistance functions
d∗ and d̄∗ above are equal. Consequently, f∗ = h∗ and hk (which are har-
monic maps with respect to the Euclidean metric) converge locally uniformly
in the pullback sense to f∗.

Proof. By the repeated use of the triangle inequality,

|dk(x, y) − d̄k(x, y)| ≤ dλk
(fk(x), hk(x)) + dλk

(fk(y), hk(y)).

Therefore, for any r < 1, the Lebesgue dominated convergence theorem and
the Poincaré inequality (cf. Theorem 2.6) imply

∫

B(r)

∫

B(r)
|d∗(x, y) − d̄∗(x, y)|2dµ(x)dµ(y)

= lim
k→0

∫

B(r)

∫

B(r)
|dk(x, y) − d̄k(x, y)|2dµ(x)dµ(y)

≤ 4vol(B(r)) lim
k→0

∫

B(r)
d2
λk

(fk(x), hk(x))dµ(x)

≤ 4C lim
k→0

∫

B(r)
|∇d2

λk
(fk(x), hk(x))|dµ(x).(6.9)

Equations (6.4) and (6.5) imply

δEfλ ≤ 1
1 − cλ

gλEfλ ≤ 1
1 − cλ

gλEhλ ≤ 1 + cλ

1 − cλ
δEhλ .

Therefore, if we let w = 1
2fλ + 1

2hλ,

2 δEw ≤ δEfλ + δEhλ − 1
2

∫

B(r)
|∇d2

λ(fλ, hλ)|dµ

= 2 δEhλ + O(λ) − 1
2

∫

B(r)
|∇d2

λ(fλ, hλ)|dµ
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by Equation (2.2iv) of [11]. Since δEhλ ≤ δEw, this in turn implies
∫

B(r)
|∇d2

λ(fλ, hλ)|dµ → 0

as λ → 0. This, combined with Equation (6.9) the continuity of d∗ and d̄∗,
implies that d∗(x, y) = d̄∗(x, y) which in turn implies that (Y∗, d∗) = (Ȳ∗, d̄∗)
and h∗ = f∗. !

Lemma 6.3. Assuming that the directional energies of hk converge to those
of f∗, the tangent map f∗ : B(1) → Y∗ is homogenous of order α where α is
the order of f at 0, i.e.,

d∗(f∗(x), f∗(0)) = |x|αd∗

(
f∗

(
x

|x|

)
, f∗(0)

)

and the image of t 0→ f∗(tx), 0 ≤ t ≤ 1, is a geodesic.

Proof. For notational simplicity in this proof we will let E = δE and I = δI.
Using (3.6) and (3.11) with f replaced by hk, noting that the remainder in
(3.6) is 0 because the domain is Euclidean, and using the convergence of hk

and its directional energies to f∗ and its directional energies, we have

(
Ef∗(σ)

)′
= 2

∫

∂B(σ)

∣∣∣∣
∂f∗
∂r

∣∣∣∣
2
dΣ

and
2Ef∗(σ) ≤

∫

∂B(σ)
d(f∗, f∗(0))

∂

∂r
d(f∗, f∗(0))dΣ.

We next claim
(

log
(
σEf∗(σ)
If∗(σ)

))′

≥ 2
Ef∗(σ)If∗(σ)

[(∫

B(σ)
d2(f∗, f∗(0))dΣ

)(∫

B(σ)

∣∣∣∣
∂f∗
∂r

∣∣∣∣
2
dΣ

)

−
∫

∂B(σ)

(
d(f∗, f∗(0))

∂

∂r
d(f∗, f∗(0))dΣ

)2
]

≥ 0.(6.10)

This follows from (3.9), (3.14) and (3.19) applied to the harmonic map
hk (without the error term due to the fact that hk is harmonic for the
Euclidean domain metric) and the assumption that the directional energies
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of hk converge to those of f∗. On the other hand, our assumption on the
convergence of directional energies implies that

σEf∗(σ)
If∗(σ)

= lim
k→∞

σEfk
gk (σ)

Ifk
gk (σ)

= lim
k→∞

σµ−2
λk
λ2−n

k
gEf (λkσ)

µ−2
λk
λ1−n

k
gIf (λkσ)

= lim
k→∞

σλk
gEf (λkσ)

gIf (λkσ)
= α.

Thus,

0 =
(

log
(
σEf∗(σ)
If∗(σ)

))′

=
2

Ef∗(σ)If∗(σ)

[(∫

B(σ)
d2(f∗, f∗(0))dΣ

)(∫

B(σ)

∣∣∣∣
∂f∗
∂r

∣∣∣∣
2
dΣ

)

−
∫

∂B(σ)

(
d(f∗, f∗(0))

∂

∂r
d(f∗, f∗(0))dΣ

)2
]

.

Hence,
∂

∂r
d(f∗, f∗(0)) =

∣∣∣∣
∂f∗
∂r

∣∣∣∣ a.e.

and

2
∫

B(σ)
|∇f∗|2dµ =

∫

∂B(σ)

∂

∂r
(d2(f∗, f∗(0)))dΣ.

We can now follow the proof of Proposition 3.1 [9] to show the homogeneity
of f∗. !

Lemma 6.4. Let f∗ : B(1) → (Y∗, d∗) be a homogeneous map of order α.
(See definition of homogeneity in Lemma 6.3.) Then there exist a metric
space (C, d̂) and a map f̂∗ : B(1) → C so that the energy density of f∗ is
equal to that of f̂∗ and for every x, y ∈ B(r) and x′ = tx, y′ = ty, we have

(6.11) d̂(f̂∗(x′), f̂∗(y′)) = tαd̂(f̂∗(x), f̂∗(y)).

Proof. Let C be the disjoint union of geodesics from f∗(0) to f∗(x) for each
x ∈ ∂B(1) with f∗(0) identified. We define a distance function d̂ on C in
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the following way. Let P, Q ∈ C and suppose that P (resp. Q) is the point
on the geodesic γ (resp. σ) from f∗(0) to f∗(x) (resp. f∗(y)) at a distance r
(resp. s) from f∗(0), where x, y ∈ ∂B(1). We first define the angle θ between
γ and σ by

cos θ =
d2

∗(f∗(0), f∗(x)) + d2
∗(f∗(0), f∗(y)) − d2

∗(f∗(x), f∗(y))
2d∗(f∗(0), f∗(x))d∗(f∗(0), f∗(y))

and set
d̂2(P, Q) = r2 + s2 − 2rs cos θ,

f̂∗(x) = f∗(x).

By definition of d̂, we see that (6.11) holds. Therefore,

d̂(f̂∗(x), f̂∗(y)) = d∗(f∗(x), f∗(y))

whenever x, y lie on the same geodesic from 0 or whenever x, y ∈ ∂B(1).
Therefore, for any x ∈ ∂B(r) and any vector V normal to ∂B(r),

|f∗(V )|2(x) = |f̂∗(V )|2(x).

Furthermore, the same holds for any x ∈ ∂B(1) and V tangential to ∂B(1).
For a.e. x = (r, θ) ∈ B(r) and a vector V tangential to ∂B(r),[11, Lemma
1.9.4] implies that

|f̂∗(V )|2(r, θ) = lim
ε→0

d̂2(f̂∗(r, θ), f̂∗(r, θ + εV ))
ε2

= r2α lim
ε→0

d̂2(f̂∗(1, θ), f̂∗(1, θ + εV ))
ε2

= r2α lim
ε→0

d2
∗(f∗(1, θ), f∗(1, θ + εV ))

ε2

= r2α|f∗(V )|2(1, θ)
= |f∗(V )|2(r, θ),

where (r, θ) is the polar coordinates of x and ε 0→ θ + εV is the flow along
∂B(r) defined by V . !

7. Harmonic maps from a flat domain

Let B be a dimension-n codimension-ν local model with wedges Wk ⊂ Rn,
k = 1, . . . , N . Recall that the coordinates (x1, . . . , xn) of Rn are arranged



Harmonic maps between singular spaces I 317

so that D is given by xn−ν+1 = · · · = xn = 0. In this section, we show that
harmonic maps h : (B(r), δ) → (Y, d) are Lipschitz in the direction parallel
to D(r) = D ∩ B(r).

Lemma 7.1. Let φ : B(1) → R be a non-negative L2 function. Suppose
that for x ∈ B(r), there exists Ĉ > 0 so that

1
σn

∫

Bx(σ)
φdµ ≤ Ĉ

ρn

∫

Bx(ρ)
φdµ, 0 < σ ≤ ρ ≤ min{R(x), 1 − r}.

There exist C > 0 and R ∈ (0, 1 − r) depending only on r and B(r) such
that

1
σn

∫

Bx(σ)
φdµ ≤ C

∫

Bx(R)
φdµ, ∀x ∈ B(r), σ ∈ (0, R].

Proof. The result follows from the same argument contained in the proofs
of Corollary 4.2 and Proposition 4.3 (with φ replacing |∇f |2, λ = 1 and
β = 1). !

Lemma 7.2. Let h : (B(1), δ) → (Y, d) be a harmonic map. Let V be a unit
vector parallel to D(r) and let H(x) = h(x + εV ) for 0 < ε << 1. Then

(7.1) 0 ≤ −
∫

B(1)
∇η · ∇d2(h, H)dµ

for η ∈ C∞
c (B(1 − ε)).

Proof. Define a map hη : B(1 − ε) → R by setting

hη(x) = (1 − η(x))h(x) + η(x)H(x).

Here, (1 − t)P + tQ for P, Q ∈ Y denotes the point on the unique geodesic
between P and Q at a distance td(P, Q) from P and (1 − t)d(P, Q) from Q.
Since spt(η) ⊂ B(1 − ε), we see that

hη|∂B(1−ε) = h|∂B(1−ε)

and

h1−η|∂B(1−ε) = H|∂B(1−ε).
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By following the proofs of Lemmas 2.4.1 and 2.4.2 of [11], we see that
hη, h1−η ∈ W 1,2(B(r)), and on each wedge Wk, k = 1, . . . , N , we have

∫

B(1−ε)∩Wk

|∇hη|2dµ +
∫

B(1−ε)∩Wk

|∇h1−η|2dµ

≤
∫

B(1−ε)∩Wk

|∇h|2dµ +
∫

B(1−ε)∩Wk

|∇H|2dµ

− 2
∫

B(1−ε)∩Wk

∇η · ∇d2(h, H)dµ +
∫

B(1−ε)∩Wk

Q(η,∇η)dµ,

where Q(η,∇η) consists of integrable terms which are quadratic in η and
∇η. Taking the sum over k = 1, . . . , l and noting that the harmonicity of h
and H implies ∫

B(1−ε)
|∇h|2dµ ≤

∫

B(1−ε)
|∇hη|2dµ

and ∫

B(1−ε)
|∇H|2dµ ≤

∫

B(1−ε)
|∇h1−η|2dµ,

we deduce

0 ≤ −2
∫

B(1−ε)
∇η · ∇d2(h, H)dµ +

∫

B(1−ε)
Q(η,∇η)dµ.

By replacing η by tη, dividing by t and letting t → 0, we obtain (7.1). !

Lemma 7.3. Let h : (B(1), δ) → (Y, d) be a harmonic map and let V be
a unit vector parallel to D(1). For r ∈ (0, 1) and x ∈ B(r), there exists a
constant C depending only on r and B(r) so that

|h∗(V )|2(x) ≤ C δEh.

Proof. Let H be as in the proof of Lemma 7.2. For x ∈ B(1) and σ ∈
(0, R(x)), let η approximate the characteristic function of Bx(σ) in (7.1)
to obtain ∫

∂Bx(σ)

∂

∂r
d2(h, H)dΣ ≥ 0.

Let

Jx(σ) =
∫

∂Bx(σ)
d2(h, H) dΣ and Kx(σ) =

∫

Bx(σ)
d2(h, H) dµ.
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Then

J ′
x(σ) =

∫

∂Bx(σ)

∂

∂r
d2(h, H)dΣ+

n − 1
σ

Jx(σ) ≥ n − 1
σ

Jx(σ), ∀σ ∈ (0, R(x)).

This implies that
(

Jx(σ)
σn−1

)′
≥ 0,

and hence

Jx(τ) ≤ Jx(σ)
σn−1 τ

n−1, 0 < τ ≤ σ ≤ R(x).

Now integrate the above inequality from τ = 0 to σ to obtain

Kx(σ) ≤ σJx(σ)
n

=
σK ′

x(σ)
n

.

Thus,

(
Kx(σ)
σn

)′
=

1
σn

(
K ′

x(σ) − nKx(σ)
σ

)
≥ 0.

This implies σ 0→ Kx(σ)
σn is non-decreasing for σ ∈ (0, R(x)) and hence

Kx(σ)
σn

≤ Kx(ρ)
ρn

, 0 < σ ≤ ρ ≤ R(x).

By Lemma 7.1, there exists C > 0 and R > 0 such that

Kx(σ)
σn

≤ CKx(R), ∀x ∈ B(r).

Fix x ∈ B(r) and let σ → 0 to obtain

d2(h(x), H(x)) ≤ C

∫

Bx(R)
d2(h, H) dµ.

Divide by ε2 and let ε → 0 to obtain

|h∗(V )|2(x) ≤ C

∫

Bx(R)
|h∗(V )|2dµ ≤ C δEh.

!
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Lemma 7.4. Let h : (B(1), δ) → (Y, d) be a harmonic map and r ∈ (0, 1).
If x, y are a pair of points in a wedge of B(r) equidistant to D(r), then

d(h(x), h(y)) ≤ L|x − y|

for some constant L depending only on δEh, r and B(1).

Proof. Let γ : [0, 1] → (Y, d) be a constant speed parameterization of the line
between x and y. Then by Lemma 7.3,

d(h(x), h(y)) ≤
∫ 1

0
|h∗(γ′(t))|dt ≤

√
C ′ δEh|x − y|.

!

8. Lipschitz regularity

8.1. At a regular point

In this subsection, we use the results of Section 7 to give a new proof of the
Lipschitz regularity of Korevaar–Schoen [11] and generalize their result for
Lipschitz domain metrics. Recall that a dimension-n, codimension-0 local
model is B = Rn.

Lemma 8.1. Let B be a dimension-n, codimension-0 local model, g a
normalized Lipschitz metric defined on B(r), (Y, d) an NPC space and f :
(B(r), g) → (Y, d) a harmonic map. Then the order α of f at 0 is ≥ 1.

Proof. By Proposition 6.1, a tangent map f∗ of f is a locally uniform limit
of a sequence of harmonic maps hk from a Euclidean unit ball B(1). The
regularity result of [9] implies that hk is locally Lipschitz with the local
Lipschitz bound depending on δEhk and the distance to ∂B(1). Hence, so is
f∗. By Korevaar and Schoen [12, Theorem 3.11], the energy densities of hk

converge to those of f∗. By Lemma 6.3, f∗ is a homogeneous map of order
α. The homogeneity and the Lipschitz continuity of f∗ implies α ≥ 1. !

Theorem 8.1. Let B be a dimension-n, codimension-0 local model, g a Lip-
schitz Riemannian metric on B(r), (Y, d) an NPC space and f : (B(r), g) →
(Y, d) a harmonic map. Then f is Lipschitz continuous in B("r) with the
Lipschitz constant depending on " ∈ (0, 1), (B(r), g) and the total energy Ef

of f .
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Proof. For each x ∈ B(1), the normalized map f ◦ Lx (cf. Proposition 2.1)
has order ≥ 1 at 0 by Lemma 8.1. Thus, the order of f at x is ≥ 1. The
result now follows from Theorem 4.1. !

8.2. At a codimension-1 singular point

Throughout this subsection B is a dimension-n, codimension-1 local model
with wedges half spaces given by xn ≥ 0 and lower dimensional stratum D a
hyperplane given by the equation xn = 0. We first prove some properties of
harmonic maps from this local model equipped with the Euclidean metric δ.

Lemma 8.2. Let h : (B(1), δ) → (Y, d) be a harmonic map. For every β, r ∈
(0, 1), there exists B depending only on β, r, B(1) and δEh so that

d(h(x), h(y)) ≤ B|x − y|β

for every x, y ∈ B(r).

Proof. By Lemma 7.4, h is Lipschitz when restricted to D(t0), t0 = r+1
2 .

Thus Hölder regularity of h restricted to a wedge W with any Hölder expo-
nent β ∈ (0, 1) follows from the boundary regularity result of Serbinowski
[15] where the Hölder constant B is only depending on the choice of β, r
and the total energy of the map h. !

The next lemma gives an estimate of the energy decay of harmonic maps
along an ε-neighborhood.

Lemma 8.3. Let hk be defined as in Section 6 (see the paragraph preceeding
Proposition 6.1) and fix R ∈ (0, 1). Set Dε(r) to be the ε-neighborhood of
D(r) in B(r), i.e.,

Dε(r) = ∪{x = (x1, . . . , xn) ∈ W : xn ≤ ε} ∩ B(r),

where the union is over the wedges W containing D. Then for any r ∈ (0, R),
there exist constants C, κ > 0, k0 sufficiently large and ε0 > 0 sufficiently
small (depending only on R) so that

δEhk [Dε(r)] ≤ Cεκ, ∀k > k0, ε < ε0
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Proof. Let Bx(r) be a ball of radius r centered at x. We will use the notation,

Eh
x(r) = δEh

x(r) =
∫

Bx(r)
|∇h|2dµ

and

Ih
x (r) = δIh

x (r) =
∫

∂Bx(r)
d2(h, h(x))dΣ

for any map h : B(r) → (Y, d). Let r0 := 1 − R. By Lemma 6.1, f∗ is a non-
constant, continuous map and hence there exists c1 > 0 so that

If∗
x (r0) ≥ 2c1, ∀x ∈ D(R).

Thus, by the local uniform convergence, there exists k0 so that

Ihk
x (r0) ≥ c1, ∀x ∈ D(R), k > k0.

We may assume we have chosen k sufficiently large so that λk0 ∈ (0, 1
Nc). By

(6.8),

Ehk
x (r0) ≤ Ehk(1) ≤ Efk(1) ≤ 2α

1 − cλk0

, ∀x ∈ D(R), k > k0.

Thus,

r0Ehk
x (r0)

Ihk
x (r0)

≤ 2r0α

(1 − cλk0)c1
=: c2, ∀x ∈ D(R), k > k0.

By Corollary 3.2,

εEhk
x (ε)

Ihk
x (ε)

≤ c3, ∀x ∈ D(R), k > k0, ε ≤ r0

with c3 depending on c2. By Lemma 8.2,

Ehk
x (ε) ≤ c3Ihk

x (ε)
ε

≤ c3B2ε2β+n−1

ε
= c3B

2ε2β+n−2, ∀x ∈ D(R), k > k0.

Here, we have choosen β ∈ (1/2, 1). Since Dε(r) can be covered by(
c4
ε

)n−1 number of (2ε)-balls centered at points in D(r) where c4 is
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independent of ε,

Ehk [Dε(r)] ≤ c3B
2(2ε)2β+n−2 ×

(c4

ε

)n−1

=: c5ε
2β−1.

The result follows from the fact that the choice of β implies 2β − 1 > 0. !

Lemma 8.4. Let hk, fk and h∗ = f∗ be defined as in Section 6. For r ∈
(0, 1),

(8.1) lim
k→0

δEhk(r) = δEh∗(r)

and

(8.2) lim
k→∞

gkEfk(r) = δEf∗(r),

and the directional energies of fk, and hk converge to that of f∗.

Proof. Again in this proof we will denote δE = E. By the regularity result of
harmonic maps from smooth domains [11, Theorem 2.4.6] or Theorem 8.1,
hk is uniformly Lipschitz in B(1+r

2 ) − D ε
2
(1+r

2 ) for r ∈ (0, 1). First, we note
that

lim
k→∞

Ehk [B(r) − Dε(r)] = Ef∗ [B(r) − Dε(r)].

This follows from [11, Theorem 3.11]. By Lemma 8.3,

Ehk [Dε(r)] ≤ Cεκ

for any ε sufficiently small. Thus,

lim sup
k→∞

Ehk(r) − Cεκ ≤ lim sup
k→∞

Eh∗ [B(r) − Dε(r)]

= Ef∗ [B(r) − Dε(r)]
≤ Ef∗(r).

By lower semicontinuity of energy,

Ef∗(r) ≤ lim inf
k→∞

Ehk(r) ≤ lim sup
k→∞

Ehk(r) ≤ Ef∗(r) + Cεκ.
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Since ε > 0 can be made arbitrarily small, this proves (8.1). To prove (8.2),
we see that

Ef∗(r) ≤ lim inf
k→∞

(1 − cλk) Efk(r)

≤ lim inf
k→∞

gkEfk(r)

≤ lim inf
k→∞

gkEhk(r)

≤ lim sup
k→∞

(1 + cλk) Ehk(r)

= Eh∗(r)
= Ef∗(r).

Here, the last line follows from the fact that f∗ = h∗ by Proposition 6.1.
Since there is no loss of total energy, we see that the directional energies
converge by using the lower semicontinuity. !

Lemma 8.5. Let g be a normalized Lipschitz metric on B(r) and f :
(B(r), g) → (Y, d) a harmonic map. Then its tangent map f∗ : B(1) → Y∗
is homogeneous of order α where α is the order of f at 0.

Proof. Follows immediately from Lemmas 6.3 and 8.4. !

Lemma 8.6. Let g be a normalized Lipschitz metric on B(r), f : (B(r), g)
→ (Y, d) a harmonic map and f∗ : B(1) → Y∗ its tangent map. For every
β, r′ ∈ (0, 1), there exists B so that

d∗(f∗(x), f∗(y)) ≤ B|x − y|β

for all x, y ∈ B(r′) and B is only depending on the choice of β, r′, B(1) and
the total energy of f∗.

Proof. First, note that hk converges to f∗ uniformly by Proposition 6.1.
Next, note that the energy of hk converges to that of f∗ by Lemma 8.4.
Thus, the result follows from Lemma 8.2. !

Lemma 8.7. Let g be a normalized Lipschitz Riemannian metric on B(r)
and f : (B(r), g) → (Y, d) a harmonic map. Then the order α of f at 0 is
≥ 1.
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Proof. Since f∗ is homogeneous of degree α,

d∗(f∗(tx), f∗(0)) = |tx|αd∗

(
f∗

(
x

|x|

)
, f∗(0)

)
.

On the other hand, for any β ∈ (0, 1) and t small, there exists a constant B
so that

d∗(f∗(tx), f∗(0)) ≤ B|tx|β

by Lemma 8.6. Thus,

d∗

(
f∗

(
x

|x|

)
, f∗(0)

)
≤ B|tx|β−α.

If α < 1, choose β so that β > α and take the limit as t → 0 to obtain

d∗

(
f∗

(
x

|x|

)
, f∗(0)

)
= 0.

Since the choice of x ∈ B(1) is arbitrary, this contradicts the fact that f∗ is
non-constant (cf. Lemma 6.1). !

Using the fact that the order at a point on D is ≥ 1, we can prove
Lipschitz continuity in B(1).

Theorem 8.2. Let B be a dimension-n, codimension-1 local model, g a Lip-
schitz Riemannian metric on B(r), (Y, d) an NPC space and f : (B(r), g) →
(Y, d) a harmonic map. Then f is Lipschitz in B("r) with Lipschitz constant
depending on " ∈ (0, 1), (B(r), g) and the total energy Ef of f .

Proof. For each x ∈ B(1), the normalized map f ◦ Lx (cf. Proposition 2.1)
has order ≥ 1 at 0 by Lemma 8.7. Thus, the order αx of f at x is ≥ 1. The
result now follows from Theorem 4.1. !

8.3. At a higher codimension singular point

Now we consider a dimension-n, codimension-ν local model where ν ≥ 2.
Generally, we do not expect a harmonic map from this space to be Lipschitz
continuous. On the other hand, we show that Lipschitz continuity can be
proved with an additional assumption.

First, we establish some properties of the tangent map. Lemmas 8.8 to
8.10 below are the analogs of Lemmas 8.3, 8.4 and 7.4 corresponding to the
codimension-ν case for ν ≥ 2.
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Lemma 8.8. Let B be a dimension-n, codimension-ν local model with ν ≥
2, g a normalized Lipschitz metric defined on B(r) and f : (B(r), g) → (Y, d)
a harmonic map. Suppose hk : (B(1), δ) → (Y, d), fk : (B, g) → (Y, d), h∗ =
f∗ : B(1) → (Y, d) defined as in Section 6. Let Dε be the ε-neighborhood of
D and Dε(r) = B(r) ∩ Dε. Fix R ∈ (0, 1). For any r ∈ (0, R), there exist C
and κ > 0, k0 sufficiently large and ε0 > 0 sufficiently small so that

δEhk [Dε(r)] ≤ Cεκ, ∀k > k0, ε < ε0.

Proof. As in the proof of Lemma 8.3, there exists a constant c3 so that

εEhk
x (ε)

Ihk
x (ε)

≤ c3.

Thus, by Theorem 4.2,

Ehk
x (ε) ≤ c3Ihk

x (ε)
ε

≤ c3C2ε2γ+n−1

ε
=: c4ε

2γ+n−2.

We can cover Dε(r) be c5
εn−ν number of (2ε)-balls. Thus,

Ehk [Dε(r)] ≤ c5

εn−ν
c4ε

2γ+n−2 =: c6ε
2γ−2+ν .

The lower semicontinuity of energy implies that

Ef∗ [Dε(r)] ≤ c6ε
2γ−2+ν .

!

Lemma 8.9. Let hk, fk, h∗ = f∗ be as in Lemma 8.8. For r ∈ (0, 1),

lim
k→0

δEhk(r) = δEh∗(r)

and
lim

k→∞
δEfk

gk
(r) = δEf∗(r).

Furthermore, the directional energies of fk, hk converge to that of f∗. The
maps f∗ is a homogeneous map of order α, where α is the order of f at 0.

Proof. Using Lemma 8.8, we can follow the argument of the proof of
Lemma 8.4. !
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Lemma 8.10. Let B be a dimension-n, codimension-ν local model, g a nor-
malized Lipschitz metric defined on B(r), (Y, d) an NPC space, f : (B(r), g)
→ (Y, d) a harmonic map and f∗ : B(1) → Y∗ its tangent map. Then for x, y
on the same wedge at a distance ρ away from D(1), we have

d(f∗(x), f∗(y)) ≤ L|x − y|,

where L is depending only on r, B(1) and δEh.

Proof. If x, y ∈ B(1/2) are two points on the same wedge at a distance ρ
away from D(1), then Lemma 7.4 implies

d(hk(x), hk(y)) ≤ L|x − y|,

where c is depending on r and δEhk . Thus, the result follows from the
uniform convergence of hk to f∗ and the convergence of the energy of hk to
that of f∗. !

Lemma 8.11. Let B be a dimension-n, codimension-ν local model, g a nor-
malized Lipschitz metric defined on B(r) and f : (B(r), g) → (Y, d) a har-
monic map. Then its tangent map f∗ : B(1) → Y∗ is homogeneous of order
α where α is the order of f at 0.

Proof. Follows immediately from Lemmas 6.3 and 8.9. !
Our next goal is to relate the order (and hence the Hölder exponent) of

a harmonic map to the first eigenvalue associated with the domain and the
target space. We start with a general definition of the first eigenvalue. Let G
be a Riemannian complex with volume form ds and T an NPC space. The
center of mass of a map ϕ ∈ L2(G, T ) is a point ϕ̄ ∈ T so that

∫

G
d2

T (ϕ, ϕ̄)ds = inf
P∈Y

∫

G
d2

T (ϕ, P )ds.

The unique existence of such a point is guaranteed by the NPC condition (cf.
[11, Proposition 2.5.4]). Now let G(T ) be the set of Lipschitz maps ϕ : G → T
into an NPC space T and define the first eigenvalue of G with values in T
as

(8.3) λ1(G, T ) = inf
G(T )

∫
G |∇ϕ|2 ds∫

G d2
T (ϕ, ϕ̄)ds

.

In the applications, G will be a spherical complex associated with the domain
of the map and the NPC space T will be a tangent cone of the target NPC
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space Y . The following results appear in [6] in the case when the domain is
of dimension 2.

Lemma 8.12. Suppose f : B(r) → (Y, d) is a bounded map, σ ∈ (0, r) and
Q ∈ Y so that

∫

∂B(σ)
d2(f, Q)dΣ = inf

P∈Y

∫

∂B(σ)
d2(f, P ) dΣ.

If π : Y → TQY is the projection map into the tangent cone of Y at Q, then
∫

∂B(σ)
d2

TQY (π ◦ f, 0)dΣ = inf
V ∈TQY

∫

∂B(σ)
d2

TQY (π ◦ f, V )dΣ,

where 0 is the origin of TQY .

Proof. Let t 0→ c(t) be a geodesic so that c(0) = Q. By the minimizing prop-
erty of c(0) = Q, we have

0 ≤
∫

∂B(σ)
d2(f, c(t))dΣ−

∫

∂B(σ)
d2(f, c(0))dΣ.

Furthermore, by Bridson and Haefliger [1] Corollary II 3.6, we have

lim
t→0

d(f(y), c(t)) − d(f(y), c(0))
t

= − cos ∠(c, γy),

where γy is the geodesic from c(0) to f(y) and ∠(γy, c) is the angle between
γy and c at c(0) = Q. Therefore,

0 ≤ lim
t→0

∫

∂B(σ)

d2(f, c(t)) − d2(f, c(0))
t

dΣ

= lim
t→0

∫

∂B(σ)

d(f, c(t)) − d(f, c(0))
t

(d(f, c(t)) + d(f, c(0)))dΣ

= −2
∫

∂B(σ)
cos ∠(γy, c)d(f, c(0))dΣ.

Let [c] be the equivalence class of c and V = ([c], 1) ∈ TQY . Since π ◦ γy

is the (radial) geodesic from the origin 0 to π ◦ f(y) in TQY ,

cos ∠(γy, c)d(f(y), f(0)) =< π ◦ f(y), V >,
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and thus

(8.4) 0 ≤ −
∫

y∈∂B(σ)
< π ◦ f(y), V > dΣ.

By the continuity of the inner product, (8.4) holds for all V = (V0, t) ∈ TQY
where V0 = V/|V |. Therefore, for t ≥ 0,

∫

∂B(σ)
d2

TQY (π ◦ f(y), (V0, t))dΣ

=
∫

∂B(σ)
t2 + |π ◦ f(y)|2 − 2t < π ◦ f(y), V0 > dΣ

≥
∫

∂B(σ)
|π ◦ f(y)|2dΣ

=
∫

∂B(σ)
d2

TQY (π ◦ f(y), 0) dΣ.

!

Corollary 8.1. Suppose f : B(r) → (Y, d) is a bounded map, σ ∈ (0, r) and
Q ∈ Y so that

∫

∂B(σ)
d2(f, Q)dΣ = inf

P∈Y

∫

∂B(σ)
d2(f, P )dΣ.

If π : Y → TQY is the projection map into the tangent cone of Y at Q and
σ : B(1) → B(σ) is defined by σ(x) = σx, then

∫
∂B(1) |∇∂(π ◦ f ◦ σ)(x)|2dΣ
∫
∂B(1) |π ◦ f ◦ σ(x)|2dΣ

≥ λ1(∂B(1), TQY ),

where ∇∂ indicates that we are taking the tangential part of the energy den-
sity function on ∂B(1).

Proof. By Lemma 8.12, the center of mass of the map π ◦ f ◦ σ is 0. Thus,
the assertion follows immediately from the definition of λ1(B(1), TQY ). !

A consequence of Corollary 8.1 is the following theorem which associates
the first eigenvalue with the order of a harmonic map.

Theorem 8.3. Let B be a dimension-n, codimension-ν local model, g a
normalized Lipschitz Riemannian metric defined on B(r), (Y, d) an NPC
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space and f : (B(r), g) → (Y, d) be a harmonic map. If λ1(∂B(1), TQY ) ≥ β
(> β) for all Q ∈ Y then α(α+ n − 2) ≥ β (> β), where α is the order of
f at 0.

Proof. By inequalities (6.2), (6.3) and (6.6), it suffices to assume that the
volume form and the directional derivatives are with respect to the Euclidean
metric δ. This assumption is clearly without any loss of generality since in
this proof we are interested in rescalings of B(σ) to unit size as σ → 0 and at
small scales the metric g is approximately Euclidean. We emphasize that f
is harmonic with respect to the metric g which is not necessarily Euclidean.

Let σi → 0 so that fσi → f∗ : B(1) → Y∗. From Lemma 8.9, there exists
λ so that

lim
σi→0

∫

∂B(λ)
|∇∂fσi |2dΣ =

∫

∂B(λ)
|∇∂f∗|dΣ.

By Gromov and Schoen [9, pp. 200–201], we have

lim
σ→0

σλE(σλ)∫
∂B(σλ) d2(f, Qσλ)dΣ

= lim
σ→0

σλE(σλ)∫
∂B(σλ) d2(f, f(0))dΣ

,

where Qσ ∈ Y is the point so that

∫

∂B(σ)
d2(f, Qσ)dΣ = inf

Q∈Y

∫

∂B(σ)
d2(f, Q)dΣ.

This then implies

(8.5) lim
σ→0

∫
∂B(σλ) d2(f, Qσλ)dΣ∫
∂B(σλ) d2(f, f(0))dΣ

= 1.

Let Qi := Qσi ∈ Y and πi : Y → TQi
Y be a projection map into the tangent

cone of Y at Qi. By Lemma 8.12,

(8.6)
∫

∂B(σiλ)
d2(πi ◦ f, 0)dΣ = inf

V ∈TQiY

∫

∂B(λσi)
d2(πi ◦ f, V )dΣ.

Additionally,

(8.7) d2(f, Qi) = |πi ◦ f |2 and |∇∂f |2 ≥ |∇∂(πi ◦ f)|2
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since πi is distance non-increasing. Thus, by (8.5) and (8.7),

lim
σi→0

λ2 ∫
∂B(λ) |∇∂fσi |2dΣ∫

∂B(λ) d2
σi

(fσi , fσi(0))dΣ
= lim

σi→0

(σiλ)2
∫
∂B(σiλ) |∇∂f |2dΣ

∫
∂B(σiλ) d2(f, f(0))dΣ

= lim
σi→0

(σiλ)2
∫
∂B(σiλ) |∇∂f |2dΣ

∫
∂B(σiλ) d2(f, Qi)dΣ

≥ lim
σi→0

(σiλ)2
∫
∂B(σiλ) |∇∂(πi ◦ f)|2dΣ

∫
∂B(σiλ) |πi ◦ f |2dΣ

.

By change of coordinates y = σiλx, (8.6) and Corollary 8.1,

(σiλ)2
∫
y∈∂B(σiλ) |∇∂(πi ◦ f)(y)|2dΣ
∫
∂B(σiλ) |πi ◦ f(y)|2dΣ

=

∫
x∈∂B(1) |∇∂(πi ◦ f ◦ (σiλ))(x)|2dΣ
∫
x∈∂B(1) |(πi ◦ f ◦ (σiλ))(x)|2dΣ

=

∫
x∈B(1) |∇∂(πi ◦ f ◦ (σiλ)|2(x)dΣ
∫
x∈B(1) |(πi ◦ f ◦ (σiλ))(x)|2dΣ

≥ λ1(∂B(1), TQi
Y )

≥ β(> β).

Therefore,

R :=

∫
∂B(1) |∇∂f∗|2dΣ∫

∂B(1) d2(f∗, f∗(0))dΣ

=
λ2 ∫

∂B(λ) |∇∂f∗|2dΣ∫
∂B(λ) d2(f∗, f∗(0))dΣ

= lim
σi→0

λ2 ∫
∂B(λ) |∇∂fσi |2dΣ∫

∂B(λ) d2
σi

(fσi , fσi(0))dΣ

≥ β(> β).

For y ∈ ∂B(1), the homogeneity of f∗ implies

d(f∗(ry), f∗(0)) = rαd(f∗(y), f∗(0)),
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and hence

Ef∗(1) =
∫

y∈∂B(1)

∫ 1

0

(∣∣∣∣
∂f∗
∂r

(ry)
∣∣∣∣
2
+

1
r2 |∇∂f∗(ry)|2

)
rn−1drdΣ

=
∫

y∈∂B(1)

∫ 1

0

(
α2r2α+n−3d2(f∗(y), f∗(0))

+ r2α+n−3|∇∂f∗(y)|2
)
drdΣ

=
α2

2α+ n − 2

∫

y∈∂B(1)
d2(f∗(y), f∗(0))dΣ

+
1

2α+ n − 2

∫

y∈∂B(1)
|∇∂f∗(y)|2dΣ.

Thus,

α =
Ef∗(1)
If∗(1)

=
α2

2α+ n − 2
+

1
2α+ n − 2

R

and

α(α+ n − 2) = R ≥ β(> β).

!

Given B and any x ∈ B(r), consider f ◦ Lx : B′
x(r(x)) → (Y, d) of Propo-

sition 2.1 where B′
x is a local model associated with the point x. We let

λ1 := inf
x∈B(r),Q∈Y

λ1(∂B′
x(1), TQY ).

Corollary 8.2. Let B be a dimension-n, codimension-ν local model, g a
normalized Lipschitz Riemannian metric defined on B(r) and (Y, d) an NPC
space. If λ1 ≥ α(α+ n − 2) and f : (B(r), g) → (Y, d) is a harmonic map,
then f is Hölder continuous with Hölder exponent α in B("r) for " ∈ (0, 1).

Proof. For any x ∈ B("r), Theorem 8.3 says that the assumption λ1 ≥ α(α+
n − 2) for all Q ∈ Y implies the order of f at x is ≥ α. The result now follows
from Theorem 4.1. !

We now give a sufficient condition implying that the order of a harmonic
map is ≥ 1. For each x ∈ D, let N(x) be the ν-plane perpendicular to D at x.
Note that |x| < 1 implies that ∂B(1) ∩ N(x) is a spherical (ν − 1)-complex.
We first need the following lemma.
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Lemma 8.13. Let f∗ : B(1) → Y∗ be a tangent map of a harmonic map. If
the order of f∗ is not equal to 1, then f∗ is constant in the direction parallel
to D.

Proof. By Lemma 6.4, we may assume that f∗ maps into a cone with f∗(0)
equal to the vertex. Also, we may assume by homogeneity of f∗ that the
domain of f∗ is B. Let x, y ∈ B(1) be points on the same wedge and same
distance to D and x′ = tx, y′ = ty. Then

tαd∗(f∗(x), f∗(y)) = d∗(f∗(x′), f∗(y′)) ≤ L|x′ − y′| = Ct,

where L is the Lipschitz constant of f∗ and C is a constant depending on
L and on the angle between the line from x to 0 and y to 0, respectively.
Thus,

d∗(f∗(x), f∗(y)) ≤ Ct1−α

and the lemma follows by letting t → 0 if α < 1 or t → ∞ if α > 1. !

Theorem 8.4. Let B be a dimension-n, codimension-ν local model, g a
normalized Lipschitz Riemannian metric defined on B(r), (Y, d) an NPC
space and f : (B(r), g) → (Y, d) be a harmonic map. If λ1(∂B(1) ∩ N(0),
TQY ) ≥ β(> β) and α < 1 for all Q ∈ Y , then the order α of f at 0 satisfies
α(α+ ν − 2) ≥ β(> β).

Proof. By the homogeneity of f∗,

α =
Ef∗(1)
If∗(1)

=

∫
B(1) |∇f∗|2dµ

∫
∂B(1) d2(f∗, 0)dΣ

=

∫
x∈D

∫
y∈B(1)∩N(x) |∇f∗|2dy dx

∫
x∈D

1
(1−|x|2)1/2

∫
∂B(1)∩N(x) d2(f∗, 0)dΣ dx

.(8.8)

We use the notation ∇N to indicate the we are taking the directional energy
of f∗ on ∂B(1) ∩ N(x). Using Lemma 8.13, |∇f∗|2 = |∇Nf∗|2 and hence
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∫

y∈B(1)∩N(x)
|∇f∗|2(y)dy

=
∫

y∈B(1)∩N(x)
|∇Nf∗|2(y)dy

=
∫

y∈B((1−|x|2)1/2)∩N(0)
|∇Nf∗|2(y)dy

= (1 − |x|2)α−1
∫

y∈B((1−|x|2)1/2)∩N(0)
|∇Nf∗|2((1 − |x|2)−1/2y)dy.

Here, the second equality follows from translation in direction parallel to D
and the last equality follows from the homogeneity of f∗.

Now apply the change of coordinates z = (1 − |x|2)−1/2y to obtain
∫

y∈B((1−|x|2)1/2)∩N(0)
|∇Nf∗|2((1 − |x|2)−1/2y)dy

= (1 − |x|2)
ν
2

∫

B(1)∩N(0)
|∇Nf∗|2(z)dz.

Hence the numerator in (8.8) is
∫

x∈D
(1 − |x|2)

ν−2+2α
2 dx

∫

B(1)∩N(0)
|∇Nf∗|2(z)dz.

Similarly, the denominator of (8.8) is
∫

x∈D

1
(1 − |x|2)1/2 dx

∫

∂B(1)∩N(x)
d2(f∗, 0)dΣ

=
∫

x∈D
(1 − |x|2)

ν−2+2α
2 dx

∫

∂B(1)∩N(0)
d2(f∗, 0)dΣ.

Thus, as in the proof of Theorem 8.3, we obtain

α =

∫
B(1)∩N(0) |∇Nf∗|2dy

∫
∂B(1)∩N(0) d2(f∗, 0)dΣ

=
α2

2α+ ν − 2
+

R

2α+ ν − 2

and hence
α(α+ ν − 2) = R ≥ β(> β).

!
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Given B and any x ∈ B(r), consider f ◦ Lx : B′
x(r(x)) → (Y, d) of Propo-

sition 2.1 where B′
x is a local model associated with the point x. We let

λN
1 := inf

x∈B(r),Q∈Y
λ1(∂B′

x(1) ∩ N(0), TQY ).

Corollary 8.3. Let B be a dimension-n, codimension-ν local model, g a
Lipschitz Riemannian metric defined on B(r) and (Y, d) an NPC space. If
λN

1 ≥ ν − 1 and f : B(r) → (Y, d) is a harmonic map, then f is Lipschitz
continuous in B("r) for " ∈ (0, 1).

Proof. For any x ∈ B("r), Theorem 8.4 says that the assumption λN
1 ≥

ν − 1 implies that the order of f at x is ≥ 1. The result now follows from
Theorem 4.1. !

9. Main Theorem

Here, we collect the regularity results from the previous sections to summa-
rize our main regularity theorem for Lipschitz Riemannian complexes.

Theorem 9.1. Let B(r) be a ball of radius r around a point x in an admis-
sible complex X endowed with a Lipschitz Riemannian metric g, (Y, d) an
NPC space and f : (B(r), g) → (Y, d) a harmonic map.

(1) If x ∈ X − X(n−2), let d denote the distance of x to X(n−2). Then
for " ∈ (0, 1) and d′ ≤ min{"r, "d}, f is Lipschitz continuous in B(d′)
with Lipschitz constant depending on the total energy of the map f ,
(B(r), g), d and ".

(2) If x ∈ X(k) − X(k−1) for k = 0, . . . , n − 2, let d denote the distance of
x to X(k−1). Then for " ∈ (0, 1) and d′ ≤ min{"r, "d}, f is Hölder
continuous in B(d′) with Hölder exponent and constant depending on
the total energy of the map f , (B(r), g), d and ". More precisely, the
Hölder exponent α has a lower bound given by the following: If λN

1 ≥
β(> β) then α(α+ n − k − 2) ≥ β(> β). In particular, if λN

1 ≥ n −
k − 1, then f is Lipschitz continuous in a neighborhood of x.

Proof. The assertion follows from Theorems 8.2, 8.4 and Corollary 8.3. !
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