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Harmonic maps between singular spaces I

GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

We discuss regularity questions for harmonic maps from a n-dimen-
sional Riemannian polyhedral complex X to a non-positively
curved metric space. The main theorems assert, assuming Lipschitz
regularity of the metric on the domain complex, that such maps
are locally Hoélder continuous with explicit bounds of the Holder
constant and exponent on the energy of the map and the geome-
try of the domain and locally Lipschitz continuous away from the
(n — 2)- skeleton of the complex. Moreover, if x is a point on the
k-skeleton (k < n — 2) we give explicit dependence of the Holder
exponent at a point near x on the combinatorial and geometric
information of the link of z in X and the link of the k-dimensional
skeleton in X at z.

1. Introduction

The seminal work of Gromov and Schoen [9] extends the study of harmonic
maps between smooth manifolds to the case when the target is a Riemannian
simplicial complex of non-positive curvature. The theory of harmonic maps
into singular spaces was expanded substantially by the work of Korevaar
and Schoen [11, 12] and Jost [10] where they consider targets that are arbi-
trary metric spaces of non-positive curvature. (Such spaces are called NPC
or CAT(0) if they are simply connected.) One important motivation for con-
sidering singular spaces in the theory of harmonic maps is in studying group
representations. The main application of the Gromov—Schoen theory is to
establish a certain case of non-Archemedean superrigidity complementing
Corlette’s Archemedean superrigidity for lattices in groups of real rank 1 [3].
The next step in the generalization of the harmonic map theory is to
replace smooth domains by singular ones. This problem is also motivated
by superrigidity, in this case when the domain group is non-Archemedean.
The consideration of a Riemannian simplicial complex as the domain space
for harmonic maps seems to have been initiated by Chen [2]. Subsequently,
this theory was further elaborated by Eells and Fuglede [7] and Fuglede [8].
In particular, they show Ho6lder continuity for harmonic maps under an
appropriate smoothness assumption for the metric on each simplex.
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The development of the harmonic map theory from a Riemannian com-
plex is important in the study of non-Archedemean lattices. Considering a
two-dimensional domains, Daskalopoulos and Mese [4-6] establish fixed point
and rigidity theorems of harmonic maps from certain flat two-complexes.
The key issue in the techniques introduced in these papers is to prove reg-
ularity theorems strong enough to be able to apply differential geometric
methods.

Recall that the main idea of [9] is also to show that harmonic maps are
regular enough so that Bochner methods could be used in the setting of
singular targets. In particular, the fundamental regularity result of [9, 11]
is that harmonic maps from a smooth Riemannian domain into an NPC
target are locally Lipschitz continuous. As noted in [2], this statement no
longer holds when we replace the domain by a polyhedral space. On the
other hand, we have found in [5, 6] that modulus of continuity better than
Holder is crucial in applications. This necessitates stronger regularity results
than Holder.

This paper is meant to be the state of the art in the regularity theory
of harmonic maps from Riemannian cell complexes to non-positively curved
metric spaces (cf. Section 2 for precise definitions). Our first theorem con-
cerns Holder continuity of harmonic maps. This is a generalization of the
result of [7] for Lipschitz metrics.

Theorem 1.1 (cf. Theorem 4.3). Let B(r) be a ball or radius r around
a point in an admissible complex X endowed with a Lipschitz Riemannian
metric g and (Y,d) an NPC space. If f: (B(r),g) — (Y,d) is a harmonic
map, then there exist C and v > 0 so that

d(f(x), f(y)) < Clz —y|[" Va,y € B(or).

Here, C and v only depend on the total energy EY of the map f, (B(r),g)
and o € (0,1).

Note that our approach to Hélder continuity follows the one in [2, 9]
and is completely different from the one in [7, 8]. In our case, a variant
of the Gromov—Schoen monotonicity formula allows us to obtain energy
decay estimates which in turns imply Hoélder continuity by an adaptation
of an argument due to Morrey. The technical difficulty is that we make no
assumption that the boundary of each simplex is totally geodesic as it is
implicitly assumed in [2]. Our method also differs from the one in [9] due to
the fact that for singular domains the monotonicity formula does not hold
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for large balls (cf. Remark 3.3 of [4]). The main technical hurdle is to obtain
energy decay estimates with uniform radius and this is handled in Section 4.

Our main theorem concerns better regularity of harmonic maps. More
precisely, we show that harmonic maps are Lipschitz continuous away from
the codimension 2 skeleton X("=2) of X. For points that lic on the lower
dimensional skeleta, we also give an estimate of the Holder exponent of the
harmonic map in terms of the first eigenvalue of the link of the normal
stratum of the skeleton. More precisely, let 2 € X*®) — X(*=1) and let N =
N (x) denote the link of X (k) at 2 along with the metric induced by the given
Lipschitz Riemannian metric on X. Note that N is a spherical (n — k — 1)-
complex. Set

ANV = 525 M(N, TQY),

where A\ (N,TqY') denotes the first eigenvalue of the Laplacian of N with
values in the tangent cone of Y at @ (see Section 8 for further details). More
precisely, our main theorem is as follows:

Main Theorem (cf. Theorem 9.1). Let B(r) be a ball of radius r around
a point x in an admissible complex X endowed with a Lipschitz Riemannian
metric g, (Y,d) an NPC space and f : (B(r),g) = (Y,d) a harmonic map.

(1) If € X — X2 et d denote the distance of = to X2, Then
for 0 € (0,1) and d" < min{or, od}, f is Lipschitz continuous in B(d')
with Lipschitz constant depending on the total energy EY of the map
/. (B(r),g), d and o.

(2) Ifr € X% — X*=1) for k=0,...,n— 2, let d denote the distance of
z to X* 1. Then for o€ (0,1) and d' < min{or, od}, f is Hélder
continuous in B(d') with Hélder exponent and constant depending on
the total energy EY of the map f, (B(r),g), d and o. More precisely,
the Hélder exponent o has a lower bound given by the following: If
MY > B(> B) then a(a+n —k —2) > B(> 3). In particular, if \Y >
n—k—1, then f is Lipschitz continuous in a neighborhood of x.

The paper is organized as follows: In Section 2 we define our domain
and target spaces and recall the notion of harmonic maps. In Section 3 we
prove the monotonicity formula in our setting and in Section 4 we discuss
the Holder continuity of harmonic maps. Section 3 is in some sense the
heart of the paper as all subsequent results depend on it. Though similar
in spirit with the monotonicity formula of [9] it also differs significantly in
the fact that we show that the relevant quantity (the order function) is not
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monotone as in [9]. Nonetheless, we show that the order function has a well-
defined limit. This is necessary due to the fact that the different strata in
the complex are not assumed to be totally geodesic. As mentioned before,
in Section 4 we include a proof of the Holder continuity of harmonic maps
with a slightly more relaxed assumption on the metric of the complex than
in [7, 8]. The purpose of Sections 5 and 6 is to construct a tangent map. We
then establish properties of maps from a flat domain in order to analyze the
tangent map in Section 7. Finally, Section 8 is devoted to the proof of the
Main Theorem.

Notation. Throughout the paper, unless mentioned otherwise (Y,d) or
simply Y will denote an NPC metric space.

2. Domain and target spaces
2.1. Local models

We now introduce our local models which will represent a neighborhood of
a point in a complex. A half space is a connected component H of R" — h
where h is an affine hyperplane. By a normalized half space, we will mean a
half space H so that the hyperplane h that defines H contains the origin 0.
We say the normalized half spaces Hy, ..., H, are linearly independent if the
normals to the hyperplanes hi,...,h, defining the half spaces are linearly
independent. A wedge (or a n-dimensional v-wedge) W is the closure of
the intersection of ¥ number of linearly independent normalized half spaces
Hq,..., H,. By its construction, every wedge is a n-dimensional cone in R"
with 0 as the vertex. Wedge angles are the angles between any pair of vectors
hi,...,h,. In particular a two-wedge has one wedge angle, and in general a
v-wedge has @ number of wedge angles.

A face of the wedge is an intersection W N h;, N---Nh;,, 1 <idp <--- <
i; < v. For example, the intersection W N hy is a face which is a (n —1)-
dimensional linear subspace of R™ and the intersection W N h; N ---Nh, is
a face which is a (n — v)-dimensional linear subspace of R"™. This latter face
is the lowest dimensional face of W and we denote it by D. We will use the
coordinates of R"™ to label points in W. For simplicity, we always choose the
coordinate system (z!,...,2") of R" so that D is given as 2" V! = ... =
™ = 0.

Let Wh,..., W, be n-dimensional v-wedges and let {F*},—1 __, be the set
of all (n — 1)-dimensional faces of W; for i = 1,...,l. For any i,j =1,...,(
with ¢ #£ j let cp?f’ N FJZ? be a possibly empty linear isometry called a
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gluing map of F* and F le and let ®;; be a set of all gluing maps @%b (FR— F;’

for a,b=1,...,v. Let ® be the union of ®;; for 7,5 =1,...,l and i # j.

Definition 2.1. A dimension-n, codimension-v local model B = UW;/ ~ is
a disjoint union of n-dimensional v-wedges W1, ..., W; along with an equiv-
alence relation ~ defined by setting x ~ 2’ if ¢(z) = 2/ for ¢ € . We fur-
ther require (i) the cardinality of each ®;; is at most 1 and (ii) for every
i=1,...,land a =1,...,v, there exists a non-empty gluing map in ¢ with
F? as a domain or target.

When we have two n-dimensional 1-wedges, i.e., two half spaces, glued
together along D = {z™ = 0}, the local model is simply R™ and this will be
referred to as a codimension-0 local model. Given a face F' of a wedge W,
we will also call its equivalence class in B a face. The boundary of a local
model is the union of all (n — 1)-dimensional faces which belong to exactly
one wedge. Throughout the paper we also assume that our local models
have empty boundary. Also note that property (iii) implies that our local
models B are connected and admissible i.e., that B — F' is connected for any
(n — 2)-dimensional face F.

Since W is a subset of R", there is a natural Euclidean metric inherited
from R". This defines an Euclidean metric 6 on B. For z,y € B, let |z — y|
be the induced distance function from ¢. Set B(r) be the r-ball centered at
the origin of B and W (r) = B(r) N W for any wedge W of B. For the sake
of simplicity, we will also refer to W (r) as a wedge (of B(r)). Also for z € B
we will denote by By(r) the Euclidean r-ball around z. Note that throughout
the paper all balls will be taken with respect to the metric J.

We now give examples of wedges in dimension 2 and dimension 3. (i)
The only two dimensional one-wedge (up to linear isometry) is the half
plane {(z,y) € R%:y > 0}. We consider a model space B where k copies of
one-wedges are glued together along D = {(z,y) € R? : y = 0}. This exam-
ple models a neighborhood of an edge point of a two-dimensional simplicial
complex. (ii) An example of a two-dimensional two-wedge is the first quad-
rant {(z,y) € R?: 2,y > 0}. Another example is the set W = {(x,y) € R?:
V3x >y > 0}. A vertex point of a two-dimensional simplicial complex can
be modelled by a model space where one copies of W are glued together along
their faces (in this case lines y = 0 or y = v/3x) according to the combinato-
rial information of the complex. Note that D is this case is the point x = y =
0. (iii) The only three-dimensional one-wedge (up to linear isometry) is the
half space {(z,y,z) € R®: z > 0}. The model space B where [ copies of one-
wedges are glued together along D = {(z,y, z) € R?: 2 = 0} models a neigh-
borhood of the two-skeleton in a three-dimensional simplicial complex. (iv)
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An example of a three dimensional two-wedge is {(z,y,z) € R®:y,z > 0}.
Another example is the set W = {(z,y,2) € R3: /3y > z > 0}. A neighbor-
hood of a point on a one-skeleton of a three-dimensional simplicial complex
can be modelled by a model space B where [ copies of W are glued together
along their faces according to the combinatorial information. Here, D =
{(z,y,2) € R® 1y =2=0}. (v) An example of a three-dimensional three-
wedge is the first octant {(z,y,2) € R®: 7,9,z > 0}. Another example is the
set W consisting of points of the form Z?:l tivi, t; > 0 where v; = (1,0,0),

ve = (3, g, 0) and v = (3, #, Lg) Note that the standard tetrahedron

consists of points of the form ) 7 ; t;v;, 0 <t; <1. A neighborhood of a
point on the 0-skeleton of a three-dimensional simplicial complex can be
modelled by a model space B where [ copies of W are glued together along
their faces according to the combinatorial information of the complex. Here,
D is the point (0,0,0).

Let B be a dimension-n, codimension-v local model and let v =n — k.
Recall that this means that D C B is of dimension k; more specifically, D
can be isometrically identified with R*. We say = € B is a codimension-
(n — j) singular point if B, (o) is homeomorphic to B’(c) where B’ is some
dimension-n, codimension-(n — j) local model for some o > 0. We denote
the closure of the set of codimension-(n — j) singular points by S; and set
S_1 = 0. For example, if B is a codimension-(n — k) local model, then Sy =
Dand S;=0fori=—1,...,k—1.

The following two definitions will be important in Section 4.

Definition 2.2. Suppose x € Sj11 — S;. Thus, x is an interior point of a
(j + 1)-dimensional face F. We define 7;(z) to be the set of all points 2’
in S; N F such that |z — 2| = minyegs,nr [* — y|. First, note that the closest
point projection of x to the boundary of F' is not necessarily unique so that
7j(z) may contain more than one point. Secondly, because a face of a local
model is a convex subset of Euclidean space, mj(xz) C S; — S;j—1. For i > j,
z € S;and 2’ € S;, we write z > &’ if we can arrive from x to 2’ by a sequence
of successive projections, i.e., there exists a sequence

T =Y Yi—1,---,Yj+1,Y; = .’El
so that
Yi S Si)
Yi—1 € mi—1(yi) C Si—1,
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Yir1 € Tjr1(¥i—j—1) C Sjt1,
y; € mi(yi—j) C Sj.

For x € B(o), let IL;(z) be the set of points 2’ € S; so that z > 2/. For any
set N, let IL;(N) be the set of points 2’ € Sj so that z > 2’ for z € N.

Definition 2.3. Let x € B and o > 0. The ball B,(o) is called homoge-
neous if for all ¢ € (0,1)

B, (to) = tBy(0).

Given z € B, we let St(x) denote the star of the point x in B i.e., the union
of the wedges containing x. Finally, if z € B(r) we set R(x) to be the radius
of the largest homogeneous ball centered at = contained in St(z) N B(r).

In addition to the Euclidean metric 6 we equip a local model B (or B(r))
with a Lipschitz Riemannian metric g. By this we mean that for each wedge
W of B (resp. each face F' of B), we have a Lipschitz Riemannian metric gy
(resp. gr) up to the boundary of W (resp. F') with the property that if F’
is a face of W (resp. F) then the restriction gy (resp. gr) to F’ is equal to
gr. Note that we do not necessarily assume that the faces of the wedges are
totally geodesic. We can express g as a matrix (g;;) in terms of the Euclidean
coordinate system on the wedges W inherited from the Euclidean space.

Definition 2.4. We say A € (0,1] is an ellipticity constant of g if for each
wedge W (resp. each face F) the ellipticity constants of gy (resp. gr) are
bounded below by A and above by %, in other words in terms of Euclidean
coordinates on W (resp. F') we have

(2.1) NP <> gieled < %\QQ-

4,j=1

Definition 2.5. We say a metric g on B(r) is normalized if ¢;;(0) = &;;.
2.2. Admissible cell complexes

A convex cell complex or simply a complex X in an affine space E9 is a
finite collection {F*} of cells where each FC is a point, and each F¥ is a
bounded convex piecewise linear polyhedron with interior in some EX ¢ E9,
such that the boundary F¥ of F* is a union of F* with s < k (called the
faces of Fk), and such that if s < k and FFN F* # ¢, then F* C F*. For
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example a simplicial complex is a cell complex whose cells are all simplices.
We will denote by X the i-dimensional skeleton of X, i.e., the union of
all cells F¥ where k < i. X is called n-dimensional or simply a n-complex if
X0+ — ¢ but X £ (. The boundary of X, denoted dX, is the union of
k-cells F*, k < n, so that F is a face of exactly one n-cell. A point p € 9X is
called a boundary point and a point p € X — 0X is called an interior point.
In the sequel, we will require the following conditions (sometimes called
admissibility conditions, or admissible complex (cf.[7])):

(1) X is dimensionally homogeneous; i.e., for k < n, each k-cell is a face
of a n-cell.

(2) X is locally (n — 1)-chainable; i.e., for every connected, open set U C
X, the open set U — X(=2) ig connected.

A Lipschitz Riemannian n-complex is a convex cell complex where each cell
F' is equipped with a Lipschitz Riemannian metric gz up to the boundary.
We are assuming that if F” is a face of F' then the restriction gp to F’ is
equal to gp-. Admissible cell complexes are based on local models because
of the following obvious proposition

Proposition 2.1. Let X be an admissible Lipschitz Riemannian complex of
dimension n with metric g given as (g;5). Let x € X — x*=1) gnd let \ €
(0, 1] be the ellipticity constant of g near x. Then there exist a dimension-n,
codimension-(n — k) local model B and a homeomorphism Ly : B(AR(x)) —
L,(B(AR(z))) C X so that

(i) Le(0) = ,

(ii) for any wedge W of B, Ly restricted to W N B(AR(z)) maps into the
closure F of a n-cell of X,

(iii) with W viewed as a subset of R"™ as in Section 2.1, LI}WﬂB(

AR(x))
uniquely extends as an affine map L, defined on R",

(iv) the pullback metric h = L}g has the property that hi;(0) = 6;; with
respect to the coordinate chart on W.

Because g has ellipticity constant A, £, maps the ball of radius AR(z)
centered at 0 into the largest ellipse contained in the ball of radius R(x)
centered at x.

We now mention that (a) trees and Bruhat—Tits buildings are examples
of admissible cell complexes; (b) for any finitely generated group I there is a
two-dimensional admissible complex without boundary whose fundamental
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group is I" (cf.[4]); (c) triangulable Lipschitz manifolds and normal complex
analytic spaces are homeomorphic to admissible complexes. For more details
we refer to [7].

2.3. Harmonic maps
We now define our target spaces.

Definition 2.6. A complete metric space (Y, d) is said to be an NPC (non-
positively curved) space if the following conditions are satisfied:

(i) The space (Y, d) is a length space. That is, for any two points P and
Q@ in Y, there exists a rectifiable curve ypg so that the length of
vpg is equal to d(P,Q) (which we will sometimes denote by dpg for
simplicity). We call such distance realizing curves geodesics.

(ii) Let P,Q,R €Y. Define Q; to be the point on the geodesic ygr satis-
tying dgg, = tdgr and dg,r = (1-— t)dQR. Then

dbg, < (1~ t)dbg +tdp — (1~ )dpp.

Remark. Simply connected Riemannian manifolds of non-positive
sectional curvature, Bruhat-Tits Euclidean buildings associated with actions
of p-adic Lie groups and R-trees are examples of NPC spaces. These spaces
are also referred to as CAT(0) spaces in literature. We refer to [1] for more
details.

We will now review the definition of harmonic maps. For details we refer
the reader to [7]. First, we define the energy of a map. Let (Y, d) be an NPC
space and f : (B(r),g) — Y be a L? map from the local model to Y. The
energy 9F7 is defined as the weak limit of the e-approximate energy density
measures which are measures derived from the appropriate average difference
quotients. More specifically, define the e-approximate energy e. : B(r) = R
by

/ d*(f(2), f(y)) o
e€($) = yeS(z,€) €2 et
0 for x € B(r) — B(7r).,

for z € B(r)e,

where o, is the induced measure on the e-sphere S(z,€) centered at x and
B(r). = {z € B(r) : d(z,dB(r)) > ¢}. Define a family of functionals 9E! :
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C.(B(r)) — R by setting
9B (p) = / peedjy.
B(r)

Definition 2.7. We say that f: (B(r),g) — Y has finite energy (or that
f € Wh2(B(r),Y) or simply that f is a W2 map) if

Ipl .= sup limsup IEY (¢) < oo.
pEC.(B(r)0<p<1 =0

Theorem 2.1. Suppose f : (B(r),g) = Y has finite energy. Then the mea-
sures ec(x) dx converge weakly to a measure which is absolutely continuous
with respect to the Lebesque measure. Therefore, there exists a function e(x),
which we call the energy density, so that ec(x) dpg — e(z) dpg.

In analogy to the case of real valued functions, we write |V f \g(az) in
place of e(z). (We will omit the subscript in |V f |3, dpig, etc. if it is clear
which metric we are using). In particular,

5 = [ VSl
B(r)

For a set S C B, let
/1) = [ 19113y
We also define
[V flg(x) = IV fI3(2))"/2.

For a Lipschitz vector field V' on B(r), | f*(V)|§ is similarly defined.
The real valued L' function | f*(V)|§ generalizes the norm squared on the
directional derivative of f. We refer to [7, 11] for more details.

Theorem 2.2. Suppose f: (B(r),g) — Y has finite energy and V' is a Lip-
schitz vector field. The operator 9! defined by

Inl (VW) = LAV +W)2 = 3 f(V-W)2

is continuous, symmetric, bilinear, non-negative and tensorial. We call 9/
the pull-back metric.
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Notation 2.1. Let {%, e %} be the standard Euclidean basis defined
on each wedge inherited from R™ and § the standard FEuclidean metric. Set

af_af:%f<a a> |27

9 9 ‘_of of
Oxt OxJ Oxt’ OxJ Oxt

T ot Ozt

Similarly for the standard Euclidean polar coordinates (r,601,...,60,-1) on
each wedge we denote

of af_aﬂf<a a> of

dxk ar ozk> or ) | or

T or or

2 0f of s 4(0 0
_AY ey (29
or’ or

and

00; 90;

of 0f _ s s (0 9
90, 90; )

Note that the energy density with respect to the metric g is given by

2 :§ : ij .

i7j
whereas the energy density with respect to the Euclidean metric is given by

2

of

VIP =1V =255

i

By using the identification with local models given in Proposition 2.1 all
the above notions extend for any admissible complex X replacing B as a
domain. We omit the details.

For the trace of W12 maps we refer to the following theorem (cf.[7, 11]).

Theorem 2.3. Let Q be a compact domain in an admissible complex with
Lipschitz Riemannian metric g and (Y,d) a metric space. Any f € W12
(Q,Y) has a well-defined trace map denoted by Tr(f) or simply f, with
Tr(f) € L2(0Q,Y). If the sequence f; € WH2(2,Y) has uniformly bounded
energies 9B [Q] and if f; converges in L? to a map f, then Tr(f;) converges
to Tr(f) in L*(09,Y). Two maps f,g € WH2(Q,Y) have the same trace if
and only if d(f,g) € WH2(Q,R) = WH2(Q) has trace zero.

We define Wol’Q(Q) to be the subset of W12(Q) functions with trace zero.
The next two theorems are also contained in [7, 11].
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Theorem 2.4. Let Q) be a compact domain in an admissible complex with
Lipschitz Riemannian metric g and (Y,d) a locally compact metric space.
Let f; € Wh2(Q,Y) be a sequence satisfying f; — f in L* and IEF[Q] < C
for some constant C independent of i. Then

IESQ] < liminf YES Q).
1—00
Theorem 2.5. Let Q be a compact domain in anadmissible complex with
Lipschitz Riemannian metric g and (Y, d) a locally compact metric space. Let
fi € WHA(Q,Y) be a sequence satisfying IE Q] + [ d*(fi(z), Q) dug(z) <
C for some fized point Q of Y and some constant C independent of i. Then,
there is a subsequence of f; that converges in L*(X,Y) to a finite energy

map f.

Definition 2.8. Let  be a compact domain in an admissible complex with
Lipschitz Riemannian metric g and (Y, d) an NPC space. Amap f:Q — Y
is said to be harmonic if it is energy minimizing among all W!2-maps with
the same trace (boundary condition).

We end this section by proving two versions of the Poincaré inequality
that we will need in the sequel.

Theorem 2.6. Let Q be a compact domain in an admissible complex with
Lipschitz Riemannian metric g. Then, there is a constant C' depending only
on Q and g so that for any ¢ € WOM(Q)

/sDZdMgSC /\leﬁduy
Q Q

Proof. The proof follows closely the proof of the Poincare inequality in [16,
Lemma 2|, therefore we will only give a sketch. Suppose the assertion is
false: then for each ¢ = 1,2, ..., there exist functions @; € WOI’Q(Q) so that

1
/\Vmﬁdug < / @3 dyg.
Q 1 JQ

o ©i
(Jo pidug)/?’

we have [, v7 dug = 1 and [, [V;|2 dug < 1. By Theorems 2.5 and 2.4 there
exists a subsequence (which we denote again by i) so that v; — v in L?(Q)

By setting

V3
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and [, |Vv|2dpg <liminf; o [, [Voil2dpg = 0. This implies that v must
be constant, and since fQ v2d,ug = lim; o fQ v?d,ug = 1 it must be nonzero.
On the other hand, Theorem 2.3 implies that the trace of v is 0, which is a
contradiction. O

Theorem 2.7. Let X be a compact admissible complexr with o Lipschitz
Riemannian metric g and (Y,d) a metric space. Then, there is a constant
C depending only on X and the ellipticity constant of the metric g so that
for any ¢ € WH(X)Y)

inf [ d*(p, P)dpg < 2dpug.
];rely/xd(% Jdug < C /X!W!gdug

Proof. By Fugledge [8], proof of Corollary 1 Step 2, the Poincare inequality
holds for the Euclidean metric, i.e., there exists a constant C' depending only
on X so that

inf | d?*(p,P)d <C/v 2du.
b [ Ao Pldu=C | Vel du
Let ¢ be a universal constant depending only on the dimension of X. It
follows from (2.1) that

n n

Jp Op 2 ;; Op Op
Y9¥ Y¥Y - ij s
Z 51] o0x; al‘j < ek Z g ox; 0$j

ij=1 ij=1
and hence

(2.2) Vel? < A2Vl

Furthermore, (2.1) also implies that

which combined with (2.2) completes the proof. O

Corollary 2.1. Let B be a dimension-n, codimension-v local model, g a
Lipschitz Riemannian metric defined on B(r) and (Y,d) a metric space.
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Then, there is a constant C' depending only on B(r) and the ellipticity con-
stant of g so that for any ¢ € WY2(B(r),Y) and o sufficiently small

inf d*(p, P)dp, < Co? / Vol2du,.
PeY Jp(o) (& Py B(a)’ 579

Similarly, for any ¢ € WH2(0B(r),Y) and o sufficiently small

inf/ (¢, P)dY gc(ﬂ/ Vop|2dy,,
P foso (¢, P)dx, 8B(a)| |d%,

where V? is the gradient tangential to OB(o).

Proof. Both inequalities follow immediately from Theorem 2.7 by rescaling
and by the fact that B(o) (resp. 0B(0)) is piecewise smoothly diffeomorphic
to the star (resp. the link) of the point 0. O

3. Monotonicity formula

In this section, we prove a monotonicity formula for harmonic maps. This
is a modified version of the monotonicity formula shown in [9] where the
domain space is a Riemannian manifold. The technical difficulties posed by
the singular nature of the domain space considered in this paper is that we
cannot necessarily work in normal coordinates and that the faces are not
necessarily totally geodesic in wedges with respect to the metric given.

Let B be a local model. We continue to use the Euclidean coordi-
nates (z!,...,2") in each wedge W. For x,y € B, we denote the induced
(Euclidean) distance by |z — y|. By definition, if z = (z!,...,2") and y =
(y',...,y") are on the same wedge of B, then |z—y|=
V(i —yh)2 + - + (2" — y™)2. Furthermore, we let (r,0y,...,0,_1) be the
corresponding polar coordinates, i.e., r gives the radial distance from the

origin and € = (61,...,6,_1) are the coordinates on the standard (n — 1)-
sphere. Let g be a normalized Lipschitz metric defined on B(r) = {z € B :
lz| < r}, ie., if g = (gi;) with respect to the coordinates x = (z!,... 2™) on

a wedge W, then
|9ij(x) — 9i;(2)| < clw — Z[, Vo,zeW
and

(3.1) |gij(z) — di5] < co
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for |x| < 0. For o € (0,7), we set

(3.2) o) = [ ¥y
and
(3.3) 91 (0,Q) = /8 oy R,

for Q € Y. Here d¥, is the measure on 0B(c) induced by g. By Korevaar
and Schoen [11, Lemma 2.5.1], there exists a unique point @, € Y so that

3.4 9rf o) = inf 9I7(c,Q).

(3.4) (0,Q0) Jnf, (0,Q)

Notation 3.1. For the rest of this section we will use the notation
B(o) = 9E/(0) and I(0) = I(0,Q) = "I’ (0,Q),

if @ is a generic point. Furthermore in all statements up to (including)
Corollary 3.2, we will make the additional assumption that the metric g is
normalized.

If we assume that the domain is a Riemannian manifold and replace
B(o) by a geodesic o-ball, it is shown in [9] that
Co UE(U)

(o)

(3.5) o e

is a non-decreasing function where C' is some constant depending on the
metric. Note that in our case B(o) is a o-ball with respect to the Euclidean
metric § on B. The reason Euclidean balls are considered here is the possible
incompatibility of the induced distance functions of the metrics given on two
different wedges along a shared face. More specifically, let g; and go be the
metrics defined on wedges W71 and Ws sharing a face F. Since we do not
assume that F is totally geodesic in W7 or Wa, the induced distance functions
in W1 and W5 do not necessarily agree in F'.

We are thus considering a general Lipschitz metric g with no restriction
on the faces and this leads to a modified version of the monotonicity formula
which in turn gives a well-defined version of the order (cf. Corollary 3.2).
For a model space B with a Euclidean metric §, the monotonicity of (3.5)
follows from [13].



272 Georgios Daskalopoulos & Chikako Mese

We say a continuous function 7 defined on B(r) is smooth if the restric-
tion of n to each wedge W of B(r) is smooth up to the boundary of W. The
set of smooth functions with compact support in B(r) will be denoted by

Ce(B(r)).

Lemma 3.1. Let f: (B(r),9) = (Y,d) be a harmonic map. For any o €
(0,7) and n € C(B(0)),

2 2 i On
I (\Vﬂg(z—n)n— DY

L2y 20,00 0f

oz Oxk Hg

0.5,k
(3.6) +O(0)E(0) =0

where |O(0)| < co and ¢ depends on B(r) and the Lipschitz bound of g.
Proof. For t sufficiently small, we define F; : B(r) — B(r) by setting

Fi(r) = (1 +tn(z))z
for each x = (z!,...,2") in a wedge W. For f; : B(r) — Y defined as f; =

f o F, a direct computation (cf.[9, Section 2]) on each wedge W of B(r)
gives

d
Z9pf [WHt:o

dt
— 2 _ _ 2 1077
-/ (\v,ﬂg(z QIR

an af  of
ik
2 Z @ 5 ozl OxF Hg

7]7
+ remainder.

Here, the remainder term is given by

81;14 z

/ 09" af af

7]7
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Since we assume the metric g is Lipschitz, there exists a constant ¢ so that
g | |9v9
oz* ox?

co X E(o). Summing over all the wedges W of B(r) we get the right-hand
side of (3.6) and this equals to 0 since fy = f is harmonic. O

< ¢, which then implies that the remainder term is bounded by

)

Lemma 3.2. If f: (B(r),g) — (Y,d) satisfies (3.6), then for o € (0,r)

E'(c) n-2 2 gxt Of of
. — — E <
(3.7) E(o) o E(o) /aB((,) — |z ozk  Or e =

for some constant c¢1 depending on B(r) and the Lipschitz bound of g,

2
(3.8)  E'(0) = (1+0(0)) (”‘“O(")E(o)w / gf dEg>
o oB(c) | OT
and
"(o n— 2
o) et 2yt [, e

where ¢ is as in (3.1).

Proof. Let n in (3.6) approximate the characteristic function of B(o) to
obtain

(3.10) E/(o)— "=2F00) g —2/ Z’k‘” 0 9 4 —
0B(o

o x| 9k Or

which immediately implies inequality (3.7). Next, we use the inequality g** <
5% 4+ co to show

]m|8xk 87“ -

+co |[Vf2.

l
or

ok

e

ik

Using this, inequalities (3.8) and (3.9) follow again from (3.10). O



274 Georgios Daskalopoulos & Chikako Mese

Lemma 3.3. Let f: (B(r),g) — (Y,d) be a harmonic map. For anyQ € Y,
Ad?(f,Q) — 2|V f|2 > 0 weakly, i.e.,

(3.11) 2/ IV f12n dpg < —/ <Va(f,Q),Vn >4 dug
B(r) B(r)

for any n € C*(B(r)).

Proof. This inequality follows from a target variation of the harmonic map
and hence the singular nature of the domain is not essential in the proof.
Details can be found in the proof of [9, Proposition 2.2.] O

Lemma 3.4. If f: (B(r),9) — (Y,d) satisfies (3.11), then

(o

of
or

N =
|

2 2
(3.12) E(o) <I(0) dag> +co(E'(0))

and

0
(3.13) 2E(0) < / —d*(f,Q))d%, + I(c) + ko*E' (o)
oB(o) Or
for some constants ¢, k depending on B(r) and the Lipschitz bound of g and

1 9 2
(3.14) I(U)/aB(U) EdZ(f, Q)dx, < Blo) /8B(U)

where ¢ is as in (3.1).

’ E'(0)

0
/ dpg + 2co Blo)’

or

Proof. Let n in (3.11) approximate the characteristic function of B(o) to
obtain

0 5 27

2B(0) < | < Va(£.Q). VIl >y %, = [ g
9B(0) oB(

o)



Harmonic maps between singular spaces | 275

Using the estimate ¢” < 6% + co, we obtain

9 o
2E(0) < /aB(T) ad (f,Q))dx,

0
3.1 A, ‘dz
( 5) +CO’/{9B(7‘)Z,L~:‘6$Z (f Q)) g
0
<2 agQz a0,

0
—1—200/813(0) d(f,Q);’awid(va)‘dzg

2 3
< 2I(0)? ( /8 o) dzg>
2 :
dzg> .

1 0
+2col(0)> </8B( )Z ‘Wd(fa Q)

9

~(1,Q)

The triangle inequality implies that

2 2

2 of

or

d(f, Q)

2
‘ 6‘ <‘8f
ox’ -

ozt

wnd | d(7.Q)

From this, (3.12) follows immediately. Additionally, use the Cauchy—
Schwarz inequality to obtain

2

or
ozt

20d(1,Q) |- L-d(£.Q)| < P(£.Q) + 20>
ox

which implies

0
we)< [ gt [ b s,

0B(0)
+020’2/ IV f|2d%,.
0B(0)
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From this, (3.13) follows immediately. Lastly, again use (3.15) to obtain

E
() /;)B<o>;d2(f,Q>dzg
2
0
< ( L, 45 Qs Q)dzg>
0
+ 2co (/8}3(0) a(f, Q)Ed(f’ Q)d29>

. ( [ Q) dzg>

0
S2I(U)/¢9B() /

2
—=| d%, + 2col(o) / IV f|2d%,.
This immediately implies (3.14).

9B(0)

or

The following energy growth estimate is also given in [2] with geodesic

balls (and not Euclidean balls as it is here).

Lemma 3.5. Let f:(B(r),9) — (Y,d) be a harmonic map. There exist
oo > 0 and v > 0 depending on B(r), the Lipschitz bound and the ellipticity

constant of g so that

E(o)

o= on—2+2y’

o c (O,Uo)
18 non-decreasing.
Proof. Let QQ, € Y so that

I(0,Qs) = (%)Ielf;/ I(0,Q).

Thus, the Poincaré inequality (cf. Corollary 2.1) implies that there exists

Coy > 0 so that

I(Ua Q(f) S 0002/ |vaf‘527dzga
0B(0)

where |V8f\§ is the tangential part of [V f|2. If we write

Y
Z]_g 892766‘7 9
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)
Yo

1 2
dx ) —|—CO‘E’(O’);) by (3.12)

then

af 0
VI = ST = (1+0(0) <|Vf|2 e

Thus,

(3.16) I(0,Qo) §0002(1+O(U))/8B( : (IV 12 = ‘a

Therefore,

2
E“(0) < I(0,Q,) (</BB(U)

of|”

or

2
Xy + CQO'QE/(O')>
2
ng)) by (3.16)

af
or

of
or

8 2
[ 15
dB(o) | OT

0
<Co ((n —240(0))E(0) +0(1+ 0O(0)) /8B

X ((1 + O(0)) /8]3( | d¥y + cco(n — 2+ O(O‘))E(O’))

2 2 2
< (JQEQ(J) +oE(0) /8 B d%, + o? ( /6 b dzg> )
oo (L) ([, 2 ).

or
Note that the constant C' and C’ depend only on the Lipschitz constant of g
and the constant coming from the Poincaré inequality which only depends
on the ellipticity constant of g and the number of wedges of B(r). Thus, the
constants below also depend only on these quantities. By choosing ¢ > 0
sufficiently small (depending on C”), we see that there exists a constant K

d¥y + C2O’2E/(O')>

2
dzg> by (3.8)
(0)

gz
or

of

or

of

or
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so that
2

o1 g5,

E(oc) < Ko a

oB(0)
Using (3.8), we also have

2

cE(0) = (n — 2+ O(0))E(0) + (20 + O(02)) / o s,
oB(0) | OF
2
>(n—2+0(0))E(0) + —i_[?w)E(a)
2
=(n—-2+ e + O(0))E(0)
> (n—2+4+2y)E(0)
for v, 0 > 0 sufficiently small. This implies
d E(o)
% <log 0'”_2""2’7) Z 0
for o > 0 sufficiently small. O

Lemma 3.6. For sufficiently small 0 > 0 depending on the Lipschitz bound
of g and B and for any map f: B(r) — (Y,d), we have

(3.17)

I'e) n-1 1 9
) 7 T Sy o D

for some constant co depending on B(r) and the Lipschitz bound of g.

<c

Proof. Let {%, 8%1, cel %} be the tangent basis corresponding to the
polar coordinates (r,01,...,60,-1) on W. We define

1 o 0
v(r,0) = ) \/ det (g (89“ (9(%)) ’

By the fact that ¢;;(0) = d;;, we have

(3.18) lv(o,0) — 1| = |v(0,0) — limv(r,0)] < o

r—0

for some constant ¢ depending on the Lipschitz bound of g. Since the mea-
sure induced on dB(o) by g can be written d¥, = 0" lv(c,6)df where df
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is volume form on the standard (n — 1)-sphere, we have

ﬂdzg = (n—1)o" v(0,0)dd + oV
0o

ov

5o (0,0)d0

and
ALy > 0" N1 —do)d > So"1do

for sufficiently small o > 0. Thus,
d

do 9B(0)

_ 9 2
= [ B+

d*(f,Q)dZ,

n—1

/ P (f,Q)d%,
0B(0)

n—1 v

d? o o,0)db
# [ EE QG0

which in turn implies

[/(J)_n_l_ 1 g ,
Ho) g I(o) /8B(a) 8r(d (f, @))d2,

v

- 2 n—1
L Q000

C
— d? =140
<1 /8 o L0 Q)0

2c
— d? Ay, =
= I(o) /8B(a) (f, Q)dxg = 2¢

for sufficiently small o. This immediately implies (3.17). U

Let f: (B(r),g) — (Y,d) be a harmonic map. Inequality (3.17) implies
that there exists og sufficiently small so that for ¢ < oy,

I'(o) n-1 1 0 o
. < — .
(3.19) o) = 5 + (o) /8B(o) ard (f,Q)dXg + c2
Together, (3.9), (3.14) and (3.19) imply

E'(0) _ I'(0)
E(o)  1(0)

1
(3.20) (14 3co) + ey 20,

where c3 = ¢1 + co. We use this inequality to prove a modified monotonicity
which we describe below. For notational simplicity by rescaling the metric
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g, we may assume that 3¢ <1 and o9 = 1. Let

J(o) = I
(o) Jnax, (s)

and set

" Elo) ~ o)

A= B0 IO L o)

Roughly speaking, A is the bad set where the ordinary monotonicity formula
fails. Note that if J’(s) # 0 then I(s) is increasing and hence I(s) = J(s),
I'(s) = J'(s). If J'(s) =0, then I'(s) <0 (for, if I'(s) >0 then J would
be strictly increasing near s). Therefore, we obtain the following pair of
inequalities:

E,( ) /( ) [‘ ;‘f
+ - + 3 > “ or o A,

I'(0)
E(0) I(a)+a+63_0 force A

(3.21)

S

(3.22) (1+0)

For o € (0,1), set

F(o) = E(0)exp <— /Am(ml) Sg'((::)) d8> :

Lemma 3.7. For F(o) defined above,

E' (o
(323) w _ E((a—)) l fOT’O' ¢ A,
F(o) (1+o0) g((g)) for o € A.
Consequently,
cs0 7F (0)
o e [(0’)

is non-decreasing for o sufficiently small. Furthermore, for Q, as in (3.4)

oF (o)

I(U; QO’)

C30

o e

1$ also mon-decreasing for o sufficiently small.
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Remark. If g is the Euclidean metric §, then ¢ = 0 above and

is non-decreasing.

Proof. We first note that as it is an integral of an L! function o — FE(0) is
absolutely continuous on [0, 7]. Let

Then, for a < o < o/ < b, we have

|o(0) — ¢ (0")]

E'(s) / -
s ds E'(s)ds
/Aﬁ(a,a’) E(S) o ( )

which implies that the function ¢(o) and hence also F(o) is absolutely
continuous. Here we are assuming that f is non-constant hence E(a) # 0.
Thus,

= 2B - E(o)),

= E(a)

<

b
E(a)

e—0 2¢ e—0 2¢

— _ /
¢'(0) = lim plote) —wlo=e) lim 1/ —SE (5) ds.
AN[o—e,0+¢€] E(S)

Therefore ¢'(c) = 0 for a.e. 0 ¢ A and ¢'(0) = —0c g((g)) for a.e. o € A. This

cs0 0F (o)
1(0)
lutely continuous on any interval [a,b] C (0,7). Hence by combining (3.21-

3.23), we obtain

implies (3.23). Finally, note that the function o — log (e ) is abso-

ISH
Q
g
Q
I
S
~
S
—_

+ — 2 —C3,
o

which implies the monotonicity of o — e“? 0112‘(;;). Furthermore, since

1(02,Qs,) > I(02,Qy,), we have for o1 < o9,

c301 UlF(Ul) C309 JQF(JQ) 309 UQF(UQ)
I(Uvaal) - I(OZaQﬂl) o I(O-Q)QUQ)'
This implies the monotonicity of o s e ZE(). O

1(0,Q0)"
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Lemma 3.7 shows the monotonicity involving a corrected energy term
F(o). We now want to show that the correction factor is well-behaved as
o — 0.

Lemma 3.8.

/ /
/ sE (S)ds = lim sE (S)ds < 00.
An,1) E(s) o—=0+ Jane,) E(s)
Proof. For s € A,
E'(s) _ J'(s) J'(s)
3.24 < —-1- < .
324 BG) ST TS
by the definition of the set A. Thus, it is sufficient to prove
J/

(3.25) lim / s (S)ds < 0.

a=0% JAn(o,1) J(s)

We follow the argument of Proposition 3.1 in [14]. Let M be sufficiently
large so that for o € (0, 1],

[ 19 s, < ME(@),
B(o)

N PO L 0 F (o) P (o)

J(1) J(o) J(o)
and K = MN. Furthermore, let 0 < 61 < 6 <1 and r¢ € (01,609]. For s €
(01,70), we have by (3.17) that

n—1+cys

, 0
< | o 2P 5 Py 1(s)

1 0 2 n—1+cos
< /{)B(S) <ed2(f’ P)+e ((%d(f’ P)) ) d¥, + Tl(s)

n—1+cos

1 2 2
< [ Py avs)as, + B

1
ge/ |V fI?dS, + <+C> I(s)
8B(s) e 60

for some sufficiently large C'. Therefore,

(3.26)  I(ro) — I(0y) = / '(s)ds < eME(r) + (1 + g) /0 I(s) ds.

€
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Hence

I(rg) — eME(ro) < I(61) + <1 + Z) (ro—61) max I(s).

€ s€(01,70)

Since 1 € (61, 02] is arbitrary,

1 C
— < — — —
Sen[%??;ﬂl(s) eME(0y) < I1(01) + <€ + 01> (62 — 01) se%?,};z] I(s),

which then implies

{1 - (1 + 5) (62 — 91)] max 1(s) — eME(6s) < 1(6y).

€ 1 s€[61,02]

If maxe(o 9,1 1(s) > maxepg, g, 1(s) then J(o) is identically equal to a con-
stant in [0, Oo]. If max,c(99,) 1(s) < max,epg, g, 1(5), then max,¢(g, g, J () =
maxXeg, g, 1 (s). Either way, we have

{1 _ (1 + Z) (62 — 91)] e J(s) — eME(0:) < J(6h),

which immediately implies

{1 - <1 + 2) (62 — 91)] J(0) — eME(62) < J(6,).

For 6y € (0,1) to be determined later, we set

3(1—03)

001_7904‘71,
€= ———«—
2K
to obtain
-6y C
(3.27) 1— | 2K6, " + o (02 —61)| J(62)
1
E(0) , =58 4n
LA < J6)
Let
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Then
lim ¢(0,n,j) = 3
01_>1 ¢( ) 19y j) 2
uniformly independently of j, n. Therefore, there exists 6 sufficiently close to

1 so that ¢(6o, n,j) > i independently of n and j. Choose j so that 66 < i.
Then

(3.28)

NN

—i(1—68™) C
—|2K6, " +—|(1—6) > 9]
to
for any n.
Since F(1) = E(1) by definition, we have that

E](\,l) = Je<1) < J(1).

Thus, (3.27) with n =0, #; = 6y and 62 = 1 implies
1 =  C
5 2K60," + = (1—6p)| J(1) < J(bo)
0

and by inequality (3.28), 96,](1) < J(6y). Now suppose GSJ(GI(}’) < J(O5F)
for k=0,...,n—1. Then

d
/ﬂsdlogJ ds-Z/kHslogJ s)ds

< 290 /M 7 log J(s) ds

05)
= Z 90 IOg (9k+1)

< Z 0% log 0 7 (by the inductive hypothesis)

n—1 .
_'90
k=
9 JZ” 19k

—i(1—03)

=logf, '~

= log
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J'(s)
T(s)

F(1 EQ1 E'
log ()zlog ()+/ s (S)ds
AN(oy,1)
S

Using the fact that > 0, we obtain

F(0y) E(0y) E(s

E(1) J'(s
< log ED) + /Am(eg,l) 7(s) ds (by (3.24))

E(1) Log(s)
) +/9 T(s)
(

ds

n
0
) —i(1-68)

+logf, ="

<
=18 T om)

Therefore, using the fact that E(1) = F(1) and the definition of N, we obtain

i(1-68) N.J(o"
0 () < o) < 20
0

Thus, we can use the inequality

E(0F) = +n _ J(0F)

1—6g <
2N % = 2

in (3.27) with §; = 60! and 62 = 67 to obtain

1 —0%h o . N
[2 - <2K90 0 + 0()) (1 - 90)] J(eo) S J(00+1)

Hence, by inequality (3.28), we have
(3.29) 0.J(07) < J(OHY).

By induction, inequality (3.29) holds for all n which in turn implies that

L g —ia-o)
/ s—log J(s)ds <logfy '—%
93 dS

holds for all n. Letting n — oo, we obtain

d ' d =i
/ s—log J(s)ds < / s—log J(s)ds < logfy'—% < oo.
AN(0,1) ds o ds

This proves (3.25) and the proof is complete. O
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Corollary 3.1.

exists.
Proof. By Lemmas 3.7 and 3.8
oE(o) — lim ( oF (o) E(U))

1;
crg% I(J, QU) crl—>0

1(0,Q,) F(o)
o 0F(0)

lim e® lim exp / sE,(S) ds | < oo
= —_— X .
00 I(0,Qs) 0—0 An(o,1) E(s)

Definition 3.1. We call a of Corollary 3.1 the order of f at 0 denoted by
o = ord/ (0).

Lemma 3.9. Let o = ord”/(0). There exist constants ¢o and oo depending
only on B(r), the Lipschitz bound and the ellipticity constant of g so that if

E(0) := E(0)exp (co /Am(o )Sf;((j)) d5> ;

E(o)
O-2a+n—2

then
o — e

is non-decreasing for o € (0,00).

Proof. Set

Since
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is non-decreasing. Since

. E(o) / E'(s)
lim = limexp | — S ds| <1,
o—0 G(O’) o—0 ( AN(0,0) E(S)

we have

a = lim oE(0) lim 0G(o) — lim e%® 0G(o)

o—0 I(O’, QJ) T o—0 I(U, QJ) o—0 I(O’7 Qa’).

Therefore, we obtain that

o 00(0) ey oEl0) )
(3.30) a<e T0.Q0) 0.0, p (/Am(o,a) Bs) d )

and
OB(0) _ o 0G0) _ 4G
I(0,Qs) ~ 1(0,Qs) — I(1)

Now by the proof of Lemma 3.8, if 98“ <o <6, then
/ o !
/ sE(S) dsg/ sJ(S) ds
An(©,0) E(s) o J(s)
oy /
< / SJ (5) ds
0 J(s)
0 ok /
A C)
< d
< 2/9 ST ds

< log ng 2k 0"

(3.31) = K.

_ 36"
=logfy '-%
S 6498
(3.32) < e C50.
to

Thus, this implies that for any cg > 1 and for

E(0) := E(0)exp (co /Am(o )Sg((j)) ds),

(3.33) E(0) < E(0) < ¢ E(q),

287
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and by (3.30)

(3.34) a < e(cngcs)aL(o-)

B I(0, Qo)
Furthermore, (3.13) and (3.17) imply that

2E(0) < /aB( ) %dQ(f, Q)d%, + I(0) + ko E' (o)
n—1

(3.35) <I'(o) - I(0) + (14 )I(0) + ko*E' (o),

where the constants ¢ and k depend on the Lipschitz bound of g. Inequality
(3.35) implies

“oy. 1 —1-000) _ ')
o — I(o) I(o)

(3.36) <
for any @ € Y. By combining (3.36) with (3.34) and absorbing the exponen-
tial terms in O(o) we obtain

2a+n—-1-0(0) <G’(U) 1 E'(0)
o ~ G(o)

(3.37)

If cg > kK + 1, then

(o) /(o)
i) = ) B

E'(c)  G'(o) N kKUE’(J)

> (1 (WK + 1)o) g5 = G o)

Therefore, using (3.37), we can choose ¢y sufficiently large so that

_ n
2a+n 2760§l?(a)
o E(o)
and hence B
- E(o)
o= eCO O-2a+n72

is non-decreasing. O
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By combining Lemma 3.7 and Corollary 3.9 we obtain

Corollary 3.2. Let B be a dimension-n, codimension-v local model, g a
normalized Lipschitz Riemannian metric defined on B(r), (Y,d) an NPC
space, f: (B(r),9) = Y a harmonic map and a = ord’ (0). Then there exist
constants k and o9 <1 depending on B(r), the Lipschitz bound and the
ellipticity constant of g so that

oE(0) _ kp_PE(p)

(3.38) T0.0,) = e 00,0, for0< o <p<oy
and
(3.39) _Elo) < ek”M for0 <o < p<oy.

o-2a+n72 — p2a+n72

Proof. Formula (3.38) immediately follows from Lemma 3.7. Furthermore,
Lemma 3.9 and (3.33) immediately imply (3.39). O

So far in this section, we assumed that our metric g is normalized at 0
(i.e., 9ij(0) = &;5). We will relax this assumption and still show the mono-
tonicity formula for the energy of a harmonic map (cf. Proposition 3.1
below). Let B be a dimension-n, codimension-(n — k) local model and g
a Lipschitz metric on B(r) with ellipticity constant A € (0, 1]. For x € B(r),
recall that R(z) is defined to be the radius of the largest homogeneous ball
centered at x contained in B(r). Assume that x is a codimension- (n — j)
singular point. Let B’ be a dimension-n, codimension- (n — j) local model
and L, : B'(AR(z)) — L;(B'(AR(z))) C B be a homeomorphism satisfying
properties (i) through (iv) of Proposition 2.1. In particular, recall this implies
that h := L%g is a normalized metric. If f: B(r) — Y is any finite energy
map, then f o L, is defined on B'(AR(x)). Moreover,

(3.40) / IV Py = / V(f o Lo)Pdun
B.(0) Lz (B.(0))

and

(3.41) [ oL = [ ViR,
B'(0) L.(B'(0))

This in turn implies that if f is a harmonic map with respect to the metric
g, then fo L, is a harmonic map with respect to the metric h. We call
f o L; the normalized harmonic map at x. Recall that oy was defined above



290 Georgios Daskalopoulos & Chikako Mese

as the upper bound for which monotonicity formulae of Lemma 3.5 and
Corollary 3.2 are valid for any harmonic map from a local model with a
normalized metric. Therefore, these monotonicity formulae for fo L, are
valid for balls B’(o) contained in B'(r¢(x)) for

(3.42) ro(z) := min{og, AR(x)}.
For a harmonic map f, we define the order of f at x as
ord/ () := ord’°=(0).

We also define E,(0) and I, (o) for o sufficiently small by setting

Eau(o) = /B Vg

and

L(o) = / 2 (f,Q)d,.
9B, (o)

Proposition 3.1. Let B be a dimension-n, codimesion-(n — k) local model,
g a Lipschitz metric defined on B(r) with ellipticity constant A € (0,1], (Y, d)
an NPC space and f : (B(r),g) — Y a harmonic map. Then there exist con-
stants v >0 and C > 1 depending on B(r), the Lipschitz bound and the
ellipticity constant of g so that for every x € B(r),

Ey(o) <C E(p)

(3.43) gy = Oy 0<o<p<r(z)
and

By (o) E.(p)
(3.44) gata; < Cpiaa 0 <o <p<r(@),
where
(3.45) r(z) = Arg(z) = min{ oy, )\QR(.Z‘)}.

Here, recall that R(x) is the radius of the largest homogeneous ball contained
in St(x) and oo > 0 defined in Corollary 3.2 is the number associated with
the monotonicity formulae.
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Proof. Let L, be as above and set
&)= [ 1V(f o L) P
B'(0)

Lemma 3.5 and Corollary 3.2 imply that there exists a constant ¢ > 1 so
that

E(s) E(r)
(3.46) 2ty < C Ty 0<s<r<ry(x)
and

E(s) E(r)
(3.47) 2+2a; < crn_2+2a$, 0<s<r<ryx)

with ro(x) as in (3.42). Let '=n—2+4+2y or I' =n — 2 + 2a,. Fix 0,p so
that 0 < 0 < p < r(z). Then, since A <1, 0 < A"to, \p < rg(x). We prove
(3.43) and (3.44) by considering the following two cases. In the first case,
we assume A\~ lo < A\p. We then have

IN

by (3.46) or (3.47) and the assumption that A™*o < A\p

IN

by (3.41) and the fact that L,(B'(Ap)) C Bz(p)

IN
|

by the fact that B,(0) C Bx(p)

O'F O'F
Eg(p 11
< O2p)F by the fact that p < )\Tp
1 E.(p)
S e r

In either case, we have proven our assertion by setting C' = 5. U
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4. Holder continuity

In this section, we prove the Holder continuity of a harmonic map from a
Riemannian complex into an NPC space (Y, d). Such a result in the case
when the domain metric is smooth was discussed in [2, 7]. Using the results
of the previous section, we are able to consider a Lipschitz metric g. More-
over, we provide the explicit dependence of the Holder exponent and Holder
constant on g, Ef and B. By dependence on B, we mean the dependence on
the dimension of B, the number of wedges as well as the wedge angles of B.
In the later sections, we give a condition for which the Holder continuity can
be improved to Lipschitz continuity. Our proof follows the approach in [2, 9].
The main technical difficulty is that monotonicity only works for small balls
(cf. Remark 3.3 [4]). Therefore in order to obtain the energy decay estimate
for large balls (cf. Proposition 4.3), we need the rather technical inductive
process described in Proposition 4.2 and Corollary 4.2. We first prove some
results pertaining to the geometry of local models.

Proposition 4.1. Fiz integers k, n so that 0 < k <n. Assume that the
sets By, ..., B, have the following properties:

(1) for each je{k,k+1,....,n}, B; is a finite set of dimension-n,
codimension-(n — j) local models, and

(2) if B € B; for some j € {k,k+1,...,n— 1}, then for any x € B and
o < R(x), we have B, (o) is isometric to B' (o) where B' € B; for some
i€y, j+1,...,n}.

Then for all j € {k,...,n} and B € B;, there exists K(B) > 1 so that for all
ied{j,...,n},

< Ii(B), Ve e S;—S;_1 CB,VT € TFi_l(x).

Proof. We first make the following observation. Let B be any dimension-
n, codimension-(n — k) local model and x € B. Recall that D = Sy, is iso-
metric to R* and hence the closest point projection map 7p : B — D is
well-defined. For any © € B — D, let t — x; be the constant speed parame-
terization of a ray starting from mp(z) and going through x = x;. Assume
x € 8;—S;—1 and let z € m;_1(x). Since t — x4 and t +— T; are rays from
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mp(T) = mp(x), we see that T; € m_1(x¢) and t|z — T| = |z — T¢|. Further-
more, we also see that tR(z) = R(z:). Thus, we observe that
|.’E — .CE| - ‘I‘t —ft|

(4.1) Ra) = R e 0

We now proceed with the proof of the assertion by reverse induction on j.
First note that there is nothing to prove for j = n since B,, = {R"}. Assume
that the assertion is true for B, By—1,...,Bj4+1. By (4.1), we only need to
show that for each B € B;, there exists x(B) so that for any i € {j,...,n},

|z — 7|
R(z)

< H(B), YVreUn (Sz — Si—l) C B,Vx € 7Ti_1({E),

where U is the set of points of B at a distance 1 from D. Suppose this
is not true, i.e. for some fixed ¢, there exist B € B; and a sequence y, €
UnN (SZ — 52;1) so that

(4.2) W oo

with 7, € m;—1(yn). Since U is a compact set, we may assume (by choosing
a subsequence if necessary) that vy, — y. By the definition of U, y € S,,, —
Sm—1 for m > j. Let us also assume i > j + 1. By the facts that y € S,,, —
Sm—1, |yn — y| = 0 and assumption (2.2), we can assume that y,, and 7, are
points in a local model B’ € B,,. Since m > j then the inductive hypothesis
implies that Ian,(;%LI is bounded which contradicts (4.2). Now consider the
case i = j + 1, hence m = j + 1. Since in this case |y, — Un| = 1 and because
U N Sj41 is compact and hence R(yy) > ¢ independent of n, we also obtain

a contradiction to (4.2). This completes the proof. O

Corollary 4.1. Let B be a dimension-n, codimension-(n — k) local model.
There exists kK > 1 so that for any i = {k,...,n},

|z — mi—1(z)|

R(I) <k, Vres;,—S;_1 CB.

Proof. Apply Proposition 4.2 with B; for j = k,..,n defined to be the set of
model spaces so that B’ € B; if and only if there exists z € S; — S;_1 so that
B (R(z)) is isometric to B'(R(z)). We are done by setting x = max x(B)
where the maximum is taken over B € Bj and j =k,...,n. O
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Proposition 4.2. Fiz A € (0,1] and integers k, n so that 0 <k < n.
Assume that the sets By, ..., B, have the following properties:

(1) for each je{k,k+1,...,n}, B; is a finite set of dimension-n,
codimension-(n — j) local models, and
(2) if B € B; for some j € {k,k+1,...,n— 1}, then for any x € B and
o < R(x), we have B, (o) is isometric to B' (o) where B’ € B; for some
ie{jj+1,...,n}
Then, there exists C > 1 so that for any B € Bj, j € {k,k+1,...,n}, and
x € B, there exist an ordered sequence

1>y

of points in B with x1 = x, x,, € S; and positive numbers o1, ..., 0pm—1 with
the property that
o

R(z;)

o
R(wit1)
Proof. We first need some preliminary constructions on each element B of

U?:kBj- So fix j and B € B;. Let U be the set of points of B at a distance
1 from D = S;. Set

(4.3) <C, <1 and By, (R(z;)) C By,,,(\0y).

Tit1

Un:U, Un—l :ﬂ'n—l(Un)a---a Uj :Wj(Uj+1).

By the convexity of the faces of B, we see that U; 11 CC B — 5j.
Fori=j+4+1,...,n— 1, we define a positive number R; and a subset N;
of B by an inductive procedure.

e Iirst we define R;1 and Njiq.
Let Vj;1 be so that
Ujt1 CC Vi1 CC Sjp1 — S
Thus, there exists Rj;1 > 0 so that
R(z') > Rjt1, Va' € V1.
We can choose a neighborhood N; {1 CC B — S of Uj;1 so that

By(20") € B —5;,Va’ € Il;41(z) where z € Nj 41 and o’ = |z — 2],
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11 (Nj+1) € Vi
and
Uj1 CC Njy1.

e Assuming we have chosen positive numbers R;1,...,R;—1, open sets
NjyiccB—-S;,...,N;_1 CC B~ S;_3 and sets Vj;1,...,V;_1 so that for
le{j+1,...,i—1},

By (20") € B — 5,4, V' € IIj(z) where x € N; and o’ = |z — 2/|,
IL(Ny) € W,

-1
U— U N,CCN,
m=j5+1

and
R(2') > Ry, V2’ € V],

we define R; and N; as follows:

First note that

i—1
Uy— U N, ccU,—S;_,
m=j+1

hence, we can choose V; C S; be so that

i—1
U, — ZU N, ccV,ccU; - S;_1.
m=j5+1

Thus, there exists R; > 0 so that
R(z') > R;, V2’ € V.
We can choose a neighborhood N; cC B — S5;_1 of U; — Uli;;+1 N; so that

By(20") ¢ B — S;_1, Va' € I;(x) where z € N; and o’ = |z — 2|,

IL(N;) C V;
and '
Ui ;9; N, cC N,
In summary, we have constructed sets U = Uy, ..., Ujy1, Vp,...,Vjt1,

positive numbers Rjiq,...,R,—1 and open sets Nj; 1 CCB-S;, ...,
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N,_.1 CCB-5,_9sothat foreachl=75+1,...,n—1,
BI/(20/) CcB- Slfl

for x € N, o’ € Ij(x), 0’ = |x — 2|,

IL(Ny) €V,
and
R(z') > R;,¥2' € V.
By assumption 2, and by shrinking Nji1,..., N,_1 if necessary, we assume

the following for = € Nj, 2’ € Ij(z), 0’ = |z — /|

(4.4) we can identify B,/ (c') with B'(¢’) where B’ € B.
Since
n—1
N= U N
I=j+1

covers the singular set of U, there exists R, > 0 so that
R(z) > Ry, Vx € U — N.
In the above, for each j € {k,...,n} and B € Bj, we associated sets
U=UB),Up-1 =Up-1(B),...,Ujt1 =Uj;+1(B),
positive numbers
Rjt1 =Rj11(B),..., R, = R,(B)
and open sets
Njt1 =Njz1(B),...,Ny—1 = N,—1(B), N = N(B).

Let

2 2
C(B):max{Rj+1(B),...,Rn(B),l},

and
C=X?max{C(B):Be€Bj,j=k,...,n}
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Furthermore, for [ =k, ..., n, let
R =min{R(B):Be€Bj,j=k,...,n}

We now proceed with the proof of the proposition. Since B, = {R"},
there is nothing to prove for B,,. We now prove the assertion for B; for any
j=k,...,n by doing a reverse induction; more specifically, assume that the
assertion is true for B, B,—1,...,Bj+1 and prove the assertion for B;.

Now given x € B € Bj, we need to show that there exist an ordered
sequence

1T D>y,

of points in B with z; =z, x,, € S; and positive numbers o1,...,0,-1
satisfying (4.3); i.e.,

a; 0;
1 <C 7

R =9 Ry =1 and BalB@) € B

i+1 (AQO-l)'

If z is in the lowest dimensional stratum D = S;, there is nothing to
prove so assume x € B — S;. By the scale invariance of the assertion, we may
assume that z € U(B). If z € U(B) — N(B), then let 21 =z, x € IL;(x1)
and o1 = 2)\2. Since

o1 2272 2a7?

= < ——<0C,
R(l’l) R(xl) R,

R(z1) <1 and R(z2) = 0o, we are done.

So assume z € N(B); in particular, z € N;(B) for some | =7 +1,...,
n — 1. In this case, we use the inductive hypothesis. More specifically, choose
' € I(x), let ¢’ = |x — 2’|, use (4.4) and note that the inductive hypothesis
implies that for any B’ € B; and any x € B/, there exist a sequence

T1=xD>To> - >Ty €5

and o1, ...,0,—1 with the property that

0

R(x;)

<om)<co, T <1
<C(B) < R =

and

By (R(%;)) C By,,,(A\0).
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Since x € U(B), we have that z,, € Uy(B) =1IL(U(B)). Thus, R(z,) >
R;(B) > R;. Therefore, if we set o, = 2A72, then

_Om <1
R(zm+1) ~
since R(xm41) = oo and
-2 -2
Om 2 < 2\ <C

R(xm)  R(zm) ~ R
Furthermore, since the distance of = to S; is equal to 1, R(x,,) < 1. Hence
By, (R(zm)) C By, (Aom).

This completes the inductive step and finishes the proof of Proposition 4.2.
O

Corollary 4.2. Let B be a dimension-n, codimension-(n — k) local model,
g a Lipschitz Riemannian metric defined on B(r), (Y,d) an NPC space and
f:(B(r),9) = Y a finite energy map. Fix o € (0,1). Then there exist C > 1
and Ry > 0 depending on g, B(r) and o so that for every x € B(or), there
exist a sequence of points

rT=x1> D> Xy
and a sequence of positive numbers
OlyenvsOm—1

so that fori=1,...,m—1,

(4.5) r(x:) <C, T(m;l) <1, By (r(z;)) < By, (03)
and
(4.6) r(zm) = Ro,

where r(z) = min{ Ao, \2R(z)} is as defined in (3.45).

Proof. We define B; for j = k,...,n to be the set of model spaces so that
B’ € B, if and only if there exists x € S; — S;j_1 so that B, (R(x)) is isometric
to B/(R(x)). Then By, . .., B, satisfy conditions (1) and (2) of Proposition 4.2.
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Let y € B(or) and assume y € S; —S;j—1. Choose 1, > 0 sufficiently
small so that By (ry) is compactly supported away from S;_; and r, << oy.
In this way, we see that A2R(y') = r(y/) for v/ € By(ry) and Ry, := inf{r(y/’) :
y' € By(ry) NS;} > 0. Choose a finite covering {By,(ry,):l=1,...,N} of
B (%) Thus, given x € B(pr), there exists [ € {l,...,N} so that
x € By,(ry,). By construction, the point y; is an element of S; for some
j €{k,...,n} and By, (ry,) is isometric to B(ry,) for some B € B;. Applying
Proposition 4.2 and noting that » = A2R, we obtain sequences x1 > - - - > 2,
and o7, ...,0, _, which satisfy

ol !

_ % 0 %
A7 2r(x;) — ¢ A2 (le)

<1 and By, (A" *r(2i)) C Ba,,,(\0))
by (4.3). If we set 0; = A0/, we obtain

0j op)

<,

o5 SO oy Stand Ba(\ () € Ba, (o)

Since A € (0, 1], the inclusion above shows that

By, (r(zi)) C Bu,,, (04)

which in turn implies

By (r(z:)) < Bz, (03).

Finally, if we set Rp = min{Ry,, .., Ry, }, then we obtain r(z,,) > Ry > 0.
U

Proposition 4.3. Let B be a dimension-n, codimension-(n —k) local
model, g a Lipschitz Riemannian metric defined on B(r), (Y,d) a metric
space and f: (B(r),g) =Y a finite energy map. Fiz o € (0,1) and suppose
that for x € B (or) there exist 3 > 0 and C > 1 so that

Ey(o) 5 Ez(p)
(4.7) on—2+20 = <C p—2+23

0<o<p<r(z),

where r(z) = min{Aog, \2R(z)} is as defined in (3.45). Then there exist K
and R > 0 depending only on the total energy ET of f, the ellipticity constant
A € (0,1], the Lipschitz bound of g, B(r) and o so that

E.(0) < K?6" 20 vz € B(or),o < R.
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Proof. Set
R :=min{Ro,00},

where Ry > 0 is as in Corollary 4.2 and o¢ € (0,1] as in Corollary 3.2,

EJ

Ko = (OO0 s,

where C' > 1 as in Corollary 4.2 and

QN g 143
K := () max{+/ Ko, VET},

Moy

where £ > 1 is defined in Corollary 4.1. Let z € B(or) and o < R.
Case 1. Assume that o < r(z). By (4.7),

E, (o ~ B,
Blo) Bl

Let x =21 > >y, and 01, ..., 0,1 be as in Corollary 4.2. By (4.5) and
(4.7),

E%(( )) < Eﬂ?i+1(ai)
r(wl)n 2420 (xi)n—2+2ﬁ

By, (04)
2428 T Tit1
< C” n—2+243

o

C«Cn—2+2,8 Eﬂ@i+1 (T(xi'ﬁ‘l))
r($i+1)n72+2[3

IN

fori=1,...,m — 1. Additionally, by (4.6), we have that

Ey, (r(zm)) < By, (r(zm)) EJ
T(xm)n—2+2ﬁ —  Rn—2+28 — Rn—2+28
and hence
Ey, (o) 2428\ Ef
on—2+28 = < (Com) Rn-2128"

This implies
E,(0) < K26 2128 whenever o < r(z).
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Case 2. Alternately, assume r(x) < o. Since 7(x) = min{\og, \2R(z)},
either

Aog <o or R(r)< .
First consider the case when Aoy < o. Then

E <E 9 noe < Eif n—2+26 o g2 n—2+28
2(0) < Ey(0) oo = ()\00)”_2+2ﬁ0 = o :

Next assume R(z) < 5. The fact that R(z') = oo for every 2’ € D = Sy,
implies that x ¢ D = Sg. Solet i € {k+1,...,n} be so that x € S; — S;_1.
Furthermore, let  =;,...,yr € D = S}, where y;_1 € II;_1(y;). We now
follow the following finite step procedure.

Step 1. Since R(y;) < vz, there exists I; € {k+1,...,i — 1} so that

2i—m
=l m=li 41,

R(ym) < —;

Thus, we can apply Corollary 4.1 to obtain

My

[Ym — Ym—1| < KR(ym) < ESVER

This implies

K 2K 2i~hg
Byi <FU) C Byi71 <)\20') c---C Byll <)\20'> .

Since y5 > 1, we also have

By, (o) C By, (%O‘) .

The above inclusions imply

21—l
Now we consider the two possibilities, either

TO— < r(yll) or r(yh) < A2

g.
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In the former possibility, we use (4.8) and Case 1 to see that

21’_11 21’_11 n—2+243
E.(0) < E,, <)\2H0> < Kg ( 2 HO’) < K2on—2+28,

In the latter possibility, either

27l 27hg
—50 or (B) R(yll)<T

(A) o0< \

g.

In Case (A), we use (4.8) and the fact that 1 < 2;11”0 to obtain

40-0

21—l 9i—h g\ "0
E < E n—2+20 < KQ n72+2ﬁ.
x(o-) — Yy < )\2 U) < )\40_0 > g — g

If (B) is true, then we proceed to Step 2.

Step 2. Since we are assuming R(y;,) < Zi:\il"“a, there exists lo € {k + 1,...,
l; — 1} so that

2i=m
R(ym) < —a 7 Ym=1I+1,...,1.
Thus, we can apply Corollary 4.1 to obtain
T—m .2

K
)\4

By, ()\4H O‘) C---C By, </\4/i a> .

Combined with (4.8), this implies

[Ym — Ym—1| < KR(ym) < o, Vm=1Iy+1,....1.

Hence

We now continue. In the similar way as in Step 1, we prove E, (o) < K 2
o™ 2t20 or we continue to Step 3 where we assume R(y,) < 225 0. At
Step S of this procedure, we produce an integer lg € {k,...,i7} and this
procedure terminates after a finite number of steps since lg > lgy1. Finally,
observe that in order to prove our assertion, we must show that if IV is the
number of steps taken and if y;, =y, then the case corresponding to (B)
(i.e., the case that R(y;,) < 217;§“N0 ) does not occur. This is true because
R(yi,) = R(yx) = oo and this completes the proof. O
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The following is a version of the Campanato Lemma (cf.[16, Lemma 1]).

Lemma 4.1. Let B be a dimension-n, codimension-(n — k) local model,
g a Lipschitz Riemannian metric defined on B(r), (Y,d) an NPC space
and f: (B(r),g9) = Y an L?*-map. Fiz o € (0,1). If there exist K >0, R €
(0,(1—o)r) and 5 € (0,1] such that

(4.9) inf o™ / (f,Q) du, < K20 Yo € B(or) and o € (0, R),
QeY B.(0)

then (there exists a representative in the L?-equivalence class of f which we
still denote by f) such that

d(f(2), f(y)) < Clz —y|’, ¥a,y € B(er)
with C' depending on K, r, R, 3, 0 and B(r).

Proof. We will use C' to denote a generic constant that depends only on K,
r, R, 5, 0o and B. For x € B(pr) and o € (0, R), let Q, » € Y be such that

1 2 e 1 o
Vol(By (o)) /B,@ P Qa) iy = B G103, (o) /Bm) (£, Q) dug.

For the existence of @ », see Lemma 2.5.1 of [11]. Furthermore,

o\ —n o\ —n
z P, Quo) ditg < (2 / P(f, Qo) dn
()7 Qo = (3) " [ (4@
g\ —n )
< (Z
<(3)7 ] #UQuo)
< 2"Co?.

Thus,
(E
2
o\ "N
<(3) / 20°(f, Qu.0) + 28°(f, Qa0 2) dpig
B.(c/2)
< 202

N—

) / P (Qurs Qo) ditg
B.(0/2)

which implies
d(Q$,0'7 Qm,o—/Q) S CO'ﬂ
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Apply the above inequality with ¢ = R/2* and sum to obtain

v —1

d(Qqz,r/2v, Qp rj2) < Z d(Qz,r/2% Qu, rj2r+1)

k=v

(4.10) SC:Z: (21)

The sum on the right-hand side is a partial sum of a geometric series and
hence {Q; r/2v}v=0,1,.. is a Cauchy sequence. Since Y is complete, there
exists Q, € Y such that

lim d(Qma QI,R/?’) =0.

vV—r00

Again using (4.10), we obtain

d(Qg,r/2v> Qz) = Jim d(Qu,r/2v+ Qu ry2")
v'—1

= V,ﬁ_{noo kz d(Qg,r/2x Qu,r2r+1)
1 B8
< — .
<0(3)
Thus, using d?(f, Q.) < 2d>(f, Qz.0) + 2d2(Qx7U, Q.), we obtain

(4.11) o [ R (.Qa) dy < O
B. (o)

for every o = 2—1“,75, v =0,1,.... On the other hand, for an ¢ € (0, R], there
is an integer v > 0 such that R/2"*! < o0 < R/2” and we can conclude that
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(4.11) holds for all o € (0, R]. Let =,y € B(pr) with |z — y| < R and let T
be a point in B(r) such that 2|z — ZL‘%‘ =2y — x%| = |z — y| =: 0. Using the
fact that B, (%) C Bx(0) N By(o), we obtain

d*(Qz, Qy)
1

S d2(Q.,Q,) d
S VOl(Bx (%)) /le(;) (Q Qy) /J“g

1
2

<Co™" / 2d°(f,Qa) + 2d*(f, Qy) dug
Bz%(%)

<C (o‘" / d*(f,Qu) dpig + 0" / & (f, Qy)dug>
B.(0) B, (0)
< Co® = Clz —y|*8.

For a pair of points z,y € B(or), we can choose a sequence zp = x,...,2x =y
such that |z; — z;41] < R and k < 2pr/R. Applying the above inequality to
pairs z;, z;+1 and summing, we obtain

20r
*(Qr, Qy) < —-Cla = y*, Yo,y € B(or).

Finally, we will show that f(z)= Q. for a.e. x € B(pr). This of course
will complete the proof of the lemma. It suffices to show that f(z) = Q.
for a.e. x contained in an interior of a wedge. In fact, by using compact
exhaustion, it suffices to show f(z) = @, for z € Q where 2 is an Euclidean
domain contained in the interior of every wedge of B(pr). We first
prove:

Claim. If

E. = {IL‘ € Q : limsup

1 2 x €
o0 Vol(Bg(0)) /Bm(o) T ))dug 4 }

then
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To prove this claim, we let g : 2 — Y be a Lipschitz map which approx-
imates f in L? (cf. Section 1.5 of [12]). Then

1
Vol(B,(0))
2

— 2 2 2 .
= Vol(B,(0)) /BI(J)d (f,9) dpg + Vol(B,()) /Bz(a)d (9,9()) dpg
2

d*(g(x), f(x)) dpug

/ P (f f(2)) dpsg
B. (o)

" Vol(B.(0) /w)
2 2 2 o .
= Vol(B,(0)) /Bw@d (F:9) kg + 1B, o) /Bw(g)d (9,9(x)) dpsg

+2d%(g(), f(x)).

Since g is continuous, the second term on the right-hand side approaches 0
as 0 — 0. Thus,

d*(f, f(x)) dpg < 2HL(w) + 2d°(g(), f(2)),

lim sup

1
o—0 m /B'c (a)

where

—sup 2
HL(x) := 31;18 Vol(B, (1)) /Bz(r)d (f,9) dug.

If

lim sup d*(f, f(x)) duy > 4e,

o—0  Vol(Bz(o)) /Bl,(a)
then either
HL(z) > e or d*(g(z), f(z)) > e

By the Hardy—Littlewood maximal theorem there exists a constant ¢ > 0
such that

oo € QML) > ) < € [ (70,

and the Markov inequality says

no(lo € Qs (r0) > ) < ¢ [ (f.0)dy

Hence
c+1

no(B) < = [ (7.9 duy

Since g can be chosen such that the integral on the right-hand side is arbi-
trarily small, we have proved the claim.
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It follows that

1
lim ———— 2 =0 f .e. Q.
cfli}r%) V01<B33(U)) /;E(U) a (f’ f(x)) d'ug 0 forace re

Furthermore,

d(f(x), Qz)
1

" ) [, .0 du, |
- 2 P e 2
< Vol(B.(o)) /Bz(g)d (f f(x)) dpg + Vol(B. (o)) /Bz(a)d (f,Qu) dpg
2

Vol(B..(o)) 2 # 2
< Vol(B, (o)) /Bx(a)d (f, f(z)) dpg + Vol(B,(c)) /Bw(a)d (f; Qu,o) ditg
4 2
+ Vol(B,(0)) /Bm(a)d (Ql’:Q:L’,U) dpig

6 0 )
< BT o 1) g+ 4@ Q).
Hence,

d(f(2), Qz)
1

Sﬁlim/ d*(f. f(x))d

v—oo Vol(By(R/2")) JB,(r/2+) > 7)) dkg
+4 lim d*(Qz, Qu.ry2v)

=0 forae €.

This completes the proof. O

By combining the previous lemma with the Poincare Lemma 2.1, we
obtain

Proposition 4.4. Let B be a dimension-n, codimension-(n — k) local
model, g a Lipschitz Riemannian metric defined on B(r), (Y,d) an NPC
space and f : (B(r),g) = Y a finite energy map. Fiz o € (0,1). Suppose that
there exists R > 0 so that for every x € B(or),0 < R,

(4.12) E,(0) < K2g"~2128,
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Then
d(f(x), f(y)) < Clz —y|”,Va,y € B(or)
with C depending on K, R, o, B(r) and the ellipticity constant of g.

Theorem 4.1. Let B be a local model, g a Lipschitz Riemannian metric
defined on B(r), (Y,d) an NPC space, f: (B(r),g) =Y a harmonic map
and oy the order of f at x. If ap > v > 0 for all x € B(or) where o € (0,1),
then there exists C depending only on the Lipchitz bound and ellipticity con-
stant of g, BT, B(r) and o such that

d(f(‘r)?f(y)) < C’x - y’aa \V/:E,y € B(QT’)-

Proof. The result follows immediately from inequality (3.43) of Proposi-
tions 3.1, 4.3 and 4.4. [l

Theorem 4.2. Let B be a local model, g a Lipschitz Riemannian metric
defined on B(r), (Y,d) an NPC space and f: (B(r),g) =Y a harmonic
map. For o € (0,1), there exist C and v > 0 depending only on the Lipchitz
bound and ellipticity constant of g, EY, B(r) and o such that

d(f(x)vf(y)) < C’x - y|’y7 Vl',y S B(QT)-

Proof. The result follows immediately from inequality (3.44) of Proposi-
tions 3.1, 4.3 and 4.4. [l

By using Proposition 2.1 we obtain the following:

Theorem 4.3. Let B(r) be a ball or radius r around a point in an admis-
sible complex X endowed with a Lipschitz Riemannian metric g and (Y, d)
an NPC space. If f : (B(r),g) =Y is a harmonic map and o € (0,1), then
there exist C and v > 0 so that

d(f(z), f(y)) < Clz —y|", Va,y € B(or).
Here, C and v only depend the total energy EY of the map f, (B(r),g) and o.
5. Convergence in the pull back sense
Given a metric space (Y,d) and a map u : B(r) — (Y, d), we recall the fol-

lowing construction of [12]. First, we let Q¢ = B(r), ug = w and dp : Qg x
Q — RT U{0} be the pseudodistance function dy(x,y) = d(up(z), uo(y)).
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Next, we inductively define ;11 = Q; x €; x [0, 1] and identify ; as a sub-
set of ;41 by the inclusion map z — (z,x,0). Extend u; : Q@ — (Y,d) to
uiy1 : Q2 — (Y,d) by

uit1 (2, y,A) = (1 = Nui(z) + Aui(y)

and let
dit1(z,y) = d(uit1(2), ui1(y))-
Thus,
di+1((z,2,0), (y,9,0)) = di(2, y),
di1((2,y,A), (2,9, 1)) = [A = pldi(z, y)
and

diJrl(za (:Ea Y, A)) < (1 - )‘)di+1(zv (l’,l’, O))
(5.1) +Adit1(2, (y,9,0)) = A1 = A)diza((z, %,0), (y,¥,0)).

Let Qo = UQ; and define uq, : Qoo — (Y, d) by setting us, = u; on Q;. With
doo(,y) := d(Uso (), s (y)), define (Yoo, doo) as the completion of the quo-
tient space from (Qoo,ds) and let 7 : Qo — Yoo be the natural projection
map. Equation (5.1) implies that the metric space (Y, ds) is an NPC
space. The unique extension of us to Yo is an isometry U : (Y, ds) —
C(u(B(r))) C Y to the closed convex hull of the image of u. Furthermore, if
t: B(r) = Qp = Qu is the inclusion map, then u = U o7 o ¢, (cf.[12]).

Definition 5.1. Let vy : B(r) — (Y, di) be a sequence of maps to NPC
spaces. We say vy converges to v, in the pullback sense if there exists a pseu-
dodistance function d, : Qo X Qs — RT U {0} with the following property.
Let (Y., d.) be the completed quotient space from (Quo, dx) and 7 : Qo — Yi
the natural projection map. Furthermore, let vy = u in the above paragraph
and let dj o0 1 Qoo X Qoo — RT U {0} the corresponding pullback distance
function of vy o, replacing us above. Then dj, o, converges pointwise to d.
and vy = wo L.

Remark 5.1. If we let v, = u with w as in the paragraph preceeding the
definition above and d,; (dy o resp.) the corresponding pullback distance
function of vy ; = u; (Vs 0o = Ueo Tesp.), then dy = dy .
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Definition 5.2. Suppose vj, converge to v, in the pullback sense. Let dj, ;
(resp. d.;) be the corresponding pullback distance function to vy, : Q; —
(Y, di) (vesp. vy : Qi — (Y, dy)). We say that the convergence is locally
uniform if the convergence of dj, ; to the limit d. ; is uniform on each compact
subset of 2; x ;. In this case, we also say that v, is a locally uniform limit
of wvy,.

Proposition 5.1. Let v : B(r) — (Y, di) be a sequence of maps to NPC
spaces for which there is uniform modulus of continuity control, i.e., assume
for each x € B(r) and R > 0 there is a positive function w(x, R) which is
monotone in R, satisfying

lim w(z, R) =0,
R—0

and so that for each k € Z

max d(vg(z),v <w(x,R).
e d(ui(@). vi(y)) < wla )
Then there is an NPC space (Y, ds) and a subsequence vy, of the vy which
converges locally uniformly in the pullback sense to a limit map v, : B(r) —
(Yy,dy), and v, satisfies the same modulus of continuity estimates. Here,
(Ys, dy) is the completed quotient of (oo, ds,00) Where dy oo = limp o0 di oo-

Proof. The proposition follows from the argument of the proof of Lemma
3.1 and Proposition 3.7 in [12] since the fact that B(r) is not a Riemannian
domain plays no consequence in the argument. ]

6. The tangent map

Let B be a dimension-n, codimension-v local model and g a normalized (i.e.,
9i;(0) = d;;) Lipschitz metric on B(1). Given r € (0,1), f: B(r) = (Y,d)
and A > 0, define the X-blow up map fy : B(§) — (Y, d)) by setting

g/\($) = g(ACL’%
= (A2,
dx(p,q) = py " d(p,q),
I(x) = f(Ax),
Definition 6.1. If there exist Ay, — 0 and an NPC space (Yi,d,) so that

f. converges locally uniformly in the pullback sense to f. : B — (Yi,d.),
then f, is called a tangent map of f.
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Lemma 6.1. A harmonic map f : (B, g) — (Y,d) has a non-constant tan-
gent map f. which satisfies

d(fe(@), fx(y)) < C'lx =y,
where C' and ~y are only depending on the Lipschitz bound of g and Ef.

Proof. By change of variables
R R e e
B(0) B()\o)
and
| BNz, = a3 [ o),
0B(0) 0B(\o)
Thus, the definition of ) implies
| pois, <1
8B(1)

and Corollary 3.2 implies

fB(1) ‘Vf/\’;d/igx . AE(N)

im 3 = lim oo = Q.

A—0 faB(l) (1>\(‘]C)\,f)\(()))dzgA A—0 ( )
Consequently, by choosing A sufficiently small, we have
(6.1) | 190 Py, < 20.

B(1)

Since g;; is Lipschitz, we have
(6.2) |9ij(x) = 8i3] < cla| and g (z) = bij] < c|a].
Hence,
(63)  |(g)i(@) =yl < Ala] and [(g2)7 — dy] < eAlal.

Therefore, there exists a uniform Lipschitz bound of the family of metrics
{g»} independent of A. This implies

da(fx(x), fa(y)) < Clz —y|" Vo, y € B(r),
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where C' and v are independent of A by Theorem 4.2. Thus, we have uni-
form modulus of continuity control for the sequence fy, then by Propo-
sition 5.1, there exists a sequence A\ — 0 and an NPC space (Yi,d,) so
that f), converges locally uniformly in the pullback sense to a limit map
f« : B(1) = (Yi,dy). The fact that f,. is non-constant follows immediately
from the proof of Proposition 3.3 of [9]. O

Lemma 6.2. Let g be a normalized metric on B(r), f: (B(r),g) — (Y, d)
a harmonic map and fy:B(%) — (Y,dy) be the X-blow up map. Let hy :
B(1) — (Y,dy) be a map which is harmonic with respect to the Euclidean
domain metric and with the boundary condition hy|s(1y = falag(1)- Then

(6.4) (1—c)) BN < 9DEN < (14e)) °EN
and
(6.5) (1—e)\) °EM™ < E"M < (14c)) °EM.

Proof. By inequality (6.3), we have

—~ i0h Oh _ < ;0N 0N
(6.6) (1—&)253%.%5 Z(QA)J%.%

ij=1 i,j=1
—~ i0f Of
<(1 e
< ( —i—c)\)'Z(S om oa,
3,7=1
and
" iOhy Ohy :Ohy  Ohy
6.7 1—cA .2 < i LA
67) Q=N ) ar o, = 22N G0 B,
1,j=1 t,j=1
" :0hy Ohy
<(1+4+cA o —=. —=.
_( e )Z 6% a:L'j
i,j=1
The assertion follows immediately. O

In particular, Lemma 6.2 and (6.1) imply that

1 2
6.8 Sphr <« dpix <« = oxph < .
( ) - —1—cA —1—c)

Thus, Proposition 5.1 and Theorem 4.2 imply that there exists a subsequence
of Ar (which we will still denote A\; by an abuse of notation) and an NPC
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space (Y, dy) so that hy, converge locally uniformly in the pullback sense to
he : B(1) = (Yi, dy). Set by := hy,, fr := fy, and g = gy,. Furthermore, let
di(@,y) = dx, (fi(®), fe(y)) and di(z,y) = dx, (h(), ki (y)). Then in any

compactly contained subset of B(1) x B(1), dy, dj converge uniformly to
(the restriction to B(1) = Qg of) d., d. respectively.

Proposition 6.1. Under the notation above, the pseudodistance functions
d. and d, above are equal. Consequently, f. = hs and hy (which are har-
monic maps with respect to the Fuclidean metric) converge locally uniformly
in the pullback sense to f.

Proof. By the repeated use of the triangle inequality,

|di (2, y) — di(z,y)| < da, (fr(@), hr(2)) + dr, (fr(¥), he(y))-

Therefore, for any r < 1, the Lebesgue dominated convergence theorem and
the Poincaré inequality (cf. Theorem 2.6) imply

/ / du(z,y) — du(z, y) Pdp(z)dp(y)
B(r) /B(r)

—tim [ ) - (o) Pue)dnty)
#2080 JB()

< avol(B(r)) Jim | B @)

(6.9) < 4C lim Va3, (fi(), h())|du(z).
—“UJIB(r)

Equations (6.4) and (6.5) imply

S phs < # mph < ; 9 pha < ﬂ 8 b
1—-cA 1—-cA 1—rc\

Therefore, if we let w = %j}\ + %hA,

1
2°BY < 'EN + OB — o /B( : VA (fx, ) ldp

1

—20EM O~ 5 [ (VA ld
B(r)
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by Equation (2.2iv) of [11]. Since E"» < 9E®| this in turn implies
[ IVl 0
B(r)

as A — 0. This, combined with Equation (6.9) the continuity of d, and d,,
implies that d(z,y) = di(x,y) which in turn implies that (Y, ds) = (Ya, ds)
and h, = f.. O

Lemma 6.3. Assuming that the directional energies of hy, converge to those
of f«, the tangent map fi : B(1) — Y, is homogenous of order o where « is
the order of f at 0, i.e.,

g 100 = ke (1. () 1 0)

and the image of t — fi(tx), 0 <t <1, is a geodesic.

Proof. For notational simplicity in this proof we willlet E = F and I = 1.
Using (3.6) and (3.11) with f replaced by hy, noting that the remainder in
(3.6) is 0 because the domain is Euclidean, and using the convergence of hy
and its directional energies to f, and its directional energies, we have

Y of
(Ef (a)) _2/813(

or
2FE (o) < /

8B(0)

2
ax

o)

and

A(fur 1)) (o 1-(0)) S

We next claim
(v=(57)
= 575575 | U 000 (s,

2
(6.10) - /8 . (d(f*,f*(0>>£d<f*,f*<0>>d2) ] > 0.

This follows from (3.9), (3.14) and (3.19) applied to the harmonic map
hi (without the error term due to the fact that hy is harmonic for the
Euclidean domain metric) and the assumption that the directional energies
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of hj converge to those of f,. On the other hand, our assumption on the
convergence of directional energies implies that

oBl (o) _ . oEj(0)
=7 lim =9 ")
I (o) k00 ]g:(g)
o op AT 9B (A\o)
= lim 75 1-n
k—00 oy, )\k ng()\kO')
oA gEf()\ka)
= lim ———————=
k—o0 g]f()\ko-)

= Q.

Thus,
()
_ Ef(0)2If(a) [(/B(U) d2(f*7f*(0))d2> (/B(o) 2d2>

_ /8 . (d(f*, f*(O))id( m (O))d2>2

Of«

r

Hence,
0 f«
or

0
Ed(f*yf*(o)) = ‘

and

2 _ 2 2
2 /B V= /a (@ (f.. 1.(0)))dS.

B(o) 87“

We can now follow the proof of Proposition 3.1 [9] to show the homogeneity
of f,. O

Lemma 6.4. Let f,:B(1) = (Yi,di) be a homogeneous map of order c.
(See definition of homogeneity in Lemma 6.53.) Then there exist a metric
space (C,d) and a map f. :B(1) = C so that the energy density of f. is
equal to that of f* and for every z,y € B(r) and 2’ = tx, y = ty, we have

(6.11) d(fula’), fu(y)) = t9d(fulw), fuy))-

Proof. Let C be the disjoint union of geodesics from f.(0) to f.(z) for each

A

x € 0B(1) with f.(0) identified. We define a distance function d on C in
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the following way. Let P,@Q € C and suppose that P (resp. @) is the point
on the geodesic v (resp. o) from f.(0) to fi(x) (resp. f«(y)) at a distance r
(resp. s) from f,(0), where z,y € 0B(1). We first define the angle § between
~v and o by

A2 (£:(0), fi(@)) + d2(£.(0), £ (y)) — 2(fi(2), /+(¥))
2. (£:(0), fu())dx(f(0), f+(y))

cosf =

and set
CZQ(P, Q) =r*+ 5% — 2rscosé,

fe(@) = fi(z).
By definition of d, we see that (6.11) holds. Therefore,

whenever z,y lie on the same geodesic from 0 or whenever z,y € 0B(1).
Therefore, for any = € 0B(r) and any vector V normal to 0B(r),

[f(V)P(2) = £ (V) P(a).

Furthermore, the same holds for any = € 0B(1) and V' tangential to 0B(1).
For a.e. © = (r,0) € B(r) and a vector V tangential to 0B(r),[11, Lemma
1.9.4] implies that

‘f*(v)|2(r’ 0) _ 21_1% dQ(f*(T, 9), {;(T,G + eV))
—_ 12% dz(f*(lv 0), Jec;(la 0+ €V))
— 29 im dz(f*(lu 0)’ f*(l, 0+ GV))

e—0 62

=2 f(V)*(1,6)
= |f*(V)|2(Tv 9)7

where (r,0) is the polar coordinates of z and € — 6 4 €V is the flow along
0B(r) defined by V. O

7. Harmonic maps from a flat domain

Let B be a dimension-n codimension-v local model with wedges Wj, C R",
k=1,...,N. Recall that the coordinates (z!,...,2") of R™ are arranged
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so that D is given by " #*! = ... = 2" = 0. In this section, we show that

harmonic maps h : (B(r),0) — (Y, d) are Lipschitz in the direction parallel
to D(r) = DN B(r).

Lemma 7.1. Let ¢: B(1) = R be a non-negative L? function. Suppose
that for x € B(r), there exists C > 0 so that

1n/ ¢>du§€l/ ddu, 0 <o <p<min{R(z),1—r}.
7" JB.(o) P~ JB.(p)

There exist C >0 and R € (0,1 —1r) depending only on r and B(r) such
that

gbd,ugC/ o du, Yr € B(r),o € (0, R].
B.(R)

o™ JB.(0)

Proof. The result follows from the same argument contained in the proofs
of Corollary 4.2 and Proposition 4.3 (with ¢ replacing |[Vf|?, A =1 and

B=1). 0

Lemma 7.2. Leth: (B(1),0) — (Y,d) be a harmonic map. Let V be a unit
vector parallel to D(r) and let H(z) = h(z +€V) for 0 < e << 1. Then

(7.1) 0< —/ Vn - Vd?(h, H)dp
B(1)

for € C=(B(1 - 6)).
Proof. Define a map h, : B(1 — €) — R by setting
(@) = (1 = n()h(e) + n(2)H ().
Here, (1 —t)P 4 tQ for P, € Y denotes the point on the unique geodesic

between P and @ at a distance td(P, Q) from P and (1 — t)d(P, Q) from Q.
Since spt(n) C B(1 — €), we see that

holoB(1—e) = hloB(1—e)

and

hi-nloB(1—e) = HloB(1—¢)-
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By following the proofs of Lemmas 2.4.1 and 2.4.2 of [11], we see that
hy,h1—, € WL2(B(r)), and on each wedge Wy, k=1,..., N, we have

/ \Vhy 2du + / \Vhi_y|*dp
B(1—€)NW, B(1—€)NWj

g/ |Vh\2du+/ \VH|*du
B(1—€)NW, B(1—e)NWy

o / Vi V2 (h, H)dp + / Q. Vn)dy,

where Q(n, Vn) consists of integrable terms which are quadratic in 1 and
Vn. Taking the sum over k£ = 1,...,[ and noting that the harmonicity of h

and H implies
[ vhPdns [ (ohd
B(l—e¢) B(l—e¢)

/ |VH|*du < / \Vhi_y|*dp,
B(1—¢) B(1—¢)

and

we deduce

0< —2/ Vn - Vd*(h, H)dp +/ Q(n, Vn)dpu.
B(1—¢) B(1-¢)

By replacing n by t¢n, dividing by ¢ and letting ¢ — 0, we obtain (7.1). O

Lemma 7.3. Let h:(B(1),0) — (Y,d) be a harmonic map and let V be
a unit vector parallel to D(1). For r € (0,1) and x € B(r), there exists a
constant C depending only on r and B(r) so that

h(V)P(x) < C °E".

Proof. Let H be as in the proof of Lemma 7.2. For z € B(1) and o €
(0, R(x)), let n approximate the characteristic function of B,(c) in (7.1)
to obtain

0

— d*(h, H)dE > 0.
/an(cﬂ or 1)

Let

Jx(a):/aB ( )d2(h,H)dE and Kx(a):/B ( )dz(h,H)d;L.
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Then

0

-1 n—1
%Jz/ TR Y+ 22T (0) >
@)= [ s

. Jy(0), Yo € (0, R(x)).

This implies that

and hence
Jy (U)

Un—l

J (1) < R 0<7<o0<R(x).
Now integrate the above inequality from 7 = 0 to ¢ to obtain

< oJi(o) O'KJIC(O').

K, =
(o) = — -
Thus,
/
(Kfc(a)> _ 1 <KQ/C(J) _ nK$(U)> > 0.
om on o
This implies o — K;;—Sf’) is non-decreasing for o € (0, R(z)) and hence

Kulo) _ Kalp)

on T pn

, 0 <o <p<R(z).

By Lemma 7.1, there exists C > 0 and R > 0 such that

K, (o)

O—?’L

< CK,(R), Yz € B(r).

Fix z € B(r) and let ¢ — 0 to obtain

Divide by €? and let € — 0 to obtain

h(V)P(z) < C /B P < Sph
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Lemma 7.4. Let h: (B(1),0) — (Y,d) be a harmonic map and r € (0,1).
If z,y are a pair of points in a wedge of B(r) equidistant to D(r), then

d(h(z), h(y)) < Llz — y|
for some constant L depending only on °E", r and B(1).

Proof. Let «y : [0,1] — (Y, d) be a constant speed parameterization of the line
between x and y. Then by Lemma 7.3,

1
d(h(x), h(y)) < /0 Iha(y (1)) |dt < VO TER g — ).

8. Lipschitz regularity
8.1. At a regular point

In this subsection, we use the results of Section 7 to give a new proof of the
Lipschitz regularity of Korevaar—Schoen [11] and generalize their result for
Lipschitz domain metrics. Recall that a dimension-n, codimension-0 local
model is B = R"™.

Lemma 8.1. Let B be a dimension-n, codimension-0 local model, g a
normalized Lipschitz metric defined on B(r), (Y,d) an NPC space and f :
(B(r),g9) — (Y,d) a harmonic map. Then the order o of f at 0 is > 1.

Proof. By Proposition 6.1, a tangent map f. of f is a locally uniform limit
of a sequence of harmonic maps h; from a Euclidean unit ball B(1). The
regularity result of [9] implies that hj is locally Lipschitz with the local
Lipschitz bound depending on ° E™ and the distance to 9B(1). Hence, so is
f«. By Korevaar and Schoen [12, Theorem 3.11], the energy densities of hy,
converge to those of f,. By Lemma 6.3, f, is a homogeneous map of order
«. The homogeneity and the Lipschitz continuity of f, implies o > 1. O

Theorem 8.1. Let B be a dimension-n, codimension-0 local model, g a Lip-
schitz Riemannian metric on B(r), (Y,d) an NPC space and f : (B(r),g) —
(Y,d) a harmonic map. Then f is Lipschitz continuous in B(or) with the
Lipschitz constant depending on o € (0,1), (B(r),g) and the total energy Ef

of f.
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Proof. For each z € B(1), the normalized map f o L, (cf. Proposition 2.1)
has order > 1 at 0 by Lemma 8.1. Thus, the order of f at « is > 1. The
result now follows from Theorem 4.1. (]

8.2. At a codimension-1 singular point

Throughout this subsection B is a dimension-n, codimension-1 local model
with wedges half spaces given by ™ > 0 and lower dimensional stratum D a
hyperplane given by the equation ™ = (0. We first prove some properties of
harmonic maps from this local model equipped with the Euclidean metric §.

Lemma 8.2. Leth: (B(1),0) — (Y,d) be a harmonic map. For every 3,r €
(0,1), there exists B depending only on (3, r, B(1) and °E" so that

d(h(x), h(y)) < Blz -y’
for every x,y € B(r).

Proof. By Lemma 7.4, h is Lipschitz when restricted to D(ty), to = %
Thus Hélder regularity of h restricted to a wedge W with any Holder expo-
nent 3 € (0,1) follows from the boundary regularity result of Serbinowski
[15] where the Holder constant B is only depending on the choice of 3, r

and the total energy of the map h. O

The next lemma gives an estimate of the energy decay of harmonic maps
along an e-neighborhood.

Lemma 8.3. Let hy be defined as in Section 6 (see the paragraph preceeding
Proposition 6.1) and fix R € (0,1). Set D (r) to be the e-neighborhood of
D(r) in B(r), i.e.,

D (r)=U{z=(21,...,2,) € W : 2, < e} NB(r),

where the union is over the wedges W containing D. Then for any r € (0, R),
there exist constants C,k > 0, ko sufficiently large and ey > 0 sufficiently
small (depending only on R) so that

SEM D ()] < Ce®, Yk > ko, e < €
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Proof. Let B;(r) be a ball of radius r centered at x. We will use the notation,
Bhr) = CELr) = [ [VhPdu
B.(r)

and

1) = 31(r) = / &2 (h, h(x))dS
9B, (r)

for any map h : B(r) — (Y,d). Let ro := 1 — R. By Lemma 6.1, f, is a non-
constant, continuous map and hence there exists ¢; > 0 so that

Il (rg) > 2¢1,Vz € D(R).
Thus, by the local uniform convergence, there exists kg so that
I™(rg) > ¢1, Yo € D(R), k > ko.

We may assume we have chosen k sufficiently large so that A, € (0, ). By
(6.8),

2
E}*(ro) < B"(1) < (1) < . ¥z & D(R),k > ko.
“ o

Thus,

roEg};’c (ro) < 2roo
I (rg)  — (L=cAgy)en

By Corollary 3.2,

=:c9, Vx € D(R),k’ > ko.

eEM(¢)

T

I3 (¢)

<c3, Vx € D(R),]{Z > ko, e <rg

with c3 depending on c3. By Lemma 8.2,

h 2 2B+n—1
E;”“(G) < Cgfm (6) < CgB €

- € o €

= 3B%2P=2 vz € D(R), k > ko.

Here, we have choosen € (1/2,1). Since D.(r) can be covered by

(%4)"_1 number of (2¢)-balls centered at points in D(r) where ¢4 is
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independent of ¢,

n—1
EM[Do(r)] < e B2(20)%47 2 x ()
€

=: 65625_1.

The result follows from the fact that the choice of 8 implies 26 —1 > 0. U

Lemma 8.4. Let hy, fir and h, = fi be defined as in Section 6. For r €

(0,1),

(8.1) lim °E™(r) = °E"(r)
k—0

and

(8.2) lim ngf"“(r) = 5Ef*(r),
k—o00

and the directional energies of fr, and hy converge to that of fs.

Proof. Again in this proof we will denote °E = E. By the regularity result of
harmonic maps from smooth domains [11, Theorem 2.4.6] or Theorem 8.1,
hy, is uniformly Lipschitz in B(1{Z) — Dg(l—y) for r € (0,1). First, we note
that

lim E"[B(r) — D(r)] = E/*[B(r) — D(r)).

k—o0

This follows from [11, Theorem 3.11]. By Lemma 8.3,
E"[D(r)] < Ce*
for any e sufficiently small. Thus,
limsup E™ (r) — Ce® < limsup E" [B(r) — D(r)]
k—o0 k—o0

= EX[B(r) — De(r)]
< Ef(r).

By lower semicontinuity of energy,

ET-(r) < liminf E™(r) < limsup E™ (r) < E/(r) + C€".

k—o0 k—o00
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Since € > 0 can be made arbitrarily small, this proves (8.1). To prove (8.2),
we see that

k—o00

< liminf 9 E%*(r)

k—o0

< liminf 9 E"™ (r)
k—ro0

< limsup(1 + cAg) E™ (r)

k—o0
= E"(r)
= Bl (r).

Here, the last line follows from the fact that f. = h. by Proposition 6.1.
Since there is no loss of total energy, we see that the directional energies
converge by using the lower semicontinuity. O

Lemma 8.5. Let g be a normalized Lipschitz metric on B(r) and f:
(B(r),g9) — (Y,d) a harmonic map. Then its tangent map f.: B(1) — Y,
is homogeneous of order o where « is the order of f at 0.

Proof. Follows immediately from Lemmas 6.3 and 8.4. O

Lemma 8.6. Let g be a normalized Lipschitz metric on B(r), f: (B(r),g)
— (Y,d) a harmonic map and f, : B(1) — Y, its tangent map. For every
B, € (0,1), there exists B so that

d(f«(@), f«(y)) < Blz =y’

for all x,y € B(r') and B is only depending on the choice of 3, ', B(1) and
the total energy of f..

Proof. First, note that hy converges to f, uniformly by Proposition 6.1.
Next, note that the energy of hy converges to that of f. by Lemma 8.4.
Thus, the result follows from Lemma 8.2. O

Lemma 8.7. Let g be a normalized Lipschitz Riemannian metric on B(r)
and f: (B(r),g9) = (Y,d) a harmonic map. Then the order o of f at 0 is
> 1.
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Proof. Since f, is homogeneous of degree a,

7.2, 1.0) = leala. (1. () £.0))

On the other hand, for any 5 € (0,1) and ¢ small, there exists a constant B
so that

d.(fu(tz), £.(0)) < Bltx|’
by Lemma 8.6. Thus,

. (f* (Z) ,f*(O)) < Blta]Po.

If o < 1, choose 3 so that 3 > « and take the limit as ¢ — 0 to obtain

d, <f* <|§|> ,f*(0)> —0.

Since the choice of 2 € B(1) is arbitrary, this contradicts the fact that f is
non-constant (cf. Lemma 6.1). O

Using the fact that the order at a point on D is > 1, we can prove
Lipschitz continuity in B(1).

Theorem 8.2. Let B be a dimension-n, codimension-1 local model, g a Lip-
schitz Riemannian metric on B(r), (Y,d) an NPC space and f : (B(r),g) —
(Y,d) a harmonic map. Then f is Lipschitz in B(or) with Lipschitz constant
depending on o € (0,1), (B(r),g) and the total energy E¥ of f.

Proof. For each x € B(1), the normalized map f o L, (cf. Proposition 2.1)
has order > 1 at 0 by Lemma 8.7. Thus, the order o, of f at x is > 1. The
result now follows from Theorem 4.1. O

8.3. At a higher codimension singular point

Now we consider a dimension-n, codimension-v local model where v > 2.
Generally, we do not expect a harmonic map from this space to be Lipschitz
continuous. On the other hand, we show that Lipschitz continuity can be
proved with an additional assumption.

First, we establish some properties of the tangent map. Lemmas 8.8 to
8.10 below are the analogs of Lemmas 8.3, 8.4 and 7.4 corresponding to the
codimension-v case for v > 2.
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Lemma 8.8. Let B be a dimension-n, codimension-v local model with v >
2, g a normalized Lipschitz metric defined on B(r) and f : (B(r),g) — (Y, d)
a harmonic map. Suppose hy : (B(1),0) — (Y,d), fr : (B,g) = (Y,d), hs =
f« : B(1) = (Y,d) defined as in Section 6. Let D, be the e-neighborhood of
D and Dc(r) =B(r) N D.. Fiz R € (0,1). For any r € (0, R), there exist C
and k > 0, ko sufficiently large and €y > 0 sufficiently small so that

SEM D (r)] < Ce®, Yk > ko, € < .

Proof. As in the proof of Lemma 8.3, there exists a constant cg so that

hy
B
13*(e)
Thus, by Theorem 4.2,
h 2 2y+n—1
B (e) < gl (e) < c3Ce?rtn —: g2
€ €

We can cover D (r) be =&, number of (2¢)-balls. Thus,

en—
c
Eh [De(r)] < 5 C €02 = eV 2,
The lower semicontinuity of energy implies that

EF[De(r)] < cge®’ 7.

Lemma 8.9. Let hy, fx, he = f« be as in Lemma 8.8. For r € (0,1),

lim OE"(r) = SE"™(r)
k—0

and

Furthermore, the directional energies of fi, hi converge to that of f.. The
maps f« is a homogeneous map of order o, where « is the order of f at 0.

Proof. Using Lemma 8.8, we can follow the argument of the proof of
Lemma 8.4. g
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Lemma 8.10. Let B be a dimension-n, codimension-v local model, g a nor-
malized Lipschitz metric defined on B(r), (Y,d) an NPC space, f : (B(r),g)
— (Y,d) a harmonic map and f. : B(1) — Y, its tangent map. Then for x,y
on the same wedge at a distance p away from D(1), we have

d(f+(x), f+(y)) < Llz —y],
where L is depending only on r, B(1) and 'E".

Proof. If z,y € B(1/2) are two points on the same wedge at a distance p
away from D(1), then Lemma 7.4 implies

d(hy.(x), hi(y)) < Llx —yl,

where ¢ is depending on r and °E. Thus, the result follows from the
uniform convergence of hy to f. and the convergence of the energy of h; to
that of fi. O

Lemma 8.11. Let B be a dimension-n, codimension-v local model, g a nor-
malized Lipschitz metric defined on B(r) and f: (B(r),g) — (Y,d) a har-
monic map. Then its tangent map f. : B(1) = Y. is homogeneous of order
o where a is the order of f at 0.

Proof. Follows immediately from Lemmas 6.3 and 8.9. O

Our next goal is to relate the order (and hence the Holder exponent) of
a harmonic map to the first eigenvalue associated with the domain and the
target space. We start with a general definition of the first eigenvalue. Let G
be a Riemannian complex with volume form ds and T" an NPC space. The
center of mass of a map ¢ € L?(G,T) is a point @ € T so that

/Gd%(cp,sO)ds = grel{,/Gd%(% P)ds.

The unique existence of such a point is guaranteed by the NPC condition (cf.
[11, Proposition 2.5.4]). Now let G(T') be the set of Lipschitz maps ¢ : G — T
into an NPC space T" and define the first eigenvalue of G with values in T
as

Vel*d
(8.3) M(G.T) = inf JeIVPIds
a(1) Jg dp (e, p)ds

In the applications, G will be a spherical complex associated with the domain
of the map and the NPC space T" will be a tangent cone of the target NPC
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space Y. The following results appear in [6] in the case when the domain is
of dimension 2.

Lemma 8.12. Suppose f: B(r) — (Y,d) is a bounded map, o € (0,7) and
Q €Y so that

d2(f,Q)dx = inf/ d*(f, P)dx.
/83(0) ( ) PeY JoB(o) ( )

If m:Y = TQY is the projection map into the tangent cone of Y at Q, then

d% v(mo f,0)dY = inf/ d2 o (mo f,V)d,
J o Ao f0as = it [ e sy

where 0 is the origin of TgY .

Proof. Let t — ¢(t) be a geodesic so that ¢(0) = @. By the minimizing prop-
erty of ¢(0) = @, we have

2 2
OS/aB(U)d (f,c(t))dE—/ 2(f, c(0))dS.

0B(o)

Furthermore, by Bridson and Haefliger [1] Corollary II 3.6, we have

o AU @)e1) = A/ (). (0)

t—0 t

= —cos Z(¢,Vy),

where 7, is the geodesic from ¢(0) to f(y) and Z(vy, c) is the angle between
vy and ¢ at ¢(0) = Q. Therefore,

d*(f, c(t) — d*(£, c(0))

0 < lim ax;
t—0 aB(O') t
i [ W) A O) p 1))+ d(, e(0)))ds
t—0 oB(0) t

= —2/ cos Z(7yy, ¢)d(f,c(0))dX.
0B(0)

Let [c] be the equivalence class of ¢ and V = ([¢],1) € TpY . Since 7o~y
is the (radial) geodesic from the origin 0 to 7o f(y) in TgY,

cos Z(yy, c)d(f(y), f(0)) =< mo f(y),V >,
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and thus
(8.4) OS—/ <mo f(y),V > dx.
yeoB(o)

By the continuity of the inner product, (8.4) holds for all V' = (Vj, t) € ToY
where Vp = V/|V|. Therefore, for ¢t > 0,

| (o 1), (o, )
0B(0o)
:/ 2 Flmo fy)f> =2t <o f(y),Vp > dE
8B(0)
o 24
> /8 L]
[ (o )00z
0B(0)

O

Corollary 8.1. Suppose f : B(r) — (Y, d) is a bounded map, o € (0,7) and
Q €Y so that

d? dY = inf d2(f, P)dx.
L, B @as =gt [ ()

ey

If m:Y = TqY is the projection map into the tangent cone of Y at Q) and
o :B(1) —» B(0) is defined by o(x) = ox, then

Jom) V(7o foo)(z)PdE
Jopy T o foo(x))?ds

> M(0B(1), TpY),

where V9 indicates that we are taking the tangential part of the energy den-
sity function on 0B(1).

Proof. By Lemma 8.12, the center of mass of the map mo f oo is 0. Thus,
the assertion follows immediately from the definition of A\;(B(1),7Y). O

A consequence of Corollary 8.1 is the following theorem which associates
the first eigenvalue with the order of a harmonic map.

Theorem 8.3. Let B be a dimension-n, codimension-v local model, g a
normalized Lipschitz Riemannian metric defined on B(r), (Y,d) an NPC
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space and f: (B(r),g) — (Y,d) be a harmonic map. If \1(0B(1),TQY) >
(> ) for all Q € Y then a(a+n—2) > [ (> ), where a is the order of
fato.

Proof. By inequalities (6.2), (6.3) and (6.6), it suffices to assume that the
volume form and the directional derivatives are with respect to the Euclidean
metric §. This assumption is clearly without any loss of generality since in
this proof we are interested in rescalings of B(o) to unit size as 0 — 0 and at
small scales the metric g is approximately Euclidean. We emphasize that f
is harmonic with respect to the metric g which is not necessarily Euclidean.

Let 0; — 0 so that f,, — fi : B(1) — Yi. From Lemma 8.9, there exists
A so that

lim VO f,,
)

2d2:/ VO f.|d.
=0 JaB (A OB()\)

By Gromov and Schoen [9, pp. 200-201], we have

I gAE(o ) i ONE(o))
1111 = lim ,
720 [opon) @ (f; Qoa)dE 020 [op ) d*(f, £(0))dE

where (), € Y is the point so that

2 s 2
/ oy P QI8 = it | e

9B(0)

This then implies

Jom(ory @ (f: Qoa)dS

8.5 li =
(89) 2 Tomon) P 1005

Let Q; := Qs, €Y and m; : Y — T, Y be a projection map into the tangent
cone of Y at ;. By Lemma 8.12,

8.6 / d*(mio f,0)dX = inf d*(mjo f,V)dX.
(8.6) OB(03\) ( ) VeTQ,Y JoB(Ao:) ( )

Additionally,

(8.7) d*(f,Q) = |mio fI* and VO£ > |V (w0 f)?
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since m; is distance non-increasing. Thus, by (8.5) and (8.7),

lim ¥ Jomy V9ol — lim faBa,\ VO f12dS
o0 faB d2 (fo,, f5,(0))d%  0:=0 faB mA) a2(f, f( ))

= 1im

30 faB o f, Q1)ds
> lim N JoBey VO (i 0 f)PdS
= 5,50 faB(aiA) |7; 0 f|2d%

By change of coordinates y = o;Az, (8.6) and Corollary 8.1,

(0iA)? ny@B(aiA) ‘Va(m o f)(y)|?d% B fxeaB \Va(m o f o (a:\)(z)[2dE
Pty e TOPEE ~ Jecgm [ 2 o) (o)
_ f:cEB(l) |v6(7rz o fo(oN\)|?*(z)dE
- fxeB(l) |(mi o fo(oiN))(x)]|?d%
> M (0B(1),Tg,Y)
> B(> B).

Therefore,

fBB ’vaf*PdE
R =
faB(l) f*af*( ))
— A de(,\) VO f.|2dE
faB d2 f*,f*( ))
— lim A fBB(A) VO £y, [2dS
0;—0 faB ,;(foi,fgi (0))d2
> B(> B).

For y € 0B(1), the homogeneity of f, implies

d(f+(ry), £+(0)) = r*d(f«(y), £(0)),
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and hence

pra=f 1 (\%f (ry)

0
1
B / OB /0 (a2r2m=2a (£ (y), £.(0))
Yy
720 ()P ) drds:

2

1
+ ﬂ|Vaf*(ry)|2> " drd%

a2

- - 2
= a5 ) ey U 105

1 / 0] 2
+ V T Yy dax.
2c +n — 2 yG?B(l) ‘ ( )|

Thus,
BN P N 1
S I(1) 2a+n—-2 2a+n-—2

«

and
ala+n—-2)=R>[((> F).
O

Given B and any 2 € B(r), consider f o L, : B/.(r(z)) — (Y, d) of Propo-
sition 2.1 where B/, is a local model associated with the point z. We let

A= inf A (OBL(1),TpY).
1= it 1(0B,(1), 1Y)

Corollary 8.2. Let B be a dimension-n, codimension-v local model, g a
normalized Lipschitz Riemannian metric defined on B(r) and (Y,d) an NPC
space. If A > a(a+n—2) and f: (B(r),g9) — (Y,d) is a harmonic map,
then f is Hélder continuous with Hélder exponent o in B(pr) for o € (0,1).

Proof. For any = € B(pr), Theorem 8.3 says that the assumption \; > o(a +
n — 2) for all @ € Y implies the order of f at = is > «. The result now follows
from Theorem 4.1. g

We now give a sufficient condition implying that the order of a harmonic
map is > 1. For each z € D, let N(z) be the v-plane perpendicular to D at z.
Note that |z| < 1 implies that 0B(1) N N(z) is a spherical (v — 1)-complex.
We first need the following lemma.
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Lemma 8.13. Let f. : B(1) — Y. be a tangent map of a harmonic map. If

the order of f. is not equal to 1, then fi is constant in the direction parallel
to D.

Proof. By Lemma 6.4, we may assume that f, maps into a cone with f,(0)
equal to the vertex. Also, we may assume by homogeneity of f. that the
domain of f, is B. Let z,y € B(1) be points on the same wedge and same
distance to D and 2’ = tx, ¢y = ty. Then

td. (fo(@), £ (y)) = du(fu(2), fu(y) < Ll2" = of| = Ct,

where L is the Lipschitz constant of f, and C is a constant depending on
L and on the angle between the line from x to 0 and y to 0, respectively.
Thus,

du(fe(), f2(y)) < O

and the lemma follows by letting t - 0if a <1 or ¢t — oo if a > 1. O

Theorem 8.4. Let B be a dimension-n, codimension-v local model, g a
normalized Lipschitz Riemannian metric defined on B(r), (Y,d) an NPC
space and f: (B(r),g) = (Y,d) be a harmonic map. If A\1(0B(1) N N(0),
ToY) > (> B) and a < 1 for all Q €Y, then the order o of f at 0 satisfies
ala+v—2)=pB(>p).

Proof. By the homogeneity of fi,

Ef*(1>
o =
I<(1)
_ Je IVEPd
Jomy @ (f+,0)d%
Joep Jyemynniw) |V I+ dy dz
fxED W faB(l)mN(x) d?(f«,0)d% dx

(8.8) -

We use the notation V¥ to indicate the we are taking the directional energy
of f, on OB(1) N N(z). Using Lemma 8.13, |V f.|> = |[V" f,|? and hence
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/ VI w)dy
yeB(1)NN ()

/ VY P )y
yeB(1)NN ()

VY fel? (y)dy

/yGB((l—IxP)”z)ﬁN(O)
— -l [ VYR ) ) dy.
yeB((1—]x[?)/2)NN(0)
Here, the second equality follows from translation in direction parallel to D

and the last equality follows from the homogeneity of f.

Now apply the change of coordinates z = (1 — |z|?)~ /2y to obtain

/ VYR~ [of?) 2y dy
yeB((1—|z[*)/2)NN(0)

— (1 Je)s / N £ () d.
B(1)NN(0)

Hence the numerator in (8.8) is

/ (1- p;\?)“é“’“da;/ VN £ (2 d.
zeD B(1)NN(0)

Similarly, the denominator of (8.8) is

1
— _dx / d*(f.,0)d%
/xeD (L= |22 Joa)n () (£+.0)

:/ (1_|x|2)”‘2;”dx/ d?(f.,0)d>.
zeD 0B(1)NN(0)

Thus, as in the proof of Theorem 8.3, we obtain

_ fB(l)mN(O) VY filPdy
faB(l)ﬂN(O) d*(fx,0)d%
a? R
= +
20+v—2 2a+v-—2

(67

and hence
ala+v—2)=R> B> p).
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Given B and any = € B(r), consider f o L, : B/.(r(x)) — (Y, d) of Propo-
sition 2.1 where B/, is a local model associated with the point z. We let

AV .= inf  M\(OBL(1)NN(0),ToY).
r= ginf o A1 OB.(1) N N(0), ToY)
Corollary 8.3. Let B be a dimension-n, codimension-v local model, g a
Lipschitz Riemannian metric defined on B(r) and (Y,d) an NPC space. If
MV >v—1and f:B(r) — (Y,d) is a harmonic map, then f is Lipschitz
continuous in B(or) for o € (0,1).

Proof. For any x € B(pr), Theorem 8.4 says that the assumption )\{V >
v — 1 implies that the order of f at x is > 1. The result now follows from
Theorem 4.1. (]

9. Main Theorem

Here, we collect the regularity results from the previous sections to summa-
rize our main regularity theorem for Lipschitz Riemannian complexes.

Theorem 9.1. Let B(r) be a ball of radius r around a point x in an admis-
sible complex X endowed with a Lipschitz Riemannian metric g, (Y,d) an
NPC space and f: (B(r),g) — (Y,d) a harmonic map.

(1) If t € X — X2 let d denote the distance of = to X2, Then
for 0 € (0,1) and d' < min{or, od}, f is Lipschitz continuous in B(d')
with Lipschitz constant depending on the total energy of the map f,
(B(r),9), d and p.

(2) Ifz € X®) — X*=1) for k=0,...,n—2, let d denote the distance of
z to X 1. Then for o € (0,1) and d' < min{or, od}, f is Hélder
continuous in B(d') with Holder exponent and constant depending on
the total energy of the map f, (B(r),q), d and o. More precisely, the
Hélder exponent o has a lower bound given by the following: If /\{V >
B(> B) then ala+n—k—2)> B(>B). In particular, if A >n —
k — 1, then f is Lipschitz continuous in a neighborhood of x.

Proof. The assertion follows from Theorems 8.2, 8.4 and Corollary 8.3. [
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