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ABSTRACT. The purpose of this paper is to extend the Donaldson-Corlette theorem to the
case of vector bundles over cell complexes. We define the notion of a vector bundle and a
Higgs bundle over a complex, and describe the associated Betti, de Rham and Higgs mod-
uli spaces. The main theorem is that the SL(r,C) character variety of a finitely presented
group Γ is homeomorphic to the moduli space of rank r Higgs bundles over an admissible
complex X with π1(X) = Γ. A key role is played by the theory of harmonic maps defined
on singular domains.
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1. INTRODUCTION

Higgs bundles were first introduced by Hitchin in [20] as a PDE on a vector bundle over
a Riemann surface obtained by the dimensional reduction of the anti-self dual equations
on R4. Since then, the field has seen a remarkable explosion in different directions most
notably the work of Simpson on variations of Hodge structures and applications to Kähler
groups (cf. [31], [33]). The work of Donaldson and Corlette ([15], [8]) provided links with
the theory of flat bundles and character varieties of groups. Higgs bundles have been
generalized over noncompact manifolds (cf. [10], [32], [23], [24]) and singular curves (cf.
[5]). The goal of this paper is to push this even further by considering Higgs bundles over
more general singular spaces; namely, finite simplicial complexes.
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As pointed out by Hitchin, Donaldson and Corlette, a key role in the relation between
character varieties and Higgs bundles is played by the theory of harmonic maps. Har-
monic maps had been used before in the study of representations of Kähler manifold
groups starting with the work of Siu [34] (also see [6]) and has seen some remarkable ap-
plications in providing new proofs of the celebrated Margulis super rigidity theorem (cf.
[22] and all the references therein) and the only existing proof of the rank one superrigid-
ity theorem due to Corlette and Gromov-Schoen (cf. [9] and [19]). But these directions
involved showing that the representations are rigid, in contrast with Hitchin’s point of
view which is to study the moduli space of such representations.

In all the above references, one studies representations of fundamental groups of smooth
manifolds rather than arbitrary finitely presented groups. In other words, the domain
space of the harmonic map is smooth. Chen and Eells-Fuglede (cf. [7], [16]) developed
the theory of harmonic maps from a certain class of singular domains including admis-
sible simplicial complexes. By admissible they mean complexes that are dimensionally
homogeneous and locally chainable in order to avoid certain analytic pathologies (see
next section for precise definitions). Since any finitely presented group is the fundamen-
tal group of an admissible complex, there is no real restriction in considering admissible
complexes. The key property of harmonic maps shown in the above references is that they
are Hölder continuous but in general they fail to be Lipschitz. In fact, the work of the first
two authors shows that Lipschitz harmonic maps often imply that the representations are
rigid (cf. [12] and [13]).

The starting point of this paper is a finitely presented group Γ and a two-dimensional
admissible complex without boundary X with fundamental group π1(X) ' Γ. We also
fix a piecewise smooth vector bundle E over X that admits a flat SL(r,C)-structure. Such
bundles are parametrized topologically by the (finitely many) connected components of
the SL(r,C)-character variety of π1(X). One can write down Hitchin’s equations

FA + ψ ∧ ψ = 0(1.1)
dAψ = 0(1.2)

for a sufficiently regular unitary connection A and Higgs field ψ. Again, as in the smooth
case, the SL(r,C) connection dA + ψ is flat and one can ask what the precise condition is
so that the pair (dA, ψ) corresponds to a representation ρ : π1(X)→ SL(r,C).

Given a representation ρ as above, we can associate as in the smooth case a ρ-equivariant
harmonic map from the universal cover X̃ to the symmetric space SL(r,C)/ SU(r). The
first two authors in [12] studied harmonic maps from simplicial complexes to smooth
manifolds and discovered the following crucial properties:

(1) The harmonic map is smooth away from the codimension 2 skeleton of X̃ .
(2) The harmonic map satisfies a balancing condition at the codimension 1 skeleton of

X̃ in the sense that the sum of the normal derivatives vanishes identically.
(3) The harmonic map blows up in a controlled way at the codimension 2 skeleton of

X̃ .

All the above properties are described precisely in Theorem 3.3. This allows us to prove
that the derivative of the harmonic map belongs in an appropriate weighted Sobolev
space L2

1,δ (cf. Proposition 4.5). The definition of weighted Sobolev spaces is given in Sec-
tion 3.2. Finally, the main theorem describing the correspondence between equivalence
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classes of balanced Higgs pairs of class L2
1,δ and representations is given in Section 4 (cf.

Theorem 4.3).
We would like to end this introduction with a brief discussion of some motivation and

future applications of this paper that we will explore elsewhere (cf. for example [?]). Note
that, with the exception of [5], the theory of Higgs bundles on singular varieties is not
very well understood. For example, one of the important questions about fundamental
groups of singular projective varieties is whether fundamental groups of normal varieties
behave more like the ones of smooth manifolds, or in the other extreme, there are very
few restrictions on them (cf. [1] and [25]). The connection with the results of this paper is
as follows: By [16] Example 8.9, an n-dimensional normal projective variety X admits a
bilipschitz triangulation with its singular set as a sub-complex of dimension at most n−2.
Furthermore, X is admissible in the sense of Definition 2.2. Thus, studying harmonic
maps on X , or more generally constructing moduli spaces of bundles on X, could imply
restrictions on fundamental groups as in [6] and [33].

2. VECTOR BUNDLES OVER COMPLEXES

2.1. Basic Definitions of smooth bundles.

Definition 2.1. (cf. [26]) Let EN be an N -dimensional affine space. A cell of dimension i
is a non-empty, open, convex, bounded subset in some Ei ⊂ EN . We will use the notation
σi to denote a cell of dimension i and call Ei the extended plane defined by σi. A locally
finite convex cell complex or simply a complex X in EN is a locally a finite collection F = {σ}
of disjoint cells in EN such that for any σ ∈ F its closure σ is a union of cells in F . The
dimension of a complex X is the maximum dimension of a cell in X .

For example, a simplicial complex is a cell complex whose cells are all simplices.

Definition 2.2. A connected complex X of dimension n is said to be admissible (cf. [7]
and [16]) if the following two conditions hold:

(i) X is dimensionally homogeneous, i.e., every cell is contained in a closure of at least
one n-cell, and

(ii) X is locally (n − 1)-chainable, i.e., given any (n − 2)-cell v, every two n-cells σ and
σ′ incident to v can be joined by a sequence σ = σ0, σ1, ..., σk = σ′ where σi and σi+1 are
two adjacent n-cells incident to v for i = 0, 1, . . . , k − 1.

The boundary ∂X of X is the union of the closures of the (n− 1)-cells contained in the
closure of exactly one n-cell. Using a regular barycentric subdivision we obtain that given
any locally finite complex there is a locally finite simplicial complex such that any cell is
a union of simplices.

Definition 2.3. Let U be a subset of a complex X . A function f : U → R is called smooth if
for any n-cell σ of X , the restriction f

∣∣
σ∩U can be extended to a smooth function on Ei ∩U

in the extended plane defined by σ. A map f : U → Z ⊂ EM into a complex Z is called
smooth if with respect to some affine coordinate system on EM , f = (f 1, . . . , fM) where f j
is smooth for every j = 1, . . . ,M .
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Definition 2.4. A Riemannian metric gσ on a cell σ is the restriction to σ of a smooth
Riemannian metric on its extended plane. A Riemannian metric g on X is a smooth Rie-
mannian metric gσ on each n-cell σ of X satisfying the additional property that if τ is
a face of σ, then gσ

∣∣
τ

= gτ , where gσ
∣∣
τ

denotes the restriction of the extension of gσ to
the extended plane of σ. In particular, the expressions of gσ with respect to some affine
coordinates in the extended plane are smooth functions in the sense of Definition 2.3.

Definition 2.5. A smooth complex vector bundle of rank r over a complex X is a topological
space E and a continuous, surjective map π : E → X such that:

(1) for each x ∈ X the fibre π−1(x) has the structure of a complex vector space, and
(2) there exists an open cover {Uα}α∈I of X such that for each α ∈ I there exists a

homeomorphism ϕα : π−1(Uα)→ Uα × Cr such that
(i) ϕα restricts to a linear isomorphism π−1(x) ∼= {x} × Cr for each x ∈ Uα, and
(ii) If Uα ∩ Uβ 6= ∅, then the transition function gαβ = ϕα ◦ ϕ−1

β : Uα ∩ Uβ × Cr →
Uα ∩ Uβ × Cr induces a smooth map gαβ : Uα ∩ Uβ → GL(r,C).

A section of π : E → X is a continuous map s : X → E satisfying π ◦ s = idX . The
section is smooth if on each local trivialisation π−1(Uα) ∼= Uα × Cr with projection onto the
second factor denoted by p2 : π−1(Uα) → Cr, the composition of Uα

s−→ π−1(Uα)
p2−→ Cr

is a smooth map as in Definition 2.3. Let Ω0(X,E) denote the vector space of all smooth
sections of π : E → X . If E is a smooth vector bundle, then so is any associated bundle
formed by taking the dual, tensor product, etc. In particular, if E is smooth then End(E)
is smooth.

Definition 2.6. A smooth complex p-form on a cell σ is the restriction to σ of a smooth
complex p form on the extended plane of the cell. A smooth p-form ω = {ωσ}σ∈F on a
complex X with values in a smooth vector bundle E is a collection of smooth p-forms
ωσ with values in E for each cell σ of X , with the additional property that if τ is a face
of σ, then ωσ|τ = ωτ . In particular, the expressions of ωσ with respect to some affine
coordinates in the extended plane are smooth functions in the sense of Definition 2.3. We
denote Ωp(X,E) as the space of all smooth p-forms with values in E. If E is the trivial line
bundle, then we write Ωp(X) = Ωp(X,E) and this is the space of smooth p-forms on X .
Given a smooth p-form ω = {ωσ}σ∈F ∈ Ωp(X), we define dω = {dωσ}σ∈F and note that this
is a well-defined smooth (p+ 1)-form. Clearly, d2 = 0 and the complex (Ω∗(X), d) denotes
the smooth deRham complex. We denote by Hp

dR(X) the cohomology groups associated
with this complex (cf. [18, Ch. VIII]).

Definition 2.7. A smooth connection on a smooth vector bundle π : E → X is a C-linear
map D : Ω0(X,E)→ Ω1(X,E) that satisfies the Leibniz rule

D(fs) = (df)s+ f(Ds), f ∈ Ω0(X), s ∈ Ω0(X,E).

We denote the space of all smooth connections by AC(E).

The definition of D can be extended to bundle-valued forms in the usual way. More
precisely, any element in σ ∈ Ωp(X,E) can be written as a linear combination of elements
of the form σ = sω with ω ∈ Ωp(X) and s ∈ Ω0(X,E), and define

(2.1) Dσ = s(dω) + (Ds) ∧ ω.
Remark 2.8. Implicit in the definition of Ω1(X,E) is that 1-forms with values in E must
agree on the interfaces between the cells in the complexX . Therefore, the definition above
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implies that a connection must map sections that agree on the interfaces to bundle-valued
1-forms that agree on the interfaces.

As for the case of a smooth vector bundle over a smooth manifold, with respect to a
trivialization ϕα : π−1(Uα) → Uα × Cr, D = d + Aα where (Aα)ij is a complex-valued
smooth 1-form. Aα is called the connection form of D with respect to the trivialization ϕα.
In different trivialization ϕβ and with gαβ = ϕα ◦ ϕ−1

β we have,

(2.2) Aβ = g−1
αβdgαβ + g−1

αβAαgαβ

Definition 2.9. The curvature of a smooth connection D is the matrix valued 2-form FD
defined by

D2s = FDs, for all s ∈ Ω0(X,E).

Locally, we have (FD)α = dAα +Aα ∧Aα, where Aα is the connection form of D. Further-
more,

(2.3) (FD)β = g−1
αβ (FD)αgαβ,

and so the curvature form FD is an element of Ω2(X,End(E)).

Definition 2.10. The complex gauge group is the group GC(E) of all smooth automorphisms
of E. If D is a smooth connection on E and g ∈ GC(E), then we define g(D) = g−1 ◦D ◦ g.
In local coordinates, the action of GC(E) on AC(E) is

(2.4) g(d+ Aα) = d+ g−1dg + g−1Aαg.

Definition 2.11. A smooth Hermitian metric h = (hσ) on a rank r complex vector bundle
π : E → X is a smooth section h of End(E) such that for each cell σ its restriction hσ is
a Hermitian metric and that if τ is a face of σ, then hσ|τ = hτ . A Hermitian metric in a
trivialization ϕα : π−1(Uα) → Uα × Cr is given locally by a smooth map h̃α from Uα into
the positive definite matrices in GL(r,C), and the induced inner product on the fibres of
E is

< s1(x), s2(x) >= ϕα(s1(x))
T
h̃α(x)ϕα(s2(x)) ∈ C.

Definition 2.12. A connection D on a vector bundle E with a Hermitian metric h is a
unitary connection if the following equation is satisfied.

d 〈s1, s2〉 = 〈Ds1, s2〉+ 〈s1, Ds2〉 ,

where 〈·, ·〉 is the pointwise inner product on the fibres of E induced by the metric h. The
space of smooth unitary connections on E is denoted A(E, h). If D ∈ A(E, h), then the
curvature FD is a section of Ω2(ad(E)). In other words, with respect to a unitary frame
field the curvature satisfies F ∗D = −FD.

Definition 2.13. The unitary gauge group G(E) is the subgroup of GC(E) that preserves the
Hermitian metric h on each fibre of E. The action on G(E) on AC(E) preserves the space
A(E, h).

Definition 2.14. A connection D on a vector bundle E is flat if FD = 0. Given a flat
connection, we can define the twisted deRham complex (Ω∗(X,E), D). The cohomology
groups will be denoted by Hp(X,E).
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Definition 2.15. A flat structure on a vector bundle π : E → X is given by an open cover
{Uα}α∈I and trivialisations {ϕα}α∈I for which the transition functions gαβ = ϕα ◦ ϕ−1

β are
constant. A vector bundle with a flat structure is also called a flat bundle.

Remark 2.16. Equation (2.2) shows that the connection D = d (with zero connection form)
is globally defined on a flat bundle. Thus a flat bundle clearly admits a connection of
curvature zero. The converse is also true.

Theorem 2.17. Let X be n-complex, U an open subset of X and E a smooth vector bundle with
a smooth flat connection on U . Then E admits a flat structure.

Proof. Given a flat connection D on E, fix a cell σ, a point x0 ∈ σ ∩ U and consider a
contractible neighbourhood Vσ of x0 in the extended plane of σ. Choose a local frame s0

σ

of E on Vσ and let Aσ be the corresponding connection form. We are assuming that the
local frames s0

σ patch together to define a piecewise smooth frame s0 in a neighbourhood
of x0 in X . We are going to choose a different trivialisation sσ for which the connection
can be written as D = d. This can de done by solving the equation

g−1
σ Aσgσ + g−1

σ dgσ = 0

⇔ dgσ = −Aσgσ
(2.5)

locally for a gauge transformation gσ. By the result in the smooth case (this is an appli-
cation of the Frobenius theorem) a solution gσ exists and by multiplying by a constant
matrix we may assume without loss of generality that gσ(x0) = id. This makes the so-
lution unique and thus if a cell τ is a face of a cell σ then, since Aσ

∣∣
τ

= Aτ , it must be
gσ
∣∣
τ

= gτ . It follows that the new frames sσ = gσ ◦ s0
σ patch together to define a piecewise

smooth frame s in a neighbourhood of x0 in X . The flat structure is now defined by the
local frames {s}. �

Definition 2.18. A section s ∈ Ω0(X,E) is parallel with respect to D if Ds = 0. Given a
smooth curve c : [a, b] → X , a section s is parallel along c with respect to D if Dc′(t)s = 0.
Given a curve c : [a, b]→ X and sa ∈ π−1(c(a)) the parallel transport of s along c with respect
to D is the section s : π−1 (c([a, b])) → E which is given locally by the solution to the
equation

ds(c(t))

dt
+ Ac(t)(c

′(t))s(c(t)) = 0.

Lemma 2.19. Let c1, c2 : [a, b] → X be two closed smooth curves in X which are homotopy
equivalent, and which satisfy x0 = c1(a) = c1(b) = c2(a) = c2(b). Let D be a smooth flat
connection on a rank r bundle π : E → X , and let s1 and s2 be the parallel transport with
respect to D along c1 and c2 respectively, with initial condition s0 ∈ π−1(x0). If FD = 0 then
s1(c1(b)) = s2(c2(b)).

Proof. As usual note that it suffices to show that the holonomy is trivial around a ho-
motopically trivial loop. If there is a homotopy equivalence between two loops that is
constant except on a single cell, then standard theorems for smooth manifolds show that
the holonomy around the two loops is the same. Given a homotopically trivial loop γ,
there is a sequence of homotopy equivalences γ ∼ γ1, γ1 ∼ γ2, . . ., γN ∼ id between γ and
the trivial loop (denoted id), such that each homotopy equivalence is constant except on
a single n-cell. For example, one can do this by identifying the fundamental group with
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the edge group of a simplicial complex (cf. [4], Section 6.4). Therefore, the holonomy of
γ is the same as the holonomy of each γn along this sequence of homotopy equivalences,
and so the holonomy of γ is trivial. �

Definition 2.20. A flat connection D on a rank r vector bundle π : E → X defines a rep-
resentation ρ : π1(X)→ GL(r,C) called the holonomy representation of D. A flat connection
is called irreducible if its holonomy representation is irreducible. The space of irreducible,
flat smooth connections is denoted AC,irr(E).

Lemma 2.21. A representation ρ : π1(X) → GL(r,C) defines a flat connection on a bundle
π : Eρ → X with holonomy representation ρ. Moreover, the flat connection on Eρ depends
continuously on the representation ρ.

Proof. In the standard way, from a representation ρ : π1(X)→ GL(r,C) we construct a flat
vector bundle Eρ → X , with total space

(2.6) Eρ = X̃ ×ρ Cr,

where X̃ is the universal cover of X , and the equivalence is by deck transformations on
the left factor X̃ , and via the representation ρ on the right factor Cr. On each trivialisation
we have the trivial connection d, and since the transition functions of E are constant, then
this connection is globally defined. Since the deck transformations depend continuously
on the representation ρ then the flat connection on Eρ depends continuously on ρ. �

Corollary 2.22. A flat connection on a vector bundle over a simply connected complex X is
complex gauge equivalent to the trivial connection d on the trivial vector bundle.

Definition 2.23. The SL(r,C) character variety is the space of irreducible representations
ρ : π1(X)→ SL(r,C) modulo conjugation by SL(r,C)

(2.7) Mchar = {irreducible reps ρ : π1(X)→ SL(r,C)} / SL(r,C)

The next Lemma is a trivial consequence of the path lifting property and is standard.

Lemma 2.24. If two characters defined by the representations ρ and ρ′ belong to the same con-
nected component ofMchar then the vector bundles Eρ and Eρ′ are smoothly isomorphic.

In view of the above, let C denote the set of connected components ofMchar. Then we
can write

Mchar =
⊔
c∈C

Mc
char

and write Ec = Eρ for any representative in the isomorphism class of bundles defined by
ρ ∈Mc

char.

Remark 2.25. Since we are interested in the SL(r,C) character variety instead of the GL(r,C)
character variety we need to fix determinants in our definitions of connections and gauge
transformations. Henceforth we will impose the condition that all connection forms are trace-
less and all gauge transformations have determinant one. For the sake of notational simplicity
we will keep the same notation as before for the various spaces of SL(r,C) connections
and gauge groups.

Proposition 2.26.
AC,irr
flat (Ec)/GC(Ec) ∼=Mc

char
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Proof. The holonomy map applied to an irreducible flat connection D gives an irreducible
representation ρ : π1(X, x0) → GL(r,C). The action of a complex gauge transforma-
tion g ∈ GC(Ec) on D induces the conjugate action of an element ξ = g(x0) ∈ GL(r,C)

on ρ. Therefore we have a continuous map τ : AC,irr
flat (Ec)/GC(Ec) → Mc

char. Note that
τ([D1]) = τ([D2]) implies that the flat structures associated to D1 and D2 by Theorem 2.17
are complex gauge-equivalent, and so D1 and D2 are complex gauge-equivalent. There-
fore τ is injective.

Similarly, given a representation ρ : π1(X, x0)→ GL(r,C) we construct a flat connection
d on the flat bundle Eρ as in the proof of Lemma 2.21. If we conjugate the representation
by an element ξ ∈ GL(r,C), then the flat connection associated to this new representation
is related to Eρ by a global change of co-ordinates using the action of ξ on the fibres
of Eρ. Therefore the two flat bundles are complex gauge-equivalent, and so conjugate
representations give GC(Ec)-equivalent flat connections, which gives us a continuous map
ζ :Mchar → AC,irr

flat (Ec)/GC(Ec). Lemma 2.21 shows that τ ◦ ζ = id. Since τ is injective then
this implies that ζ ◦ τ = id and so τ is a homeomorphism AC,irr

flat (Ec)/GC(Ec) ∼=Mc
char. �

2.2. Relationship to Higgs bundles. Given a complex X with universal cover X̃ , fix an
irreducible representation ρ : π1(X) → SL(r,C), and let E = X̃ ×ρ Cr → X be as before.
We also fix a ρ-equivariant map u : X̃ → SL(r,C)/ SU(r), locally Lipschitz away from the
0-skeleton X0 of X . We now recall the basic construction from [8] and [15].

(1) The complexified tangent space TC
h (SL(r,C)/ SU(r)) can be identified (indepen-

dent of h) with the space of traceless matrices and this gives a trivialization of the
complexified tangent bundle TC(SL(r,C)/ SU(r)) ∼= SL(r,C)/ SU(r)× sl(r,C).

(2) In the trivialization given in (1) the Levi-Civita connection at a point h ∈ SL(r,C)/ SU(r)
has the form

∇XY = dY (X)− 1

2

(
dh(X)h−1Y + Y h−1dh(X)

)
,

where we use the notation h to indicate left translation by h.
(3) The identification h−1

(
TC
h (SL(r,C)/ SU(r))

) ∼= TC
id(SL(r,C)/ SU(r)) ∼= sl(r,C) gives

another isomorphism θ : TC(SL(r,C)/ SU(r)) → SL(r,C)/ SU(r) × sl(r,C). It fol-
lows immediately from (2) that in the coordinates given by θ, the Levi-Civita con-
nection is given by

∇Xs = h−1∇X(hs)

= ds(X) +
1

2

[
h−1dh(X), s

]
.

We thus conclude that in the above coordinates

(2.8) ∇ = d+
1

2

[
h−1dh, ·

]
.

(4) The isomorphism θ is equivariant with respect to the PSL(r,C) action on the com-
plexified tangent bundle TC(SL(r,C)/ SU(r)) and the adjoint representation on
TC
id(SL(r,C)/ SU(r)) ∼= sl(r,C).

(5) Given u as above, consider the pull-backs D = u∗d and dA = u∗∇ on the trivial
bundle X̃ × TC

id(SL(r,C)/ SU(r)) ∼= X̃ × sl(r,C). First notice, that since u∗d is trivial
and u is ρ-equivariantD descends to a flat connection of holonomy ρ onEρ. Again,
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by the ρ-equivariance of u and (4) the connection dA descends to a connection on
ad(Eρ) over X . Moreover, since its connection form acts by the adjoint representa-
tion it defines an SL(r,C) connection on the bundle Eρ over X and (2.8) implies

(2.9) D = dA + ψ, ψ = −1

2
u−1du.

Since D is a flat connection, then

FA + ψ ∧ ψ = 0(2.10)
dAψ = 0.(2.11)

2.3. The balancing condition.

Definition 2.27. A smooth 1-form ω = {ωσ}σ∈F ∈ Ω1(X) satisfies the balancing condition if
for every (n− 1)-cell τ , we have

(2.12)
∑
σ>τ

ωσ(eσ) = 0

where σ > τ implies that τ is a face of σ, and eσ is an inward pointing normal vector
field along τ in σ. The set Ω1

bal(X) is the subset of Ω1(X) consisting of forms satisfying the
balancing condition.

Definition 2.28. Let E be smooth vector bundle on X of rank r and let p : X̃ → X be
the universal cover. We assume that the pullback bundle p∗(E) over X̃ is trivial with
a fixed trivialization p∗(E) ∼= X̃ × Cr (if the connection is flat then this is always valid
by Corollary 2.22). A connection D ∈ AC,irr(E) is called balanced if its pullback p∗(D)
to p∗(E) can be written (in the given trivialization) as p∗(D) = d + A where all the
componentsAij ∈ Ω1

bal(X̃). Let AC,irr
bal (E) be the space of irreducible, smooth, balanced

GL(r,C) connections, and let Airrbal(E) denote the space of irreducible, smooth, balanced
connections compatible with the Hermitian metric h onE. In what follows, if the meaning
is clear then the notation for the metric is suppressed.

Definition 2.29. Let E be as in the previous Definition. Given g ∈ GC(E), let g̃ denote the
induced gauge transformation of p∗(E). We define GC

bal(E) (resp. Gbal(E)) to be the group
of complex (resp. unitary) gauge transformations such that g ∈ GC

bal(E) (resp. g ∈ Gbal(E))
implies that dg̃ij ∈ Ω1

bal(X̃).

Remark 2.30. Note that via (2.4), the group GC
bal(E) acts on the space AC,irr

bal (E), and Gbal(E)
acts on Airrbal(E).

Remark 2.31. In this paper we are interested in flat bundles. Note that Corollary 2.22 im-
plies that the pullback of a flat bundle to the universal cover is trivial. By choosing a
trivialization it thus makes sense to talk about balanced connections and gauge transfor-
mations.

3. HARMONIC MAPS AND HIGGS BUNDLES

In this section we describe the relationship between Higgs bundles and harmonic maps
from a complex X into the space SL(n,C)/ SU(n), a generalisation of the construction of
[15] and [8]. From now onX will denote an admissible 2-dimensional simplicial complex without
boundary. We will further assume that X is equipped with a Riemannian metric g such that for
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any 2-simplex σ, (σ, gσ) is isometric to an interior of an equilateral triangle in R2 and for any
1-simplex τ , (τ, gτ ) is isometric with the open unit interval in R. It is not hard to extend the
results of this section to general Riemannian metrics and also general 2-dimensional com-
plexes. We endow SL(n,C)/ SU(n) with a Riemannian metric of non-positive sectional
curvature such that SL(n,C) acts by isometries.

3.1. Estimates of harmonic maps.

Theorem 3.1. Let X be a 2-complex as before with universal cover X̃ and ρ : π1(X)→ SL(n,C)

be an irreducible representation. Then there exists a unique ρ-equivariant harmonic map u : X̃ →
Y := SL(n,C)/ SU(n).

Proof. The existence is a special case of Theorem 4.5 of [11]. Uniqueness follows from
[29]. �

Let p be a vertex (i.e. 0-cell) ofX . Given an 1-cell τ ofX , define S2(τ) be the set of 2-cells
of X containing τ in its closure.

Theorem 3.2. If u : X → Y is a harmonic map, then for any 1-simplex τ and 2-simplex σ ∈
S2(τ) we have u ∈ C∞(σ ∪ τ). (In other words, the restriction of u to σ is C∞ up to τ in the
extended plane of σ). Moreover, for every 1-simplex τ and p ∈ τ assume that u is given in a
neighbourhood of u(p) in local coordinates by u = (u1, . . . , uM). Then,

(3.1)
∑
σ>τ

∂umj
∂eσ

= 0

where σ > τ implies that τ is a face of σ, and eσ is an inward pointing normal vector field along τ
in σ.

Proof. The fact that um ∈ C∞(σ ∪ τ) follows from Theorem 4 and Corollary 6 of [12].
Equation (3.1), follows from Corollary 5 of [12]. �

For an edge τ and σ ∈ S2(τ), we define polar coordinates (r, θ) of σ ∪ τ centered at p by
setting r to be the distance from p to a point q ∈ σ ∪ τ and θ to be the angle between τ and
the line pq connecting p and q. The next theorem is one of the main technical results of the
paper and describes the singular behavior of harmonic maps near the lower dimensional
strata.

Theorem 3.3. Let u : X → Y be a harmonic map. If (r, θ) are the polar coordinates of σ ∪ τ
centered at a 0-cell p and u is given in local coordinates (u1, . . . , uM) in a neighbourhood of u(p),
we have the following derivative bounds for um in a neighbourhood of p:∣∣∣∣∂um∂r

∣∣∣∣ ≤ Crα−1,

∣∣∣∣∂um∂θ
∣∣∣∣ ≤ Crα∣∣∣∣∂2um

∂r2

∣∣∣∣ ≤ Crα−2,

∣∣∣∣∂2um

∂r∂θ

∣∣∣∣ ≤ Crα−1,

∣∣∣∣∂2um

∂θ2

∣∣∣∣ ≤ Crα∣∣∣∣∂3um

∂r3

∣∣∣∣ ≤ Crα−3,

∣∣∣∣ ∂3um

∂2r∂θ

∣∣∣∣ ≤ Crα−2,

∣∣∣∣ ∂3um

∂r∂2θ

∣∣∣∣ ≤ Crα−1,

∣∣∣∣∂3um

∂θ3

∣∣∣∣ ≤ Crα

for some constants C > 0 and α > 0 depending on the total energy of u and the geometry of the
complex X . Furthermore, α can be chosen independently of the choice of the 0-cell p of X .
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Proof. Let σ = σ1, . . . , σJ be the 2-cells in S2(τ). For each j = 1, . . . , J , we let (x, y) be the
Euclidean coordinates of σj ∪ τ so that (i) p is given as (x, y) = (0, 0), (ii) if (x, y) ∈ τ then
x > 0 and y = 0 and (iii) if (x, y) ∈ σj then x, y > 0. Let umj = um

∣∣
σj

.
We will now compute the first derivative bounds with respect to the polar coordinates

r and θ. By Theorem 6.2 of [11], we have the inequality

|∇u|2(r, θ) ≤ Cr2α−2

for some α > 0. More specifically, α can be chosen to be the order of u at p, i.e.

α = lim
r→0

r

∫
Br(p)

|∇u|2dµ∫
∂Br(p)

d2(u, u(p))ds
.

Hence,

(3.2)
∣∣∣∣∂umj∂x

∣∣∣∣ ≤ Crα−1 and
∣∣∣∣∂umj∂y

∣∣∣∣ ≤ Crα−1.

Using the fact that x = r cos θ and y = r sin θ, we get

∂umj
∂r

=
∂umj
∂x

cos θ +
∂umj
∂y

sin θ and
∂umj
∂θ

= −
∂umj
∂x

r sin θ +
∂umj
∂y

r cos θ.

This immediately implies ∣∣∣∣∂umj∂r
∣∣∣∣ ≤ Crα−1 and

∣∣∣∣∂umj∂θ
∣∣∣∣ ≤ Crα.

We will now establish the second derivative estimates of umj for a points (r, θ) on σj ∪ τ
with θ sufficiently small. We will need the following notations: for a function ϕ and a
domain Ω ⊂ R2, we set

|ϕ|0;Ω = sup
p∈Ω
|ϕ(p)|

|Dϕ|0;Ω = sup
p∈Ω

max

{∣∣∣∣∂ϕ∂x (p)

∣∣∣∣ , ∣∣∣∣∂ϕ∂y (p)

∣∣∣∣}

|D2ϕ|0;Ω = sup
p∈Ω

max

{∣∣∣∣∂2ϕ

∂x2
(p)

∣∣∣∣ , ∣∣∣∣ ∂2ϕ

∂x∂y
(p)

∣∣∣∣ , ∣∣∣∣∂2ϕ

∂y2
(p)

∣∣∣∣}

[ϕ]β;Ω = sup
p,q∈Ω,p 6=q

|ϕ(p)− ϕ(q)|
|p− q|β

[Dϕ]β;Ω = sup
p,q∈Ω,p 6=q

1

|p− q|β
max

{∣∣∣∣∂ϕ∂x (p)− ∂ϕ

∂x
(q)

∣∣∣∣ , ∣∣∣∣∂ϕ∂y (p)− ∂ϕ

∂y
(q)

∣∣∣∣}

[D2ϕ]β;Ω = sup
p,q∈Ω,p 6=q

1

|p− q|β
max

{∣∣∣∣∂2ϕ

∂x2
(p)− ∂2ϕ

∂x2
(q)

∣∣∣∣ , ∣∣∣∣ ∂2ϕ

∂x∂y
(p)− ∂2ϕ

∂x∂y
(q)

∣∣∣∣ , ∣∣∣∣∂2ϕ

∂y2
(p)− ∂2ϕ

∂y2
(q)

∣∣∣∣} .
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Let T := {(x, y) ∈ R2 : y ≥ 0, y <
√

3x, y < −
√

3x +
√

3}, T− = {(x,−y) ∈ R2 : (x, y) ∈ T}
and T̂ = T ∪ T−. Fix m and j and define U : T̂ → R by setting

U(x, y) =


umj (x, y) if y ≥ 0

−umj (x,−y) +
2

J

J∑
j′=1

umj′ (x,−y) if y < 0.

Let

(3.3) Γmj =
M∑

p,q=1

Γmpq(uj)

(
∂upj
∂x

∂uqj
∂x

+
∂upj
∂y

∂uqj
∂y

)
where Γmpq are the Christoffel symbols of Y with respect to the local coordinates (u1, . . . , uM).
Since the harmonic map equation

4umj = Γmj

is satisfied in T , if we set

f(x, y) =


Γmj (x, y) if y ≥ 0

−Γmj (x,−y) + 2
J

J∑
j′=1

Γmj′ (x,−y) if y < 0,

then U satisfies the Poisson equation

(3.4) 4U = f

weakly in T̂ . Indeed, let ξ be a test function supported in a neighbourhood BR(q) of a
point q = (x0, 0) ∈ T̂ . Since U is a C1 function we have by the divergence theorem,∫

T̂

div(ξ∇U)dxdy =

∫
T

div(ξ∇U)dxdy +

∫
T−
div(ξ∇U)dxdy

= −
∫ x0+R

x0−R
ξ
∂umj
∂y

(x, 0)dx

+

∫ x0+R

x0−R

(
ξ
∂umj
∂y

(x, 0)− 2

J

J∑
j′=1

ξ
∂umj
∂y

(x, 0)

)
dx

= 0

where the last equality is because of (3.1). On the other hand∫
T̂

div(ξ∇U)dxdy =

∫
T̂

∇ξ · ∇U +

∫
T̂

ξfdxdy

which along with the previous equation implies (3.4). If B2R(q) ⊂ T̂ , then elliptic regular-
ity theory (cf. [17] or Lemma 3 on p13 of [30]) implies

R1+β[DU ]β;B 3R
2

(q) ≤ C(|U |0;B2R(q) +R2|f |0;B2R(q)).

If we choose R to be the largest number so that B2R(q) ⊂ T̂ , then R is proportional to
r where r is the distance of q to the vertex p. Furthermore, the distance from p to any
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point of B2R(q) is bounded uniformly by some constant multiple of r. Hence, assuming
U(0, 0) = 0 without a loss of generality, we have

[DU ]β;B 3R
2

(p) ≤ C(r−1−β|U |0;B2R(p) + r1−β|f |0;B2R(p)) ≤ C(r−1−β+α + r−β+2α−1) ≤ Cr−β+α−1.

Here, we have used the Hölder continuity of umj (hence of U ) near p with Hölder expo-
nent α (cf. Theorem 3.7 of [11]) and the inequalities of (3.2) along with the fact that f is
quadratic in Dumj from (3.3). Thus, with B+

3R
2

(q) = B 3R
2

(q) ∩ {y ≥ 0}, we obtain

[Dumj ]β;B+
3R
2

(q) ≤ Cr−β+α−1.

This equation along with (3.2) and (3.3) implies that

(3.5) [Γmj ]β;B+
3R
2

(q) ≤ C|Dukj |0;B+
3R
2

(q)[Du
`
j]β;B+

3R
2

(q) ≤ Cr−β+2α−2.

We are now ready to prove the second derivative bounds of umj . Note that we have the
set of partial differential equations

4umj = Γmj j = 1, . . . , J m = 1, . . .M(3.6)

in T , along with boundary conditions

umj − um1 = 0 j = 2, . . . , J m = 1, . . . ,M(3.7)
J∑
j=1

∂umj
∂y

= 0 m = 1, . . . ,M(3.8)

in B = {(x, y) ∈ R2 : y = 0, 0 < x < 1}. This is a system of JM number of equations
containing JM number of unknowns (i.e. umj ) along with JM number of boundary con-
ditions. If we assign weights smj = 0 to the equations, weights tmj = 2 to the unknowns,
weights rmj = −2 for j = 2, . . . ,M and rm1 = −1 to the boundary conditions, then this
system is said to be elliptic with complementing boundary condition according to the
the elliptic regularity theory of [3] (or elliptic and coercive in [27]). Hence, we have the
Schauder estimates (cf. Theorem 9.1 of [3]),

R2|D2umj |0;B+
R(q) +R2+β[D2umj ]β;B+

R(q)

≤ C(|Γmj |0;B+
3R
2

(q) +R2+β[Γmj ]β;B+
3R
2

(q) + |umj |0;B+
3R
2

(q)).

With the same choice of q and R as above, we obtain

|D2umj |0;B+
R(q) ≤ C(|Γmj |0;B+

3R
2

(q) + rβ[Γmj ]β;B+
3R
2

(q) + r−2|umj |0;B+
3R
2

(q)).

The above inequality, along with (3.5), implies

|D2umj |0;B+
R(q) ≤ C(r2α−2 + r2α−2 + rα−2) ≤ Crα−2.

Since
∂2umj
∂r2

=
∂2umj
∂x2

cos2 θ + 2
∂2umj
∂x∂y

sin θ cos θ +
∂2umj
∂y2

sin2 θ,
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∂2umj
∂r∂θ

= −
∂2umj
∂x2

r sin θ cos θ +
∂2umj
∂x∂y

r cos2 θ −
∂umj
∂x

sin θ

−
∂2umj
∂x∂y

r sin2 θ +
∂2umj
∂y2

r sin θ cos θ +
∂umj
∂y

cos θ,

∂2umj
∂θ2

=
∂2umj
∂x2

r2 sin2 θ + 2
∂2umj
∂x∂y

r2 sin2 θ +
∂2umj
∂y2

r2 cos θ

= −
∂umj
∂x

r cos θ −
∂umj
∂y

r sin θ,

we immediately obtain∣∣∣∣∂2umj
∂r2

∣∣∣∣ ≤ Crα−2,

∣∣∣∣∂2umj
∂r∂θ

∣∣∣∣ ≤ Crα−1 and
∣∣∣∣∂2umj
∂θ2

∣∣∣∣ ≤ Crα

at (r, θ) for θ sufficiently small. This restriction on θ is due to the choice of R and q.
For (r, θ) with θ sufficiently large, we can use a similar argument using standard elliptic
regularity theory (e.g. [17] or Lemma 3 on p13 of [30]) in the interior of σ. The third
derivative estimates follow the same way from the first two by bootstrapping the elliptic
equations (3.6) with boundary conditions (3.8) and (3.8).

Section 4 of [12] shows the that order of u at p can be bounded from below by 2λcombv

where λcombv is the combinatorial eigenvalue of the link of v which is always a positive
quantity. Hence choosing α to be the minimum of 2λcombv over all 0-cells of X , we have
established the last assertion of the Theorem. �

3.2. Weighted Sobolev spaces. In this subsection we recall the important features of the
weighted Sobolev spaces used in this paper. The main references are [2], [14], and [28].
In the following we fix a smooth vector bundle E of rank r over a 2-complex X with a
Hermitian metric, and a fixed Riemannian metric on the base space X . Define the space
C∞0 (E) to be the space of smooth sections s ∈ Ω0(X,E) that satisfy s(p) = 0 whenever p is
a vertex of X . In the local model B̃(r) around each vertex p, we define local co-ordinates
(t, θ) = (− log r, θ), where (r, θ) are the standard polar co-ordinates in a neighbourhood
of the vertex p. To define a norm on C∞0 (E), let {xi}i=1,...V denote the vertices of X and
choose disjoint open neighbourhoods Uxi for each vertex xi. Then cover the rest ofX with
open sets {Vα}α=1,...K that do not contain any of the vertices. For δ ∈ R, the space Lpδ is the
completion of C∞0 (E) in the norm

(3.9) ‖s‖Lpδ =

(
V∑
i=1

∫
Uxi

etδ|s|p +
K∑
α=1

∫
Vα

|s|p
)1/p

where we use etδ to denote the co-ordinates in a neighbourhood of a vertex. Away from
all of the vertices, etδ is bounded and s is continuous, and so the question of whether the
norm ‖·‖Lpδ is finite only depends on the choice of co-ordinates near each vertex. Different
choices of Vα will lead to equivalent norms.

Given a vertex p, and a trivialization of E near p we say that a connection is trivial in
a neighbourhood of p if with respect to the above trivialization ∇ = d. Given a fixed
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connection ∇0 trivial near the vertices, and a positive integer k, we define the weighted
Sobolev space Lqk,δ(E) as the completion of C∞0 (E) in the norm

(3.10) ‖s‖Lqk,δ =
k∑
`=0

‖∇`
0s‖Lqδ

Note that in this paper we are considering bundles with a fixed trivialization on the uni-
versal cover (cf. Remark 2.31). Since the star of a vertex p in X is simply connected it
follows that we have a fixed trivialization of E in a neighbourhood of p. It thus makes
sense to talk about connections on E trivial near the vertices.

It is a standard fact that the spaces Lqk,δ do not change if we either: (a) change the con-
nection ∇0 outside a neighbourhood of the vertices of X , or (b) change the co-ordinates
outside a neighbourhood of the vertices. The usual multiplication theorems for Sobolev
spaces on compact manifolds carry over to the weighted Sobolev spaces studied here. To
be more precise, we have that the multiplication map L2

s1,δ1
×L2

s2,δ2
→ L2

s,δ is continuous if
s1, s2 ≥ s, s < s1 + s2−n/2 and δ < δ1 + δ2 +n/2, where n is the dimension of the complex
X .

Following Section 3.1 of [14] we define the space of weighted connections AC
δ (E) to be

the space of all connections whose connection form is an element of L2
1,δ, and the space

Aδ(E) ⊂ AC
δ (E) to be the subset of all unitary connections. The weighted gauge group

Gδ(E) is defined as follows. Let∇0 be a connection as above and define

(3.11) R =
{
v ∈ L2

2,loc(End(E)) : ‖∇0v‖L2
1,δ
<∞

}
Then the weighted gauge group is defined as

(3.12) Gδ(E) = {v ∈ R : vv∗ = id, det v = 1}

and the complexified gauge group is

(3.13) GC
δ (E) = {v ∈ R : det v = 1} .

The multiplication theorem for weighted Sobolev spaces shows that both Gδ(E) and
GC
δ (E) have a group structure, and that there are well-defined actions of Gδ(E) on Aδ and
GC
δ (E) on AC

δ (E) respectively.
Similarly we have balanced versions of these spaces Gbal,δ(E),Abal,δ(E) and Ω1

bal,δ(ad(E)).
When a smooth pair (dA, ψ) ∈ Abal,δ(E) × Ω1

bal,δ(ad(E)) solves the equations (2.10) and
(2.11), then the holonomy of the pair (dA, ψ) refers to the holonomy of the flat connection
dA + ψ ∈ AC

bal,flat,δ(E).

Proposition 3.4. If Di ∈ AC
bal,flat,δ(E), i = 1, 2 are smooth and GC

bal,δ(E)-gauge equivalent then
they are GC

bal(E)-gauge equivalent.

Proof. Since the result is local, it follows by elliptic regularity. �

Proposition 3.5. Let D ∈ AC
bal,flat,δ(E) be smooth. Then D has trivial holonomy around the

vertices of X .
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Proof. For D = d + A write A(t, θ) = B(t, θ)dt + C(t, θ)dθ. Consider the family of loops
ct : [0, 2π] → X given by ct(θ) = (t, θ) and consider the holonomy equation from Defini-
tion 2.18 along ct(θ)

(3.14)
dst(θ)

dθ
+ C(t, θ)st(θ) = 0 with st(0) = id.

Lemma IV.4.1 on p54 of [21] implies

(3.15) |st(θ)| ≤ |st(0)| exp

{∫ θ

0

|C(t, θ)| dθ
}
≤ K exp

{∫ 2π

0

|C(t, θ)| dθ
}

where K is a dimensional constant. Since∫ ∞
0

etδ
∫ 2π

0

|C(t, θ)|2dθdt <∞

there exists a sequence ti → ∞ such
∫ 2π

0
|C(ti, θ)|2dθ → 0. By Cauchy-Schwarz we also

have

(3.16)
∫ 2π

0

|C(ti, θ)|dθ → 0.

Combined with (3.15) this implies that |sti(θ)| is uniformly bounded. By integrating equa-
tion (3.14) with respect to θ, we obtain from (3.16)

|sti(2π)− sti(0)| ≤
∫ 2π

0

|sti(θ)||C(ti, θ)|dθ → 0.(3.17)

Since the holonomy is independent of t we obtain that sti(2π) = sti(0) and thus it must be
trivial. �

Proposition 3.4 and Proposition 3.5 allow us to define the notion of conjugacy class of
holonomy for a smooth flat connection D ∈ AC,irr

bal,flat,δ(E) as follows.

Definition 3.6. Let D ∈ AC,irr
bal,flat,δ(E) be a smooth flat connection and let ρ∗ : π1(X∗) →

SL(r,C) be the holonomy of D, where X∗ = X\X0 and X0 denotes the 0-skeleton of
X . Since the star of a vertex is contractible, then Van Kampen’s theorem implies that
π1(X) = π1(X∗)/π, where π denotes the subgroup of π1(X∗) generated by ∪p∈X0π1(Lk(p)).
By Proposition 3.5, the restriction of ρ∗ to π is trivial hence it induces a homomorphism
ρ : π1(X) → SL(r,C). We say that the conjugacy class of holonomy of D is [ρ]. Notice
that the map is well defined since gauge equivalent pairs yield conjugate holonomies.
Furthermore, ρ is irreducible because D is irreducible.

4. EQUIVALENCE OF MODULI SPACES

4.1. Higgs Moduli Space. We fix a vector bundle Ec = E of rank r over a 2-complex X
with a Hermitian metric, and a fixed Riemannian metric on the base space X .

Definition 4.1. The Higgs moduli space is the space MHiggs(E) of Gbal,δ(E) equivalence
classes of pairs (dA, ψ) ∈ Abal,δ(E) × Ω1

bal,δ(
√
−1 ad(E)) that are smooth, irreducible and
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solve the following equations

FA + ψ ∧ ψ = 0(4.1)
dAψ = 0(4.2)
d∗Aψ = 0.(4.3)

We endowMHiggs(E) with the L2
1,δ-topology.

Given [(dA, ψ)] ∈ MHiggs(E), we can assign by Definition 3.6 the holonomy [ρ] of the
flat connection dA + ψ and set α[(dA, ψ)] := [ρ]. The map α is well defined. The next
proposition follows from continuous dependence of solutions of ODE upon the initial
condition.

Proposition 4.2. The map α :MHiggs(E)→Mc
char, where α[(dA, ψ)] = [ρ], is well defined and

continuous.

The following is the main theorem of this paper.

Theorem 4.3. The map α :MHiggs(E)→Mc
char is a homeomorphism.

In the next section we will construct the inverse map. We end this section with a propo-
sition that will be used later.

Proposition 4.4. Let (dA1 , ψ1) and (dA2 , ψ2) be solutions to equations (4.1)-(4.3) and assume that
they are GC

bal,δ(E)-gauge equivalent. Then they are Gbal,δ(E)-gauge equivalent.

Proof. Assume that there exists g ∈ GC
bal,δ(E) such that (dA1 , ψ1) = g ·(dA2 , ψ2), and we have

to show that g is unitary. Let h = g∗g and we will show that h is constant. By [31] Lemma
3.1(d) we have the following point wise estimate away from the vertices (notice that the
sign of our Laplacian is the opposite from Simpson’s)

(4.4) ∆ tr(h) ≤ 0.

Now since g is balanced, then so is trh, and therefore an application of Stokes’ theorem
on each face of X shows that∫

X

∆ trh dx = lim
r→0

∫
X\

⋃
0-cells v Br(v)

∆ trh dx

= lim
r→0

∑
2-cellsσ

∫
F\

⋃
0-cells v Br(v)

∆ trh dx

= lim
r→0

∑
2-cellsσ

∫
∂(F\

⋃
0-cells v Br(v))

∂ trh

∂ν
ds

(4.5)

where ν is the outwards pointing normal vector on ∂ (σ \
⋃

0-cells v Br(v)). The boundary
∂ (σ \

⋃
vertices v Bσ(v)) consists of points on the 1-cells of σ, and points on ∂Br(v)∩σ. Break-

ing the integral into these two parts, we obtain

(4.6)
∑

2-cellsσ

∫
∂(σ\

⋃
0-cells v Br(v))

∂ trh

∂ν
ds =

∑
2-cellsσ

 ∑
1-cells τ :τ∩σ̄ 6=∅

∫
τ\

⋃
v Br(v)∩τ

∂ trh

∂ν
ds


+
∑

2-cellsσ

∫
⋃
v ∂Br(v)∩σ

∂ trh

∂ν
ds
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The balancing condition shows that the first term is zero. Therefore we are left with

(4.7)
∫
X

∆ trh dx = lim
r→0

∑
2-cellsσ

∫
⋃
v ∂Br(v)∩σ

∂ trh

∂ν
ds

In polar co-ordinates, each component of this integral becomes

(4.8)
∫
∂Br(v)∩F

∂ trh

∂ν
ds = r

∫ π
3

0

∂ trh

∂r
dθ

Since h ∈ G(E)C
bal,δ (and in particular, the integral of ∂2h

∂r2
is bounded), then we have

(4.9) lim
r→0

(
σ

∫ π
3

0

tr

(
∂h

∂r

)
dθ

)
= 0

and so (4.7) becomes

(4.10)
∫
X

∆ trh dx = 0.

Combined with ∆ trh ≤ 0 from (4.4), we see that ∆ trh = 0. The second to the last
formula in [31, p876] implies thatD(h) = 0 pointwise away from the vertices. This implies
that the connection D splits according to the eigenspaces of h , and since the connection
D is indecomposable, then h must be a constant multiple of the identity matrix, which
concludes the proof. �

4.2. The inverse map. For an irreducible representation ρ : π1(X) → SL(r,C), with
[ρ] ∈ Mc

char and E = Ec, Theorem 3.3 then shows that there exists a unique ρ-equivariant
harmonic map u : X̃ → SL(r,C)/ SU(r). As in subsection 2.2, let dA and ψ be the asso-
ciated unitary connection and Higgs field. Since u is harmonic, dA is the pullback of the
Levi-Civita connection on SL(r,C)/ SU(r), and ψ is the derivative of u, then we also have
the equation

(4.11) d∗Aψ = 0

almost everywhere (in fact by Theorem 3.3 everywhere away from the 0-skeleton).

Proposition 4.5. If u is harmonic, α as in Theorem 3.3 and δ < α, then D ∈ AC
bal,flat,δ(E).

The metric on the bundle E induces a decomposition of D into skew-adjoint and self-adjoint parts,
D = dA + ψ, where dA ∈ Abal,δ(E) and ψ ∈ Ω1

bal,δ(i ad(E)). Furthermore, D, dA and ψ are
smooth (over X∗).

Proof. The construction in Section 2.2 shows that the connection D is induced from the
trivial connection on the universal cover, hence it is clearly balanced, flat and L2

1,δ. Fur-
thermore, since dA = u∗∇ and ψ = u−1du, Theorem 3.3 and (2.9) imply that dA and ψ are
balanced. Therefore, since u : X → SL(r,C)/ SU(r) is a Lipschitz map over the compact
space X , in order to show that dA ∈ Abal,δ(E) and ψ ∈ Ω1

bal(i ad(E))δ, it suffices to show
that to show that du ∈ L2

1,δ.
First we show that du ∈ L2

δ . Theorem 3.3 shows that
∣∣∂u
∂r

∣∣ ≤ Crα−1 and
∣∣∂u
∂θ

∣∣ ≤ Crα for
some positive α. Using the co-ordinate transformation r = e−t we see that

∣∣∂u
∂θ

∣∣ ≤ Ce−αt,
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and ∣∣∣∣∂u∂t
∣∣∣∣ =

∣∣∣∣∂u∂r drdt
∣∣∣∣

≤ Crα−1r

= Ce−αt

Therefore, du ∈ L2
δ if δ < α. Similarly, we use the estimates on the second derivatives

of u to show that du ∈ L2
1,δ. We have

∣∣∣∂2u∂θ2

∣∣∣ ≤ Ce−αt, and we can compute∣∣∣∣ ∂2u

∂t∂θ

∣∣∣∣ =

∣∣∣∣ ∂2u

∂r∂θ

dr

dt

∣∣∣∣
≤ Crα−1r

= Ce−αt

and similarly ∣∣∣∣∂2u

∂t2

∣∣∣∣ =

∣∣∣∣ ∂∂t
(
∂u

∂r

dr

dt

)∣∣∣∣
=

∣∣∣∣∣∂2u

∂r2

(
dr

dt

)2

+
∂u

∂t

(
d

dr

dr

dt

)
dr

dt

∣∣∣∣∣
≤ Crα−2r2 + Crα−1r2

≤ Ce−αt + Ce−(α+1)t

≤ Ce−αt,

where in the last step we use the fact that t ≥ 0 near a vertex. Therefore, du ∈ L2
1,δ if

δ < α. �

Theorem 4.6. The map β : Mc
char →MHiggs(E) defined by β([ρ]) = [(dA, ψ)] is a continuous

inverse of α.

Proof. The first step is to show that the map β is well defined. Given ρ, Proposition 4.5
implies that dA ∈ Abal,δ(E) and ψ ∈ Ωbal1,δ(i ad(E)). Moreover, we claim that the pair
(dA, ψ) is irreducible. If ρ∗ : π1(X∗)→ SL(r,C) denotes the holonomy of the flat connection
dA + ψ then, as pointed out in Definition 3.6, ρ∗ = ρ ◦ p, where p : π1(X∗) → π1(X) =
π1(X∗)/π is the natural quotient map. Since by assumption ρ is irreducible it follows that
ρ∗ is also irreducible proving our claim.

Now, let ρ and ρ′ = γργ−1 be two representatives of [ρ] and let u and u′ be the two
corresponding equivariant harmonic maps. It follows that u′ = γ · u where · denotes
the action of SL(r,C) on SL(r,C)/ SU(r). It follows that the induced decompositions D =
dA + ψ on the universal cover agree, hence after taking the quotients by ρ and ρ′ = γργ−1

respectively the corresponding pairs are complex gauge equivalent by γ. Proposition 4.4
then shows that they are Gbal,δ gauge equivalent which completes the proof that β is well
defined.

Next we will first show that α(β([ρ])) = [ρ]. Let β([ρ]) = [(dA, ψ)]. According to (2.9), we
have dA + ψ = D, where D is the connection on ad(Eρ) induced by the trivial connection
on the universal cover which has holonomy ρ. Hence, α(β([ρ])) = [ρ].
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Conversely, β(α([(dA, ψ)])) = [(dA, ψ)]. Indeed, let (dB, φ) be a smooth representative
of β(α([(dA, ψ)])). By applying α on both sides and what we just proved, α([(dA, ψ)]) =
α([(dB, φ)]). In other words, (dA, ψ) and (dB, φ) have conjugate holonomies. Since the
holonomies of these pairs near the vertices are trivial by Proposition 3.5, then Proposi-
tion 2.26 implies that the corresponding flat connections (and hence also the pairs) are
complex gauge equivalent. Thus Proposition 4.4 implies that (dA, ψ) and (dB, φ) are Gbal,δ
gauge equivalent, hence β(α([(dA, ψ)])) = [(dA, ψ)].

In order to prove continuity, let ρi → ρ ∈Mc
char and let ui, u be the associated equivari-

ant harmonic maps. Fix a compact fundamental domain F ⊂ X̃ for the action of Γ and
define ρi equivariant maps ũi by setting ũi = u on F and extending ρi equivariantly on X̃ .
Since the ui are harmonic, the energy Eui satisfies

Eui ≤ Eũi = Eu.

The global Hölder bound (cf. Theorem 3.12 of [11]) implies that there is a subsequence
(we call it again by {i} by a slight abuse of notation) such that ui → u∞ uniformly on
F . Furthermore, the convergence of the representations ρi → ρ implies that u∞ is ρ-
equivariant and Theorem 5.1 of [11] implies that u∞ is harmonic. Finally, the uniqueness
Theorem 4.6 of [11] implies that u∞ = u. We have thus shown so far

ui → u locally uniformly.

Let (dAi , ψi) denote the unitary connection and Higgs field associated with the harmonic
map ui. By Theorem 3.3 together with the proof of Proposition 4.5 (in this we use the third
derivative estimates) we obtain that the L2

2,δ-norm of (Ai, ψi) is uniformly bounded, and
thus there exists a subsequence (we call it again by {i} by a slight abuse of notation) such
that (dAi , ψi)→ (dA, ψ) weakly in L2

2,δ and hence strongly in L2
1,δ. �
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Birkhäuser Verlag 1997.
[23] J. Jost, Y-H. Yang and K. Zuo. The cohomology of a variation of polarized Hodge structures over a quasi-

compact Kähler manifold. J. Algebraic Geom. 16(3), 401–434, 2007.
[24] J. Jost and K. Zuo. Harmonic maps and Sl(r,C)-representations of fundamental groups of quasi-projective

manifolds. J. Algebraic Geom. 5(1) 77-106, 1996.
[25] M. Kapovich and J. Kollar. Fundamental groups of links of isolated singularities. J. Amer. Math. Soc. 27

(2014), 929-952.
[26] S. Lojasiewich. Triangulations of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa (3) 18 (1964) 449-474.
[27] D. Kinderlehrer, L. Nirenberg, and J. Spruck. Regularity in elliptic free boundary problems. J. Analyse

Math. 34:86–119 (1979), 1978.
[28] R. Lockhart and R. McOwen. Elliptic differential operators on noncompact manifolds. Ann. Scuola Norm.

Sup. Pisa Cl. Sci. (4) 12, no. 3, 409-447, 1985.
[29] C. Mese. Uniqueness theorems for harmonic maps into metric spaces. Commun. Contemp. Math. 4(4): 725–

750, 2002.
[30] L. Simon. Theorems on regularity and singularity of energy minimizing maps. Lectures in Mathematics ETH
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