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Abstract

This paper uses Morse-theoretic techniques to compute the equivari-
ant Betti numbers of the space of semistable rank two degree zero Higgs
bundles over a compact Riemann surface, a method in the spirit of
Atiyah and Bott’s original approach for semistable holomorphic bun-
dles. This leads to a natural proof that the hyperkähler Kirwan map is
surjective for the non-fixed determinant case.
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1. Introduction

The moduli space of semistable holomorphic bundles over a compact Rie-
mann surface is a well-studied object in algebraic geometry. The seminal pa-
per of Atiyah and Bott introduced a new method for computing the cohomol-
ogy of this space: The equivariant Morse theory of the Yang-Mills functional.
This and subsequent work provides substantial information on its cohomology
ring. Also of interest is the moduli space of semistable Higgs bundles. The
purpose of this paper is to develop an equivariant Morse theory on the (singu-
lar) space of Higgs bundles in order to carry out the Atiyah and Bott program
for the case of rank 2.

The precise setup is as follows. Let E be a complex Hermitian vector bun-
dle of rank n and degree dE over a compact Riemann surface M of genus g.
LetA(2, dE) denote the space of Hermitian connections on E, andA0(2, dE)
the space of traceless Hermitian connections (which can be identified with
the space of holomorphic structures on E without or with a fixed determi-
nant bundle). We use End(E) to denote the bundle of endomorphisms of E,
End0(E) the subbundle of trace-free endomorphisms, and ad(E) ⊂ End(E)
(resp. ad0(E) ⊂ End0(E)) the subbundle of endomorphisms that are skew
adjoint with respect to the Hermitian metric.

Let

B(2, dE) = {(A,Φ) ∈ A(2, dE)× Ω0(End(E)⊗K) : d′′AΦ = 0}

be the space of Higgs bundles of degree dE and rank n over M and let

B0(2, dE) = {(A,Φ) ∈ A0(2, dE)× Ω0(End0(E)⊗K) : d′′AΦ = 0}

denote the space of Higgs bundles with fixed determinant. Let G (resp. GC)
denote the gauge group of E with structure group U(2) (resp. GL(2)) for the
non-fixed determinant case, and G0 (resp. GC0 ) the gauge groups with structure
group SU(2) (resp. SL(2)) for the fixed determinant case. The action of these
groups on the space of Higgs bundles is given by

(1) g · (A,Φ) = (g−1A′′g+g∗A′(g∗)−1 +g−1d′′g− (d′g∗)(g∗)−1, g−1Φg),

where A′′ and A′ denote the (0, 1) and (1, 0) parts of the connection form A.
The cotangent bundle pr : T ∗A(2, dE)→ A(2, dE) is naturally

T ∗A(2, dE) ' A(2, dE)× Ω0(End(E)⊗K)

and this gives rise to a hyperkähler structure preserved by the action of G (cf.
[9]). The moment maps for this action are

µ1 = FA + [Φ,Φ∗]

µ2 = −i
(
d′′AΦ + d′AΦ∗

)
µ3 = −d′′AΦ + d′AΦ∗
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In the sequel, we refer to µC = µ2 + iµ3 = −2id′′AΦ as the complex moment
map. The hyperkähler quotient T ∗A(2, dE)///G is the space

T ∗A(2, dE)///G := µ−1
1 (α) ∩ µ−1

2 (0) ∩ µ−1
3 (0)/G,

where α is a constant multiple of the identity (depending on dE) chosen so
that µ1 = α minimizes the Yang-Mills-Higgs functional

YMH(A,Φ) = ‖FA + [Φ,Φ∗]‖2

In the following B or B0 (resp. A or A0) will often be used to denote the
space of Higgs bundles (resp. connections) with non-fixed or fixed determi-
nant, and the extra notation will be omitted if the meaning is clear from the
context. Let Bst (resp. Bss) denote the space of stable (resp. semistable)
Higgs bundles, those for which every Φ-invariant holomorphic subbundle F ⊂
E satisfies

deg(F )

rank(F )
<

deg(E)

rank(E)

(
resp.

deg(F )

rank(F )
≤ deg(E)

rank(E)

)
Similarly for Bst0 and B0

ss. Let 〈u, v〉 =
∫
M tr{u∗̄v} be the L2 inner product

on Ω0(ad(E)), with associated norm ‖u‖2 = 〈u, u〉. The functional YMH is
defined on B and B0, and µ−1(α)∩µ−1

C (0) is the subset of Higgs bundles that
minimize YMH.

Theorems of Hitchin [9] and Simpson [13] identify the hyperkähler quotient{
Bmin = µ−1

1 (α) ∩ µ−1
C (0)

}
/G

with the moduli space of semistable Higgs bundles of rank n, degree dE and
non-fixed determinant,MHiggs(2, dE) = Bss

//
GC, and similarly in the fixed

determinant caseMHiggs
0 (2, dE) = Bss0

//
G0

C. Since −2id′′AΦ = µ2 + iµ3,
this hyperkähler quotient can be viewed as a symplectic quotient of the singu-
lar space of Higgs bundles

T ∗A///G =
(
B ∩ µ−1

1 (α)
)
/G

This paper uses the equivariant Morse theory of the functional YMH on the
space B and B0 to study the topology of the moduli space of rank 2 Higgs
bundles for both fixed and non-fixed determinant and both degree zero and
odd degree. The main results are the following.

Theorem 1.1. For the degree zero case, we have the following formulae for
the equivariant Poincaré polynomials. For the fixed determinant case,

P Gt (Bss0 (2, 0)) =Pt(BG)−
∞∑
d=1

t2µd
(1 + t)2g

1− t2

+

g−1∑
d=1

t2µdPt(S̃
2g−2d−2M),

(2)
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and for the non fixed determinant case,

P Gt (Bss(2, 0)) =Pt(BG)−
∞∑
d=1

t2µd
(1 + t)4g

(1− t2)2

+

g−1∑
d=1

t2µdPt(S
2g−2d−2M)

(1 + t)2g

1− t2
,

(3)

where µd = g+ 2d− 1 and S̃nM denotes the 22g-fold cover of the symmetric
product SnM as described in [9, Sect. 7].

Corollary 1.2. The equivariant Poincaré polynomial of the space of semistable
Higgs bundles of rank 2 and degree zero with fixed determinant over a compact
Riemann surface M of genus g is given by

P Gt (Bss0 (2, 0)) =
(1 + t3)2g − (1 + t)2gt2g+2

(1− t2)(1− t4)

− t4g−4 +
t2g+2(1 + t)2g

(1− t2)(1− t4)
+

(1− t)2gt4g−4

4(1 + t2)

+
(1 + t)2gt4g−4

2(1− t2)

(
2g

t+ 1
+

1

t2 − 1
− 1

2
+ (3− 2g)

)
+

1

2
(22g − 1)t4g−4

(
(1 + t)2g−2 + (1− t)2g−2 − 2

)
and in the non-fixed determinant case,

P Gt (Bss(2, 0)) =
(1 + t)2g

(1− t2)2(1− t4)

(
(1 + t3)2g − (1 + t)2gt2g+2

)
+

(1 + t)2g

1− t2

(
−t4g−4 +

t2g+2(1 + t)2g

(1− t2)(1− t4)
+

(1− t)2gt4g−4

4(1 + t2)

)
+

(1 + t)4gt4g−4

2(1− t2)2

(
2g

t+ 1
+

1

t2 − 1
− 1

2
+ (3− 2g)

)
The odd degree case was studied by Hitchin [9] using the Morse theory of

the functional ‖Φ‖2 which appears as (twice) the moment map associated to
the S1 action eit · (A,Φ) = (A, eitΦ) on the moduli spaceMHiggs

0 (2, 1). The
methods developed in this paper give a new proof of Hitchin’s result.

Theorem 1.3 (cf. [9, Sect. 7]).

Pt(MHiggs
0 (2, 1)) = Pt(BG)−

∞∑
d=1

t2µd
(1 + t)2g

1− t2
+

g−1∑
d=1

t2µdPt(S̃
2g−2d−1M)
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where S̃nM denotes the 22g-fold cover of the symmetric product SnM as
described in [9, Sect. 7]. In the non-fixed determinant case,

Pt(MHiggs(2, 1)) = (1− t2)Pt(BG)−
∞∑
d=1

t2µd(1 + t)4g 1

1− t2

+

g−1∑
d=1

t2µdPt(S
2g−2d−1M × Jd(M))

where µd = g + 2d− 2.

As mentioned above, the moduli spaceMHiggs is the hyperkähler quotient
of T ∗A by the action of G, with associated hyperkähler Kirwan map:

κH : H∗G(A× Ω0(K ⊗ End(E)))→ H∗G(µ−1
1 (0) ∩ µ−1

C (0))

induced by the inclusion µ−1
1 (0) ∩ µ−1

C (0) ↪→ A × Ω0(K ⊗ End(E)). The
Morse theory techniques used to prove Theorems 1.2 and 1.3 also lead to a
natural proof of the following

Theorem 1.4. The hyperkähler Kirwan map is surjective for the space of
rank 2 Higgs bundles of non-fixed determinant, for both degree zero and for
odd degree.

For the case of odd degree, surjectivity was previously shown by Hausel and
Thaddeus [7] using different methods. The result proved here applies as well
to the heretofore unknown degree zero case, and the proof follows naturally
from the Morse theory approach used in this paper. In the fixed determinant
case, Hitchin’s calculation of Pt(MHiggs

0 (2, 1)) for a compact genus 2 surface
shows that b5(MHiggs

0 (2, 1)) = 34, however for genus 2, b5(BGSU(2)) = 4,
hence surjectivity cannot hold in this case.

The most important technical ingredient of this paper is the result of [14]
that the gradient flow of YMH on the spaces B and B0 converges to a critical
point that corresponds to the graded object of the Harder-Narasimhan-Seshadri
filtration of the initial conditions to the gradient flow. The functional YMH
then provides a gauge group equivariant stratification of the spaces B, B0, and
there is a well-defined deformation retraction of each stratum onto an associ-
ated set of critical points. This convergence result is sufficient to develop a
Morse-type theory on the singular spaces B and B0 and to compute the coho-
mology of the semistable stratums Bss and Bss0 . It is therefore a consequence
of our methods that the lack of Kirwan surjectivity in the fixed determinant
case is not due to analytic problems, as one might initially suspect.

More precisely, the results of [14] show that this Morse stratification is the
same as the stratification by the type of the Harder-Narasimhan filtration (cf.
[7]). In the case where rank(E) = 2 the strata are enumerated as follows.
Given an unstable Higgs pair (A,Φ), there exists a destabilizing Φ-invariant
line bundle L ⊂ E. The quotient E/L is a line bundle (and hence stable),
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therefore the Harder-Narasimhan filtration is 0 ⊂ L ⊂ E. In this case the type
of the Harder-Narasimhan filtration is determined by the integer d = degL,
and so

B = Bss ∪
⋃
d∈Z

d> 1
2
dE

Bd,

where Bd is the set of Higgs pairs with Harder-Narasimhan type d. For d >
dE/2 we define the space Xd to be the union

(4) Xd = Bss ∪
⋃
`∈Z

d≥`> 1
2
dE

B`

and by convention we set XbdE/2c = Bss. Then {Xd}∞d=bdE/2c is the Harder-
Narasimhan and YMH-Morse stratification.

This approach forMHiggs is a special case of a more general method origi-
nally outlined by Kirwan, where the topology of a hyperkähler quotientM///G
can be studied using a two-step process. First, the cohomology of µ−1

C (0) is
calculated using the Morse theory of ‖µC‖2 on M associated to the complex
moment map µC = µ2 + iµ3 , and then the cohomology of M///G can be
obtained by studying the Kähler quotient of µ−1

C (0) by the group G with mo-
ment map µ1. In the case of M = A × Ω0(K ⊗ End(E)) we have that
H∗G(A × Ω0(K ⊗ End(E))) = H∗G(B). Therefore, in the Higgs bundle case
studied here, it only remains to study the Morse theory of YMH = ‖µ1‖2 on
B and B0 respectively.

The formula obtained here for the equivariant cohomology of the minimum
has the form

(5) P Gt (Bss) = P Gt (B)−
∞∑
d=0

t2µdP Gt (Bd) +

g−1∑
d=1

t2µdP Gt (B′d,ε,B′′d,ε)

where Bd denotes the dth stratum of the functional YMH, µd is the rank of a
certain bundle over the dth critical set ηd (see (24)) representing a subset of
the negative eigenspace of the Hessian of YMH at ηd, and P Gt (B′d,ε,B′′d,ε) are
correction terms arising from the fact that that the Morse index is not well-
defined on the first g − 1 critical sets. Indeed, as shown in [14], the Morse
index at each critical point of YMH can jump from point to point within the
same component of the critical set, and so standard Morse theory cannot be
used a priori. If the space B = µ−1

C (0) were smooth then the Morse index
would be well-defined and the Morse function equivariantly perfect (as is the
case for the symplectic reduction considered in [1] or [10]) and the formula
for the cohomology of M///G would only consist of the first two terms in (5).
However, this paper shows that it is possible to construct the Morse theory by
hand, using the commutative diagram (29) in Section 3, and computing the
cohomology groups of the stratification at each stage.
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In order to explain how to define the index µd in our case we proceed as
follows: Regarding A × Ω0(K ⊗ End(E)) as the cotangent bundle T ∗A,
and B = µ−1

C (0) as a subspace of this bundle, on a critical set of YMH the
solutions of the negative eigenvalue equation of the Hessian of YMH = ‖µ1‖2
split naturally into two components; one corresponding to the index of the
restricted functional ‖µ1|A‖

2, and one along the direction of the cotangent
fibers. The dimension of the first component is well-defined over all points of
the critical set (this corresponds to µd in the formula above), and the Atiyah-
Bott lemma can be applied to the negative normal bundle defined along these
directions. The dimension of the second component is not well-defined over
all points of the critical set, the methods used here to deal with this show that
this leads to extra terms in the Poincaré polynomial of BG corresponding to
P Gt (B′d,ε,B′′d,ε). More or less this method should work for any hyperkähler
quotient of a cotangent bundle.

For the non-fixed determinant case, the long exact sequence obtained at
each step of the Morse stratification splits into short exact sequences, thus
providing a simple proof of the surjectivity of the hyperkähler Kirwan map.
This is done by careful analysis of the correction terms, and it is in a way one
of the key observations of this paper (cf. Section 4.1). As mentioned above
this fails in the fixed determinant case.

This paper is organized as follows. Section 2 describes the infinitesimal
topology of the stratification arising from the Yang-Mills-Higgs functional.
We define an appropriate linearization of the “normal bundle” to the strata and
compute its equivariant cohomology.

Section 3 is the heart of the paper and contains the details of the Morse
theory used to calculate the cohomology of the moduli space. The first re-
sult proves the isomorphism in Proposition 3.1. This is the exact analogue of
Bott’s Lemma [3, p. 250] in the sense of Bott-Morse theory. The second main
result of the section is the commutative diagram (29) which describes how
attaching the strata affects the topology of our space. As mentioned before
the main difference between Poincaré polynomials of hyperkähler quotients
from Poincaré polynomials of symplectic quotients is the appearance of the
rather mysterious correction terms in formula (5). In the course of the proof of
Proposition 3.1 we show how these terms correspond by excision to the fixed
points of the S1 action on the moduli space of Higgs bundles. This in our
opinion provides an interesting link between our approach and Hitchin’s that
should be further explored.

Section 4.1 contains a detailed analysis of the exact sequence derived from
the Morse theory. We prove Kirwan surjectivity for any degree in the non
fixed determinant case (cf. Theorem 4.1). This is achieved by showing that
the vertical exact sequence in diagram (29) splits inducing a splitting on the
horizontal sequence. The key to this are results of MacDonald [12] on the
cohomology of the symmetric product of a curve. Next, we introduce the
fundamental Γ2 = H1(M,Z2) action on the equivariant cohomology which
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8 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

played an important role in the original work of Harder-Narasimhan, Atiyah-
Bott and Hitchin (cf. [1, 9]). The action splits the exact sequences in diagram
(29) into Γ2-invariant and noninvariant parts, and the main result is Theorem
4.13, which demonstrates Kirwan surjectivity holds on Γ2-invariant part of the
cohomology.

Finally, Section 5 contains the computations of the equivariant Poincaré
polynomials of Bss and Bss0 stated above.

Acknowledgments. We are thankful to Megumi Harada, Nan-Kuo Ho and
Melissa Liu for pointing out an error in a previous version of the paper.

2. Local structure of the space of Higgs bundles

In this section we explain the Kuranishi model for Higgs bundles (cf. [2]
and [11, Ch. VII]) and derive the basic results needed for the Morse theory of
Section 3. For simplicity, we treat the case of non-fixed determinant, and the
results for fixed determinant are identical mutatis mutandi.

2.1. The deformation complex. We begin with the deformation theory.
Infinitesimal deformations of (A,Φ) ∈ Bmodulo equivalence are described

by the following elliptic complex, which we denote by C(A,Φ).

C0
(A,Φ)

D1 // C1
(A,Φ)

D2 // C2
(A,Φ)

Ω0(End(E))
D1 // Ω0,1(End(E))⊕ Ω1,0(End(E))

D2 // Ω2(End(E))

(6)

where
D1(u) = (d′′Au, [Φ, u]) , D2(a, ϕ) = d′′Aϕ+ [a,Φ]

Here, D1 is the linearization of the action of the complex gauge group on B,
and D2 is the linearization of the condition d′′AΦ = 0. Note that D2D1 =
[d′′AΦ, u] = 0 if (A,Φ) ∈ B.

The hermitian metric gives adjoint operators D∗1, D∗2, and the spaces of
harmonic forms are given by

H0(C(A,Φ)) = kerD1

H1(C(A,Φ)) = kerD∗1 ∩ kerD2

H2(C(A,Φ)) = kerD∗2

with harmonic projections Πi : Ci(A,Φ) → H
i(C(A,Φ)).

We will be interested in the deformation complex along higher critical sets
of the Yang-Mills-Higgs functional . These are given by split Higgs bundles
(A,Φ) = (A1⊕A2,Φ1⊕Φ2) corresponding to a smooth splittingE = L1⊕L2

of E with degL1 = d > degL2 = dE − d. The set of all such critical points
is denoted by ηd ⊂ B. We will often use the notation L = L1 ⊗ L∗2, and
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MORSE THEORY AND HYPERKÄHLER KIRWAN SURJECTIVITY FOR HIGGS BUNDLES9

Φ[ = 1
2(Φ1 − Φ2), and denote the components of End(E) ' Li ⊗ L∗j in

the complex by uij , aij , ϕij , u[ = 1
2(u11 − u22), etc. Define End(E)UT to

be the subbundle of End(E) consisting of endomorphisms that preserve L1,
and End(E)SUT ⊂ End(E)UT to be the subbundle of endomorphisms whose
component in the subbundle End(L1)⊕ End(L2) is zero. We say that

(a, ϕ) ∈ Ω0,1(End(E)UT )⊕ Ω1,0(End(E)UT )

is upper-triangular, and

(a, ϕ) ∈ Ω0,1(End(E)SUT )⊕ Ω1,0(End(E)SUT )

is strictly upper-triangular. Similarly, define the lower-triangular, strictly
lower-triangular, diagonal and off-diagonal endomorphisms, with the obvi-
ous notation. Since Φ is diagonal, harmonic projection preserves components.
For example,H1(C(A,Φ)) consists of all (a, ϕ) satisfying

d′′ϕii = 0 (d′′)∗aii = 0(7)
d′′Aϕ12 + 2Φ[a12 = 0 (d′′A)∗a12 + 2∗̄(Φ[∗̄ϕ12) = 0(8)
d′′Aϕ21 − 2Φ[a21 = 0 (d′′A)∗a21 − 2∗̄(Φ[∗̄ϕ21) = 0(9)

where ∗̄ is defined as in [11, eq. (2.8)].
The following construction will be important for the computations in this

paper.

Definition 2.1. Let q̃ : T → ηd be the trivial bundle over ηd with fiber

Ω0,1(End(E))⊕ Ω1,0(End(E))

and define ν−d ⊂ T to be the subspace with projection map q̃ : ν−d → ηd,
where the fiber over (A,Φ) ∈ ηd is H1(CSLT(A,Φ)). Note that in general the
dimension of the fiber may depend on the Higgs structure.

We also define the subsets

ν ′d = ν−d \ ηd
ν ′′d =

{
((A,Φ), (a, ϕ)) ∈ ν−d : H(a21) 6= 0

}
whereH denotes the d′′A-harmonic projection.

2.2. Equivariant cohomology of the normal spaces. Note that there is a nat-
ural action of G on the spaces introduced in Definition 2.1. In this section we
compute the G-equivariant cohomology associated to the triple ν−d , ν ′d, and ν ′′d .
We first make the following

Definition 2.2. Let (A,Φ) ∈ ηd, E = L1 ⊕ L2, and L = L1 ⊗ L∗2. Let
(a, ϕ) ∈ Ω0,1(End(E))⊕ Ω1,0(End(E)). Since degL > 0, there is a unique
f21 ∈ Ω0(L∗) such that a21 = H(a21) + d′′Af21. Define
(10)
Ψ : Ω0,1(End(E))⊕Ω1,0(End(E))→ H1,0(L) : (a, ϕ) 7→ H(ϕ21+2f21Φ[)

Set ψ21 = ϕ21 + 2f21Φ[, and let F21 be the unique section in (ker(d′′A)∗)⊥ ⊂
Ω1,1(L∗) such that ψ21 = Ψ(a, ϕ) + (d′′A)∗F21.
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10 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

Let

(11) Td =
{

(a, ϕ) ∈ ν−d : H(a21) = 0 , Ψ(a, ϕ) 6= 0
}

and set µd = g − 1 + 2d− dE . We will prove the following

Theorem 2.3. There are isomorphisms

H∗G(ν−d , ν
′′
d ) ' H∗−2µd

G (ηd)(12)

H∗G(ν ′d, ν
′′
d ) ' H∗−2µd

G (Td)(13)

With the notation above, eq. (9) becomes

�AF21 + 2H(a21)Φ[ = 0(14)

�Af21 + 4‖Φ[‖2f21 = (d′′A)∗(2∗̄(Φ[∗̄F21)) + 2∗̄(Φ[∗̄Ψ(a, ϕ))(15)

Given (H(a21),Ψ(a, ϕ)) ∈ H0,1(L∗)⊕H1,0(L∗), satisfyingH(H(a21)Φ[) =
0, (14) uniquely determines F21. Then (15) uniquely determines f21. Note
that since degL > 0, �A, and therefore �A + ‖Φ[‖2, has no kernel. We
then reconstruct (a, ϕ) ∈ H1(CSLT(A,Φ)) by setting a21 = H(a21) + d′′Af21, and
ϕ21 = Ψ(a, ϕ) + (d′′A)∗F21 − 2f21Φ[. Thus, we have shown

ν−d ∩ q̃
−1(A,Φ)

'
{

(H(a21),Ψ(a, ϕ)) ∈ H0,1(L∗)⊕H1,0(L∗) : H(H(a21)Φ[) = 0
}

(16)

Next, let ηd,0 ⊂ ηd be the subset of critical points where Φ = 0. Notice that
ηd,0 ↪→ ηd is a G-equivariant deformation retraction under scaling (A,Φ) 7→
(A, tΦ), for 0 ≤ t ≤ 1. Let

ν−d,0 = ν−d ∩ q̃
−1(ηd,0) , ν ′d,0 = ν ′d ∩ q̃−1(ηd,0) , ν ′′d,0 = ν ′′d ∩ q̃−1(ηd,0)

We have the following

Lemma 2.4. There is a G-equivariant retraction ν−d,0 ↪→ ν−d that preserves
the subspaces ν ′d and ν ′′d .

Proof. Given (A,Φ) and (a21, ϕ21) ∈ Ω0,1(L∗)⊕Ω1,0(L∗), let (f21(Φ), F21(Φ))
be the unique solutions to (14) and (15). Notice that (f21(0), F21(0)) = (0, 0).
Then an explicit retraction may be defined as follows

ρ : [0, 1]× ν−d −→ ν−d

ρ(t, (A,Φ), (a, ϕ)) =
(
(A, tΦ),H(a21) + d′′Af21(tΦ),

Ψ(a, ϕ) + (d′′A)∗F21(tΦ)− 2tf21(tΦ)Φ[

)
It is easily verified that ρ satisfies the properties stated in the lemma. q.e.d.

Proof of Theorem 2.3. First, note that by Riemann-Roch, dimH0,1(L∗) =
µd. By Lemma 2.4, there are G-equivariant homotopy equivalences (ν−d,0, ν

′′
d,0) '

(ν−d , ν
′′
d ), and (ν ′d,0, ν

′′
d,0) ' (ν ′d, ν

′′
d ). Also, since ηd,0 ↪→ ηd is a G-equivariant
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MORSE THEORY AND HYPERKÄHLER KIRWAN SURJECTIVITY FOR HIGGS BUNDLES11

deformation retraction, H∗G(ηd) ' H∗G(ηd,0). By (16), a similar statement
holds for

(17) Td,0 = Td ∩ q̃−1(ηd,0)

Hence, it suffices to prove

H∗G(ν−d,0, ν
′′
d,0) ' H∗−2µd

G (ηd,0)(18)

H∗G(ν ′d,0, ν
′′
d,0) ' H∗−2µd

G (Td,0)(19)

From (16) we have,

ν−d,0 ∩ q̃
−1(A, 0) ' H0,1(L∗)⊕H1,0(L∗)

Then (18) follows from this and the Thom isomorphism theorem. Next, let

Yd =
{

(a, ϕ) ∈ ν ′′d,0 : Ψ(a, ϕ) = 0
}

Clearly, Yd is closed in ν ′′d,0, and one observes that it is also closed in ν ′d,0.
Hence, by excision and the Thom isomorphism applied to the projection to

H1,0(L∗),

H∗G(ν ′d,0, ν
′′
d,0) ' H∗G(ν ′d,0 \ Yd, ν ′′d,0 \ Yd) ' H

∗−2µd
G (Td,0)

This proves (19). q.e.d.

There is an important connection between the topology of the space Td,0
and the fixed points of the S1-action on the moduli space of semistable Higgs
bundles, and this will be used below. Recall from [9, Sec. 7] that the non-
minimal critical point set of the function ‖Φ‖2 onMHiggs(2, dE) has compo-
nents cd corresponding to equivalence classes of (stable) Higgs pairs (A,Φ),
where A = A1 ⊕ A2 is a split connection on E = L1 ⊕ L2 with degL1 =
d > degL2 = dE − d and Φ 6= 0 is strictly lower triangular with respect to
the splitting. On the other hand, it follows from (9) and (17) that

Td,0 =
{

((A,Φ = 0), (α21 = 0, ϕ21)) : A = A1 ⊕A2 , d
′′
A(ϕ21) = 0

}
Taking into account gauge equivalence, we therefore obtain the following

Lemma 2.5. Let cd be as above. For the non-fixed determinant case,

H∗G(Td,0) = H∗(cd)⊗H∗(BU(1))

and in the fixed determinant case, H∗G(Td,0) = H∗(cd).

3. Morse Theory on the space of Higgs bundles

The purpose of this section is to derive the theoretical results underpin-
ning the calculations in Section 5. This is done in a natural way, using the
functional YMH as a Morse function on the singular space B. As a conse-
quence, we obtain a criterion for hyperkähler Kirwan surjectivity in Corollary
3.5, which we show is satisfied for the non-fixed determinant case in Section
4.1. The key steps in this process are (a) the proof of the isomorphism (20),
which relates the topology of a neighborhood of the stratum to the topology of
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12 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

the negative eigenspace of the Hessian on the critical set (a generalization of
Bott’s isomorphism [3, p. 250] to the singular space of Higgs bundles), and (b)
the commutative diagram (29), which provides a way to measure the imper-
fections of the Morse function YMH caused by the singularities in the space
B.

The methods of this section are also valid for the rank 2 degree 1 case, and
in Section 5 they are used provide new computations of the results of [9] (fixed
determinant case) and [7] (non-fixed determinant case).
3.1. Relationship to Morse-Bott theory. Recall the spaces ν−d , ν ′d and ν ′′d
from Definition 2.1. This section is devoted to the proof of the Bott isomor-
phism

Proposition 3.1. For d > dE/2, there is an isomorphism

(20) H∗G(Xd, Xd−1) ' H∗G(ν−d , ν
′
d)

Let Ad denote the stable manifold in A of the critical set ηd,0 of the Yang-
Mills functional (cf. [1, 5]). We also define

XAd = Ass ∪
⋃

dE/2<`≤d

A`

Let X ′′d = Xd \pr−1(Ad). By applying the five lemma to the exact sequences
for the triples (Xd, Xd−1, X

′′
d ) and (ν−d , ν

′
d, ν
′′
d ), it suffices to prove the two

isomorphisms

H∗G(Xd, X
′′
d ) ' H∗G(ν−d , ν

′′
d )(21)

H∗G(Xd−1, X
′′
d ) ' H∗G(ν ′d, ν

′′
d ) .(22)

We begin with the first equality.

Proof of (21). By (12), the result of Atiyah-Bott [1], and the fact that the pro-
jection ηd → ηd,0 has contractible fibers, it suffices to show

H∗G(Xd, X
′′
d ) ' H∗G(XAd , X

A
d−1)

Also, note that for ` > d/2, pr(B`) = A`. Indeed, the inclusion ⊃ comes
from taking Φ = 0, and the inclusion ⊂ follows from the fact that for any
extension of line bundles

0 −→ L1 −→ E −→ L2 −→ 0

with degL1 > degL2, 0 ⊂ L1 ⊂ E is precisely the Harder-Narasimhan
filtration of E. With this understood, let Kd = pr(Bss) ∩ (∪`>dA`). Then
we claim that Kd, which is manifestly contained in pr(Xd), is in fact closed
in pr(Xd). To see this, let Aj ∈ Kd, Aj → A ∈ pr(Xd). By definition,
A = pr(A,Φ) with either (A,Φ) ∈ Bss, or (A,Φ) ∈ B`, ` ≤ d. Notice that
by semicontinuity,A ∈ ∪`>dA`. Hence, the second possibility does not occur.
It must therefore be the case that A ∈ pr(Bss), and hence A ∈ Kd also. Now,
since Kd ∩ Ad = ∅ by definition, it follows that

Kd ⊂ pr(Xd) \ Ad = pr(Xd \ pr−1(Ad)) = pr(X ′′d )
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Since the fibers of the map pr : Xd → pr(Xd) are G-equivariantly contractible
via scaling of the Higgs field, it follows from excision that

H∗G(Xd, X
′′
d ) ' H∗G(pr(Xd), pr(X ′′d )) ' H∗G(pr(Xd) \ Kd, pr(X ′′d ) \ Kd)

However,

pr(Xd) = pr(Bss) ∪
(
∪dE/2<`≤d pr(B`)

)
= Ass ∪

(
∪dE/2<`A` ∩ pr(Bss)

)
∪
(
∪dE/2<`≤dA`

)
= Ass ∪ Kd ∪

(
∪dE/2<`≤dA`

)
Hence, since the union is disjoint, pr(Xd) \ Kd = XAd . Furthermore,

pr(X ′′d ) \ Kd = pr(Xd) \ Kd ∪ Ad = XAd \ Ad = XAd−1

This completes the proof. q.e.d.

Proof of (22). By the isomorphism (13) (see also Lemma 2.4), it suffices to
prove H∗G(Xd−1, X

′′
d ) ' H∗G(Td,0). From the proof of (21) we have

X ′′d =
{
Bss ∪ (∪dE/2<`≤dB`)

}
\ pr−1(Ad)

=
{
Bss \ pr−1(Ad)

}
∪ (∪dE/2<`≤d−1B`)

whereas
Xd−1 = Bss ∪ (∪dE/2<`≤d−1B`)

Since ∪dE/2<`≤d−1B` ⊂ X ′′d is closed in Xd−1, it follows from excision that

H∗G(Xd−1, X
′′
d ) ' H∗G(Bss,Bss \ pr−1(Ad))

By the main result of [14], the YMH-flow gives a G-equivariant deformation
retract to Bmin. Hence,

H∗G(Xd−1, X
′′
d ) ' H∗G(Bmin,Bmin \ pr−1(Ad)).

Next, notice that the singularities of Bmin correspond to strictly semistable
points and therefore there exists a neighborhood Nd of pr−1(Ad) ∩ Bmin in
Bmin consisting entirely of smooth points. Furthermore, G acts on Nd with
constant central transformations as stabilizers. Therefore, by again applying
excision and passing to the quotient we obtain

H∗G(Xd−1, X
′′
d ) ' H∗G(Nd,Nd \ pr−1(Ad))
' H∗(Nd/G, (Nd \ pr−1(Ad))/G)⊗H∗(BU(1)).

Now according to Frankel and Hitchin (cf. [9, Sect. 7]) the latter equality
localizes the computation to the d-th component cd of the fixed point set for
the S1-action on Bmin/G. Hence,

H∗G(Xd−1, X
′′
d ) ' H∗−2µd(cd)⊗H∗(BU(1)).

The result follows by combining the above isomorphism with Theorem 2.3
and Lemma 2.5. q.e.d.
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14 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

3.2. A framework for cohomology computations. From Proposition 3.1, the
computation ofH∗G(ν−d , ν

′
d) in Theorem 2.3 leads to a computation of the equi-

variant cohomology of the space of rank 2 Higgs bundles, using the commu-
tative diagram (29). Recall the decomposition (4).

The inclusion Xd−1 ↪→ Xd induces a long exact sequence in equivariant
cohomology

(23) · · · → H∗G(Xd, Xd−1)→ H∗G(Xd)→ H∗G(Xd−1)→ · · · ,

and the method of this section is to relate the cohomology groupsH∗G(Xd) and
H∗G(Xd−1) by H∗G(Xd, Xd−1) and the maps in the corresponding long exact
sequence for (ν−d , ν

′
d, ν
′′
d ).

Let Jd(M) denote the Jacobian of degree d line bundles over the Riemann
surface M , let SnM denote the nth symmetric product of M , and let S̃nM
denote the 22g cover of SnM described in [9, eq. (7.10)]. The critical sets
correspond to Φ-invariant holomorphic splittings E = L1 ⊕ L2, therefore
after dividing by the unitary gauge group G the critical sets of YMH are

(24) ηd =

{
T ∗Jd(M)× T ∗JdE−d(M) non-fixed determinant case;
T ∗Jd(M) fixed determinant case.

By combining this with Lemma 2.5 and the computation in [9] we obtain

Lemma 3.2. In the non-fixed determinant case

H∗G(ηd) ∼= H∗(Jd(M)× Jn(M))⊗H∗(BU(1))⊗2(25)

H∗G(Td) ∼= H∗(Jd(M))⊗H∗(SnM)⊗H∗(BU(1)).(26)

In the fixed determinant case

H∗G(ηd) ∼= H∗(Jd(M))⊗H∗(BU(1))(27)

H∗G(Td) ∼= H∗(S̃nM).(28)

The spaces (ν−d , ν
′
d, ν
′′
d ) form a triple, and the isomorphismH∗G(Xd, Xd−1) ∼=

H∗G(ν−d , ν
′
d) from (20) implies the long exact sequence (abbrev. LES) of this
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triple is related to the LES (23) in the following commutative diagram.

(29) ...

δk−1

��
· · · // Hk

G(Xd, Xd−1)

∼=
��

αk
// Hk
G(Xd)

βk

//

��

Hk
G(Xd−1)

��

γk // · · ·

· · · // Hk
G(ν−d , ν

′
d)

ζk

��

αk
ε // Hk

G(ν−d )
βk
ε //

ωk

��

Hk
G(ν ′d)

γkε // · · ·

Hk
G(ν−d , ν

′′
d )

`e //

λk

��

ξk
88ppppppppppp
Hk
G(ηd)

Hk
G(ν ′d, ν

′′
d )

δk

��
...

where the two horizontal exact sequences are the LES of the pairs (Xd, Xd−1)
and (ν−d , ν

′
d) respectively. The vertical exact sequence in the diagram is the

LES of the triple (ν−d , ν
′
d, ν
′′
d ). The diagonal map ξk is from the LES of the

pair (ν−d , ν
′′
d ). Applying the Atiyah-Bott lemma ([1, Prop. 13.4]) gives us the

following lemma.

Lemma 3.3. The map ` e : Hk
G(ν−d , ν

′′
d )→ Hk

G(ηd) is injective and there-
fore the map ξk is injective, since ωk ◦ ξk =` e.

From the horizontal LES of (29)

Hk
G(Xd−1)

imβk
∼=
Hk
G(Xd−1)

ker γk
∼= im γk ∼= kerαk+1

and also

imβk ∼=
Hk
G(Xd)

kerβk
∼=
Hk
G(Xd)

imαk

Therefore

dim kerαk+1 = dimHk
G(Xd−1)− dim imβk

= dimHk
G(Xd−1)− dimHk

G(Xd) + dim imαk

Lemma 3.4. kerαk ⊆ ker ζk.

Proof. Lemma 3.3 implies ξk is injective, and since αkε = ξk ◦ ζk, then
kerαkε = ker ζk. Using the isomorphism (20) to identify the spacesH∗G(Xd, Xd−1) ∼=
H∗G(ν−d , ν

′
d), we see that kerαk ⊆ kerαkε , which completes the proof. q.e.d.
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16 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

Corollary 3.5. If λk is surjective for all k, then βk is surjective for all k.

Proof. If λk is surjective for all k, then ζk is injective for all k, and so
Lemma 3.4 implies αk is injective for all k. Therefore, βk is surjective for all
k. q.e.d.

In particular, we see that if for each stratum Xd, we can show that λk is
surjective for all k, then the inclusion Bss ↪→ B induces a surjective map
κH : H∗G(B) → H∗G(Bss). The next section shows that this is indeed the case
for non-fixed determinant Higgs bundles.

4. Hyperkähler Kirwan surjectivity

We now apply the results of Section 3 to the question of Kirwan surjectiv-
ity for Higgs bundles. We establish surjectivity in the case of the non-fixed
determinant moduli space. In the fixed determinant case surjectivity fails, this
will be explained in more detail in Section 4.2, where we introduce an action
of Γ2 = H1(M,Z2) and prove surjectivity onto the Γ2-invariant equivariant
cohomology.

4.1. The non-fixed determinant case. For simplicity of notation, throughout
this section let n = 2g − 2 + dE − 2d where dE = deg(E) and d is the index
of the stratum Bd as defined in Section 3. In this section we prove

Theorem 4.1. The spacesMHiggs(2, 1) andMHiggs(2, 0) are hyperkäh-
ler quotients T ∗A///G for which the hyperkähler Kirwan map

κH : H∗G(T ∗A)→ H∗G(Bss)
is surjective.

As mentioned in the Introduction, for the space MHiggs(2, 1) a special
case of Theorem 4.1 has already been proven by Hausel and Thaddeus in [7].
However, because of singularities their methods do not apply to the space
MHiggs(2, 0).

The calculations of Hitchin in [9] forMHiggs
0 (2, 1), and those of Section 5

in this paper forMHiggs
0 (2, 0), show that the hyperkähler Kirwan map cannot

be surjective for the fixed determinant case. The results of this section also
provide a basis for the proof of Theorem 4.13 below, where we show that
the hyperkähler Kirwan map is surjective onto the Γ2-invariant part of the
cohomology. This is the best possible result for the fixed determinant case.

The proof of Theorem 4.1 reduces to showing that the LES (23) splits,
and hence the map β∗ : H∗G(Xd)→ H∗G(Xd−1) is surjective for each positive
integer d. Lemma 3.4 shows that this is the case iff the vertical LES of diagram
(29) splits. By Corollary 3.5, together with the description of the cohomology
groups in Theorem 2.3, the proof of Theorem 4.1 reduces to showing that
the map λ∗ : H∗−2µd

G (ηd) → H∗−2µd
G (Td) is surjective. In the non-fixed

determinant case, the following lemma provides a simpler description of the
map λ∗.

PROOF COPY NOT FOR DISTRIBUTION



MORSE THEORY AND HYPERKÄHLER KIRWAN SURJECTIVITY FOR HIGGS BUNDLES17

Lemma 4.2. The map λ∗ restricts to a map

λ∗r : H∗−2µd(Jd(M))⊗H∗(BU(1))→ H∗−2µd(SnM),

and λ∗ is surjective iff λ∗r is surjective. The restriction of the map λ∗r to
H∗−2νd(Jd(M)) is induced by the Abel-Jacobi map SnM → Jn(M).

Proof. The same methods as [1, Sect. 7] show that for the critical set ηd,
the following decomposition of the equivariant cohomology holds

H∗G(ηd) ∼= H∗Gdiag(ηd) ∼= H∗Gdiag
(η̃∗d)

where Gdiag is the subgroup of gauge transformations that are diagonal with
respect to the Harder-Narasimhan filtration, η∗d refers to the subset of critical
points that split with respect to a fixed filtration, Gdiag is the subgroup of
constant gauge transformations that are diagonal with respect to the same fixed
filtration, and η̃∗d is the fiber of η∗d ∼= Gdiag ×Gdiag

η̃∗d. In the rank 2 case, the
group Gdiag is simply the torus T = U(1) × U(1) and we can define (using
the local coordinates on ν−d from Section 2)

Z̃∗d = {(A,Φ, a, ϕ) ∈ (ν−d )r : (A,Φ) ∈ η̃∗d, a = 0}(30)

Z∗d = {(A,Φ, a, ϕ) ∈ (ν−d )r : (A,Φ) ∈ η̃∗d, a = 0, ϕ 6= 0}(31)

(we henceforth omit the subscript 21 from (a, ϕ); also, Lwill denote a general
line bundle, and not necessarily L1 ⊗ L∗2). The map λ∗ is induced by the in-
clusion Z∗d ↪→ Z̃∗d and so the map λ∗ becomes λ∗ : H∗T (Z̃∗d)→ H∗T (Z∗d). Let
T ′ be the quotient of T by the subgroup of constant multiples of the identity.
Since the constant multiples of the identity fix all points in Z̃∗d and Z∗d then
H∗T (Z̃∗d) ∼= H∗T ′(Z̃

∗
d)⊗H∗(BU(1)) and H∗T (Z∗d) ∼= H∗T ′(Z

∗
d)⊗H∗(BU(1)).

Therefore the map

λ∗ : H∗T ′(Z̃
∗
d)⊗H∗(BU(1))→ H∗T ′(Z

∗
d)⊗H∗(BU(1))

is the identity on the factor H∗(BU(1)).
Now consider coordinates on Z̃∗d given by (L1, L2,Φ1,Φ2, ϕ) where L1 ∈

Jd(M), L2 ∈ JdE−d(M) are the line bundles of the holomorphic splitting
E = L1 ⊕ L2 and ϕ ∈ H0(L1L

∗
2 ⊗ K). For a fixed holomorphic structure,

Φ1 and Φ2 take values in a vector space, and so Z̃∗d is homotopy equivalent to
a fibration over

(32)
{

(L,ϕ) : L ∈ Jn , ϕ ∈ H0(L)
}

with fiber Jd(M). The fibration is trivialized by the map

(L1, L, ϕ) 7→ (L1, L2 = L1 ⊗K∗ ⊗ L,ϕ)

Let Fn be the subspace of (32) with ‖ϕ‖ = 1. Then the cohomology of the
fiber bundle splits as

H∗T ′(Z̃
∗
d) ∼= H∗(Jd(M))⊗H∗T ′(Jn(M))(33)

H∗T ′(Z
∗
d) ∼= H∗(Jd(M))⊗H∗T ′(Fn)(34)
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Note that Fn fibers over the symmetric product SnM with fiber U(1) ∼= T ′,
where T ′ acts trivally on the base, and freely on the fibers. The map λ∗ restricts
to the identity on the factor H∗(Jd(M)) in (33) and (34), and therefore it
restricts to a map H∗T ′(Jn(M)) → H∗T ′(Fn). Now the action of T ′ fixes
the holomorphic structures on L1 and L2, and so acts trivially on the base of
the fiber bundle. T ′ acts freely on a nonzero section ϕ ∈ H0(L∗1L2 ⊗ K)
and so (after applying the deformation retraction |ϕ| → 1), the quotient of
the space Fn is the space of effective divisors on M , since the zeros of each
0 6= ϕ ∈ H∗(L∗1L2 ⊗ K) correspond to an effective divisor of degree n =
2g − 2 + dE − 2d. Therefore the map λ∗ restricts to a map

λ∗r : H∗(Jn(M))⊗H∗(BU(1))→ H∗(SnM)

which is induced by the T ′-equivariant map Fn → Jn(M), which maps a
nonzero section ϕ ∈ H0(L∗1L2 ⊗ K) to the line bundle L∗1L2 ⊗ K. On
the quotient Fn/T ′ = SnM this restricts to the Abel-Jacobi map SnM →
Jn(M). q.e.d.

Let

Mpairs =
{

(L,Φ) : L ∈ Jn(M),Φ ∈ H0(L⊗K)
}

Mpairs
0 =

{
(L,Φ) : L ∈ Jn(M),Φ ∈ H0(L⊗K) \ {0}

}
The group U(1) acts onMpairs andMpairs

0 by eiθ · (L,Φ) = (L, eiθΦ). The
inclusionMpairs

0 ↪→ Mpairs is U(1)-equivariant with respect to this action,
and the proof of Lemma 4.2 shows that λ∗r is induced by this inclusion.

REMARK 4.3. The paper [12] describes the cohomology ring of the sym-
metric product of a curve in detail. The result relevant to this paper is that
H∗(SnM) is generated by 2g generators in H1, and one generator in H2.
Therefore, the proof of Theorem 4.1 reduces to showing that λ∗r maps onto
these generators.

From the proof of [12, (14.1)] we have the following lemma for the Abel-
Jacobi map.

Lemma 4.4. λ∗r is surjective onto H1(SnM).

Next we need the following technical lemma.

Lemma 4.5. For any positive integer n, the cohomology group H2(Fn)
consists of products of elements of H1(Fn).

Proof. First consider the case where n > 2g−2. By Serre duality h1(L) =
0 for all L ∈ Jn(M), and so Riemann-Roch shows that h0(L) = n + 1 −
g. Therefore Fn is a sphere bundle over the Jacobian Jn(M) with fiber the
sphere S2(n−g+1)−1. By the spectral sequence for this fiber bundle,Hk(Fn) ∼=
Hk(Jn(M)) for all k ≤ 2(n − g + 1) − 1, therefore in low dimensions the
ring structure of H∗(Fn) is isomorphic to that of H∗(Jn(M)). In particular,
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since 2(n−g+1)−1 ≥ 2g−1 > 2, we see that H2(Fn) consists of products
of elements of H1(Fn).

When n < 2g − 2 we see that Fn is not a fiber bundle over the Jacobian
(since the dimension of the fiber may jump). For a fixed basepoint x0 of M ,
consider the inclusion map Mn ↪→MN given by

(x1, . . . , xn) 7→ (x1, . . . , xn, x0, . . . , x0)

This induces the inclusion of symmetric products i : SnM ↪→ SNM , and the
description of the generators of H∗(SNM) in [12, eq. (3.1)] shows that the
induced map i∗ : H∗(SNM) → H∗(SnM) maps generators to generators
and hence is surjective. Therefore the inclusion i induces the following map
of fiber bundlesU(1) → Fn

↓
SnM

→
U(1) → FN

↓
SNM


which is the identity map j : U(1)→ U(1) on the fibers.

If N > 2g − 2 then the previous argument implies H2(FN ) has no irre-
ducible generators, and so in the Serre spectral sequence for H∗(FN ), the ir-
reducible generator pN ∈ H2

(
SNM ;H0(U(1))

) ∼= H2(SNM)⊗H0(U(1))

must be killed by a differential (note that π1(SNM) acts trivially on the space
of components of the fiber, and hence onH0(U(1))). For dimensional reasons
this must be the differential

dN2 : E0,1
2
∼= H1(U(1))⊗H0(SNM)→ E2,0

2
∼= H0(U(1))⊗H2(SNM)

on theE2 page of the spectral sequence. Since the map i∗ is surjective, i∗ ◦dN2
maps onto pn, the irreducible generator of H2(SnM).

Naturality of the Serre spectral sequence then shows that dn2 ◦ j∗ maps onto
pn, where dn2 : E0,1

2 → E2,0
2 is a differential on the E2 page of the Serre spec-

tral sequence for Fn. Since j∗ is an isomorphism, dn2 maps onto the irreducible
generator pn of H2

(
SnM ;H0(U(1))

)
.

The following diagram summarizes the argument

H1(U(1))⊗H0(SNM)

j∗ iso.

��

dN2 // H0(U(1))⊗H2(SNM)

i∗ surj.

��
H1(U(1))⊗H0(SnM)

dn2 // H0(U(1))⊗H2(SnM)

Therefore the irreducible generator in H2(SnM) is killed by a differential
in the spectral sequence for Fn, and so there are no irreducible generators of
H2(Fn). q.e.d.

Lemma 4.6. λ∗r is surjective onto H2(SnM).

Proof. Using the definition of Fn from above, note that SnM ' Fn ×U(1)

EU(1), where U(1) acts by multiplication on the fibers of U(1) → Fn →
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SnM . Therefore SnM is homotopy equivalent to a fiber bundle over Fn with
fibers BU(1). From the Serre spectral sequence, we have the map(

H0(Fn)⊗H2(BU(1))
)
⊕
(
H1(Fn)⊗H1(BU(1))

)
⊕
(
H2(Fn)⊗H0(BU(1))

)
→ H2(SnM)

From [12],H2(SnM) has an irreducible generator pn. We have thatH1(BU(1)) =
0 and by Lemma 4.5 there are no irreducible generators ofH2(Fn)⊗H0(BU(1)).
Therefore pn is in the image of the term H0(Fn) ⊗ H2(BU(1)) ∼= C, and
therefore this term is not killed by any differential in the Serre spectral se-
quence for SnM ' Fn ×U(1) EU(1).

By construction, the map λ∗r is induced by a map of fiber bundles which is
an isomorphism on the base BU(1)Fn → Fn ×U(1) EU(1) ' SnM

↓
BU(1)

→
Jn(M) → Jn(M)×U(1) EU(1)

↓
BU(1)


and therefore the induced map

H2(BU(1))⊗H0(Jn(M))→ H2(BU(1))⊗H0(Fn)

is an isomorphism on the E2 page of the respective Serre spectral sequences.
Therefore the map

H2(BU(1))⊗H0(Jn(M)) ↪→ H2(Jn(M)×U(1) EU(1))→ H2(SnM)

is surjective onto the generator pn of H2(SnM). q.e.d.

Proof of Theorem 4.1. The results of Lemmas 4.4 and 4.6, together with Mac-
Donald’s results about the cohomology of the symmetric product SnM (see
Remark 4.3), show that the map λ∗ is surjective. Therefore, Corollary 3.5
implies κH is surjective. q.e.d.

4.2. The action of Γ2 on the cohomology. First we recall the definition of
the action of

Γ2
∼= H1(M,Z2) ∼= Hom(π1(M),Z2)

on the space of Higgs bundles (cf. [1, 9]). Γ2 can be identified with the 2-
torsion points of the Jacobian J0(M) which act onMHiggs(2, dE) by tensor
product

L · (E,Φ) = (E ⊗ L,Φ)

The Jacobian acts also onMHiggs(1, k) by

L · (F,Φ) = (F ⊗ L2,Φ)

and the determinant map

det :MHiggs(2, dE)→MHiggs(1, dE) : (E,Φ) 7→ (detE, tr Φ)
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becomes J0(M)-equivariant. Since L ∈ J0(M) acts on the base by tensoring
with L2 we obtain, after lifting det from MHiggs(1, dE) (which is homo-
topy equivalent to J0(M)) to the cover M̂Higgs(1, dE) corresponding to Γ2,
a product fibration

(35) d̂et :MHiggs
0 (2, dE)× M̂Higgs(1, dE)→ M̂Higgs(1, dE).

The trivialization

(36) χ̂ :MHiggs
0 (2, dE)× M̂Higgs(1, dE)→ M̂Higgs(2, dE)

given by (E,L) 7→ E ⊗ L descends to a homeomorphism

MHiggs
0 (2, dE)×Γ2 M̂Higgs(1, dE) ∼=MHiggs(2, dE).

(cf. [1, eq. (9.5)] for the case of holomorphic bundles). It is originally one of
the main observations of Atiyah and Bott (cf. [1, Sects. 2 and 9]) that we can
also define the Γ2-action via equivariant cohomology.

Recall from [1] that the group Γ of components of G is given by Γ ∼=
H1(M,Z). Let Γ′ = 2Γ ⊂ Γ be a sublattice of index 2, and let G′ be the
associated subgroup of G, whose components correspond to elements of Γ′.
By [1, Prop. 2.16], BG′ is torsion-free and has the same Poincaré polynomial
as BG.

The degree of a gauge transformation is the component of G containing g,
i.e. deg g ∈ Γ. Dividing by the subgroup of constant central gauge transfor-
mations, we obtain Ḡ = G/U(1), and Ḡ0 = G0/{±1}, and we define

Ḡ′ = {g ∈ Ḡ : deg g ∈ Γ′}.

Let B(1, k) denote the space of Higgs bundles on a line bundle L→ M of
degree k, G(1) the corresponding gauge group, and Gp(1) the subgroup based
at p. Fix a basepoint D0 ∈ B0(2, dE) and define T : B(2, dE) → B(1, dE),
the trace map, by T (A,Φ) = (trA, tr Φ). Clearly, T is a fibration with fiber
' B0(2, dE).

The fixed determinant gauge group G0 acts onB(2, dE) preservingB0(2, dE)
and such that T is invariant. To see this, note that if g ∈ G0, then tr(D0gg

−1) =
0. Indeed, since G0 is connected it suffices to show that tr(D0gg

−1) =
tr(dgg−1) is locally constant. Any g in a neighborhood of g0 can be expressed
eug0, where u ∈ Lie(G0) is a smooth map fromM to the vector space of trace-
less endomorphisms. In particular, tr(du) = d tru = 0. But then

tr(dgg−1) = tr(d(eu)e−u) + tr(eudg0g
−1
0 e−u)

= tr(du) + tr(dg0g
−1
0 ) = tr(dg0g

−1
0 ).

Now for g ∈ G0,

T (g(A), gΦg−1) =
(
tr(gAg−1 − dgg−1), tr gΦg−1

)
= (trA, tr Φ),

hence there is an induced fibration T : B(2, dE) ×G0 EG → B(1, dE) with
fiber B0(2, dE)×G0 EG.
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The group G/G0 ' G(1) induced by the determinant map acts fiberwise
on T with nontrivial stabilizers on B(1, dE) given by the constant U(1) gauge
transformations. Therefore, following the approach of [1], we pass to the
quotient G = G/U(1), G0 = G0/{±1} and consider the induced fibration
T : B(2, dE) ×G0

EG → B(1, dE). We claim that T is a trivial fibration.
Indeed, with respect to the fixed base point D0 ∈ B0(2, dE) define

χ : B(2, dE) −→ B0(2, dE)× B(1, dE)

χ(A,Φ) =
(
(A− (1

2 trA)I,Φ− (1
2 tr Φ)I), (trA, tr Φ)

)
.

Then χ descends to a trivialization

χ : B(2, dE)×G0
EG −→

(
B0(2, dE)×G0

EG
)
× B(1, dE).

Now the group G
/
G0 ' G(1) = G(1)

/
U(1) induced by the determinant map

acts freely on the total space and the base of T , but the induced fibration on
the quotient is not trivial. For this reason we need to pass to a subgroup.

Indeed, given g ∈ G(1) let deg g ∈ Γ = H1(M,Z) denote the degree of
the gauge transformation g. Since constant gauge transformations have degree
0, it induces a map deg : G(1)→ Γ. Let

G′(1) =
{
g ∈ G(1) : deg g ∈ 2Γ

}
.

We define G′ =
{
g ∈ G : det(g) ∈ G′(1)

}
. Given g ∈ G′(1), set g = s2,

s ∈ G(1), and let ĝ =

(
s 0
0 s

)
∈ G. Define g[A,Φ, e] = [ĝ(A,Φ, e)] for

[A,Φ, e] ∈ B(2, dE)×G0
EG. Notice that the action is well-defined indepen-

dent of the choice of square root. Furthermore, χ is equivariant, where the
action of G′(1) is trivial on B0(2, dE) ×G0

EG and has the usual action on
B(1, dE). Hence the induced fibration

(37) T̂ : B(2, dE)×G′ EG −→ B(1, dE)
/
G′(1)

can be trivialized by the homeomorphism

(38) χ̂ : B(2, dE)×G′ EG −→
(
B0(2, dE)×G0

EG
)
× B(1, dE)

/
G′(1)

induced from χ.

REMARK 4.7. Formulas (37) and (38) should be considered as the equi-
variant analogues of (35) and (36).

Now Γ2 acts on the left hand side of (38). It is also clear that the action of
Γ2 on B(1, dE)

/
G′(1) ∼= M̂Higgs(1, dE) is just by tensoring with a torsion

point in the Jacobian.

Definition 4.8. The action of Γ2 on B0(2, dE) ×G0
EG is defined so that

the map χ̂ becomes Γ2-equivariant.
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The following simple lemma identifies also the two actions on the fibers of
(35) and (37).

Lemma 4.9. On any subspace Y of B0(2, dE) invariant under G0 on which
G0 acts with constant stabilizer, the action of Γ2 on Y/G0 is given by tensoring
with a 2-torsion point of J0(M).

Proof. Given γ ∈ Γ2, let gγ be a gauge transformation in G(1) such that
deg(gγ) = γ mod H1(M, 2Z) and hγ ∈ G with det(hγ) = gγ . Note that
tr(h−1

γ dhγ) = g−1
γ dgγ . Then by Definition 4.8, the action of hγ on B0(2, dE)

(modulo gauge transformations in G0) is given by

hγ [(A,Φ)] = [(h−1
γ Ahγ + h−1

γ D0hγ −
1

2
tr
(
h−1
γ D0hγ + h−1

γ Ahγ
)
I,

h−1
γ Φhγ −

1

2
tr
(
h−1
γ Φhγ

)
I)]

=

[(
h−1
γ D0hγ + h−1

γ Ahγ −
1

2
(g−1
γ dgγ)I, h−1

γ Φhγ

)]
,

since trA = 0 and tr Φ = 0. We claim that this equivalent to tensoring with
the line bundle Lγ corresponding to γ. To see this last statement, chose a
simple loop σ on M and note that if γ[σ] = +1, then gγ has even degree
around the loop σ and so in an annulus around σ the gauge transformation
gγ = s2 is a square, hence the previous formula becomes

hγ [(A,Φ)] =
[
(ĝ−1hγ) · (A, φ)

]
,

where ĝ = sI as before (note that since gγ ∈ Ḡ(1) then g−1
γ dgγ = dgγg

−1).
Since ĝ−1hγ ∈ G0 then this shows that hγ [(A,Φ)] = [(A,Φ)] in an annulus
around σ.

If γ[σ] = −1 then parametrise the loop σ by θ : 0 ≤ θ ≤ 2π and note that
since gγ has odd degree, then gγ = eiθs2 in an annulus around σ. Therefore
the effect of the gauge term (1

2gγ
−1dgγ)I is that it changes the argument of

the holonomy around σ by π, as desired. q.e.d.

In the above we can restrict to the G0-invariant subspaces Xd of B0(2, dE),
and the action commutes with inclusions and connecting homomorphisms
from the LES in cohomology. Therefore, we have a LES of Γ2 spaces and
Γ2-equivariant maps

Hk
G0

(Xd, Xd−1)
αk

// Hk
G0

(Xd)
βk

// Hk
G0

(Xd−1)
γk // Hk+1

G0
(Xd, Xd−1)

Lemma 4.10. The Γ2-action commutes with the isomorphism in (20)

(39) H∗G0
(Xd, Xd−1) ∼= H∗G0

(ν−d , ν
′
d),

and with the isomorphisms (12) and (13), (27) and (28).
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Proof. First, note that the Γ2 action on B0(2, dE) ×Ḡ0
EḠ0 preserves the

subspaces Bd×Ḡ0
EḠ0 and ν−d ×Ḡ0

EḠ0, Xd×Ḡ0
EḠ0 and ν ′d×Ḡ0

EḠ0 for all
values of d, and so the inclusion of pairs(

ν−d ×Ḡ0
EḠ0, ν

′
d ×Ḡ0

EḠ0

)
↪→
(
Xd ×Ḡ0

EḠ0, Xd−1 ×Ḡ0
EḠ0

)
is Γ2-equivariant. Therefore the action of Γ2 commutes with the excision
isomorphism

H∗(Xd ×Ḡ0
EḠ0, Xd−1 ×Ḡ0

EḠ0) ∼= H∗(ν−d ×Ḡ0
EḠ0, ν

′
d ×Ḡ0

EḠ0)

which descends to the isomorphism (39) in equivariant cohomology.
The isomorphisms (27) and (28) arise from taking quotients

H∗Ḡ0
(ηd) ∼= H∗(ηd×Ḡ0

EḠ0) ∼= H∗U(1)(ηd/Ḡ0) ∼= H∗ (Jd(M))⊗H∗ (BU(1))

(where Ḡ0 acts on ηd with isotropy group U(1)), and

(40) H∗Ḡ0
(Td) ∼= H∗(Td ×Ḡ0

EḠ0) ∼= H∗(Td/Ḡ0) ∼= H∗(S̃nM)

(since Ḡ0 acts freely on Td). The action of Γ2 on the space B0×Ḡ0
EḠ0 induces

actions on ηd ×Ḡ0
EḠ0 and Td ×Ḡ0

EḠ0 which in turn induces an action on
the spaces ηd/Ḡ0 and Td/Ḡ0. By Lemma 4.9 the action of γ ∈ Γ2 on the
quotient ηd/Ḡ0 ' {(L1, L2) ∈ Jd(M)× JdE−d(M) : L1L2 = F}, is given
by tensor product (L1, L2) 7→ (L1 ⊗ Lγ , L2 ⊗ Lγ), where Lγ ∈ J0(M) is
the line bundle corresponding to γ. The induced action on the cohomology
is trivial by [1, Prop. 9.7]. The action of Γ2 on the quotient Td/Ḡ0 is also by
tensor product, (L1, L2,Φ) 7→ (L1⊗Lγ , L2⊗Lγ ,Φ), therefore the action on
the right-hand side of (40) is via deck transformations of the 22g-fold cover
S̃nM → SnM (see also [9, Sect. 7]). q.e.d.

Let N be a space with a Γ2-action. Then we have a splitting

H∗(N) ∼= H∗(N)Γ2 ⊕H∗(N)a

where H∗(N)Γ2 is the Γ2-invariant part of the cohomology and

H∗(N)a ∼= ⊕ϕ6=1H
∗(N)ϕ

where ϕ varies over all homomorphisms Γ2 → {±1}. If N1, N2 are two such
spaces and f : H∗(N1) → H∗(N2) is a Γ2-equivariant homomorphism, we
denote by fΓ2 (resp. fa) the restriction of f to H∗(N1)Γ2 (resp. H∗(N1)a).

Applying this notation to λ∗ we have

λ∗Γ2
: H∗G(ν−d , ν

′′
d )Γ2 → H∗G(ν ′d, ν

′′
d )Γ2 .

The main result of this section is Lemma 4.12 which shows that λ∗Γ2
is sur-

jective, a key step towards proving Theorem 4.13. The earlier results (13) and
Lemma 3.2 show thatH∗G(ν ′d, ν

′′
d ) ∼= H∗−2µd(S̃nM), where n = 2g−2+dE−

2d. Points in S̃nM correspond to triples (L1, L2,Φ) ∈ Jd(M)×JdE−d(M)×
Ω0(L∗1L2⊗K) where L1L2 = detE is a fixed line bundle. Similarly, there is
a corresponding 22g cover of the Jacobian J̃n(M) = Jd(M)×JdE−d(M)/∼,
where the equivalence is given by (L1, L2) ∼ (L̃1, L̃2) if L1L2

∼= L̃1L̃2.
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The isomorphisms

H∗G(ν−d , ν
′′
d ) ∼= H∗−2µd(ηd) ∼= H∗−2µd(J̃(M)×BU(1))

H∗G(ν ′d, ν
′′
d ) ∼= H∗−2µd(Td) ∼= H∗−2µd(S̃nM)

from Theorem 2.3 and Lemma 3.2 show that the map λΓ2 is given by

λ∗Γ2
: H∗−2µd(J̃(M)×BU(1))Γ2 //

∼=
��

H∗−2µd(S̃nM)Γ2 ∼= H∗−2µd(SnM)

∼=
��

H∗−2µd(ηd)
Γ2 // H∗−2µd(Td)

Γ2

where n = 2g−2 +dE−2d, and µd = 2d−dE + g−1. This map is induced
by the inclusion Td ↪→ (ν−d )r (where the spaces are now subsets of the space
of fixed determinant Higgs bundles). We define the lifted Abel-Jacobi map
to be the map S̃nM → J̃(M), which takes a triple (L1, L2,Φ) to the pair
(L1, L2) ∈ J̃(M). The same proof as Lemma 4.2 in the previous section
gives us the following

Lemma 4.11. The restriction of λ∗Γ2
to H∗−2µd(J̃n(M)) given by

(λ∗Γ2
)r : H∗−2µd(J̃n(M))Γ2 → H∗−2µd(S̃nM)Γ2

is induced by the lifted Abel-Jacobi map.

Lemma 4.12. The map λ∗Γ2
is surjective.

Proof. By [9, eqs. (7.12) and (7.13)], H∗(S̃nM)Γ2 ∼= H∗(SnM), and we
also have H∗(J̃n(M))Γ2 ∼= H∗(Jn(M)). Therefore Lemma 4.4 implies λ∗Γ2

is surjective onto H1(S̃nM)Γ2 . By the same argument as in Lemma 4.6 (with
the Γ2-invariant part of the cohomology), λ∗Γ2

is surjective onto H2(S̃nM)Γ2 .
By [12], H∗(S̃nM)Γ2 ∼= H∗(SnM) is generated in dimensions 1 and 2;
hence, λ∗Γ2

is surjective. q.e.d.
4.3. Γ2-invariant hyperkähler Kirwan surjectivity. For fixed determinant
the inclusion Bss0 ↪→ T ∗A0 induces a map on the Γ2-invariant part of the G-
equivariant cohomology which we call the Γ2-invariant hyperkähler Kirwan
map

κΓ2
HK : H∗G(T ∗A0) ∼= H∗G(T ∗A0)Γ2 → H∗G(Bss0 )Γ2 .

In this section we prove

Theorem 4.13. κΓ2
HK is surjective.

As mentioned in the Introduction, it turns out that the full Kirwan map is not
surjective.

The second goal of this section is the following. The results of Section 4.1
show that the map ζk in Diagram (29) is always injective for non-fixed deter-
minant Higgs bundles, and so Lemma 3.4 implies that in this case kerαk ∼=
ker ζk = {0}. In this section we will show that kerαk ∼= ker ζk holds for
fixed determinant as well, which is important for the calculations in Section 5.
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Proposition 4.14. For rank 2 Higgs bundles, kerαk ∼= ker ζk for all k,
and therefore dim imαk = dim im ζk also. In the non-fixed determinant
case kerαk = 0 for all k, and in the fixed determinant case

kerαk = Hk
G(Xd, Xd−1)a

∼=

{
Hk−2µd(S̃2g−2d−2+dEM)a k = 4g − 4− dE + 2d+ 1

0 otherwise

Note that we have already proven kerαk ∼= ker ζk in the non-fixed determi-
nant case (Sect. 4.1). Hence, for the rest of this section we restrict to the fixed
determinant case.

In order to separate out the Γ2-invariant part of the equivariant cohomology,
we require the following simple

Lemma 4.15. Let

· · · // An
fn // Bn

gn // Cn
hn // An+1

// · · ·

be a LES of C-vector spaces. Suppose that Γ is a finite abelian group acting
linearly on An, Bn and Cn such that fn, gn, and hn are equivariant. Then for
each homomorphism ϕ : Γ→ C∗ the restriction

· · · // (An)ϕ
fn,ϕ // (Bn)ϕ

gn,ϕ // (Cn)ϕ
hn,ϕ // (An+1)ϕ // · · ·

to the ϕ-isotypical subspaces is exact.

Proof. By the equivariance of the maps the restrictions are well-defined.
We prove exactness at (Bn)ϕ. By equivariance and exactness of the original
sequence,

fn((An)ϕ) ⊂ ker gn ∩ (Bn)ϕ

Suppose b ∈ ker gn ∩ (Bn)ϕ. Again by exactness of the original sequence,
b = fn(ã) for some ã ∈ An. Set

a =
1

#Γ

∑
σ∈Γ

ϕ(σ−1)σã

Then

fn(a) =
1

#Γ

∑
σ∈Γ

ϕ(σ−1)σb =
1

#Γ

∑
σ∈Γ

ϕ(σ−1)ϕ(σ)b =
1

#Γ

∑
σ∈Γ

b = b

and since b ∈ (Bn)ϕ,

γa =
1

#Γ

∑
σ∈Γ

ϕ(σ−1)γσã =
1

#Γ

∑
γσ∈Γ

ϕ((γσ)−1)ϕ(γ)γσã = ϕ(γ)a

Hence, a ∈ (An)ϕ and fn(a) = b. This completes the proof. q.e.d.

We apply this result to the vertical and horizontal long exact sequences in
(29).
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Proposition 4.16. The decomposition of the vertical LES of Diagram (29)
into Γ2-invariant and noninvariant parts gives the following for all k:

(i) δka : Hk−1
G (ν ′d, ν

′′
d )a → Hk

G(ν−d , ν
′
d)
a is an isomorphism; in particular,

H∗G(ν−d , ν
′′
d )a = 0.

(ii) the sequence

0 // Hk
G(ν−d , ν

′
d)

Γ2

ζkΓ2 // Hk
G(ν−d , ν

′′
d )Γ2

λkΓ2 // Hk
G(ν ′d, ν

′′
d )Γ2

δkΓ2 // 0

is exact.

Proof. Since the Γ2 action is trivial on the cohomology of the Jacobian and
on the cohomology ofBU(1), it follows from (12) and (27) thatH∗G(ν−d , ν

′′
d )a =

0. Lemma 4.12 implies Hk
G(ν ′d, ν

′′
d )Γ2 ⊆ imλk = ker δk, so δkΓ2

= 0 for all
k, which proves the second part of the Proposition. The first part then follows
from Lemma 4.15. q.e.d.

Corollary 4.17. αkΓ2
is injective.

Proof. Let x ∈ Hk
G(Xd, Xd−1)Γ2 ∼= Hk

G(ν−d , ν
′
d)

Γ2 , and suppose thatαk(x) =

0. In the following, use x to also denote the corresponding element inHk
G(Bd,ε,B′d,ε)

via the excision isomorphism. Then from the commutativity of Diagram (29),
αk(x) = 0 implies that αkε(x) = 0, and so ξk ◦ ζk(x) = 0. By Lemma
3.3 and Proposition 4.16, ξk is injective and ζk is injective on Hk

G(ν−d , ν
′
d)

Γ2 .
Therefore x = 0, which completes the proof. q.e.d.

Lemma 3.2, Theorem 2.3, and Lemma 4.10, together with Hitchin’s formu-
las [9, eqs. (7.12) and (7.13)], give us the following result.

Lemma 4.18.

Hk
G(ν ′d, ν

′′
d )a =

{
V k = 4g − 4− dE + 2d

0 otherwise

where V ∼= Hk−2µd(S̃2g−2d−2+dEM)a is a complex vector space of dimen-
sion

dimC V = (22g − 1)

(
2g − 1

2g − 2d− 2 + dE

)
.

Lemma 4.19. Hk
G(Xd)

a = 0, for all k ≤ 4g − 4− dE + 2d+ 1.

Proof. The proof is by induction on the index d. For d > g− 1 the induced
map κH : H∗G(B) → H∗G(Xd) is surjective, since each stratum has a well-
defined normal bundle, and so the methods of [1] work in this case. Therefore,
when d > g − 1 we have that H∗G(Xd) is Γ2-invariant for all k. Suppose the
result is true for Xd. To complete the induction we show that it is true for
Xd−1, i.e. Hk

G(Xd−1) is Γ2-invariant for all k ≤ 4g − 4− dE + 2d− 1.
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Consider the following LES for k ≤ 4g − 4− dE + 2d− 1.
(41)

· · · αk
// Hk
G(Xd)

βk

// Hk
G(Xd−1)

γk // Hk+1
G (Xd, Xd−1)

αk+1
// // · · ·

From Lemma 4.18 and Proposition 4.16 we see that

Hk+1
G (Xd, Xd−1)a ∼= Hk+1

G (ν−d , ν
′
d)
a ∼= Hk

G(ν ′d, ν
′′
d )a = 0

for all k ≤ 4g−4−dE +2d−1. Therefore Hk+1
G (Xd, Xd−1) is Γ2-invariant.

The exact sequence (41) decomposes to become

0 // imβk // Hk
G(Xd−1)

γk // im γk // 0

Since im γk ⊆ Hk+1
G (Xd, Xd−1), and the latter is Γ2-invariant, an application

of Lemma 4.15 implies

0 −→ (imβk)a −→ Hk
G(Xd−1)a −→ 0

is exact. By the inductive hypothesis,Hk
G(Xd) is Γ2-invariant; hence, (imβk)a =

0, and so Hk
G(Xd−1)a = 0 also. q.e.d.

Proposition 4.20. The decomposition of the horizontal LES of Diagram
(29) into Γ2-invariant and noninvariant parts gives the following for all k ≤
4g − 4− dE + 2d+ 1:

(i) γk−1
a : Hk−1

G (Xd−1)a → Hk
G(Xd, Xd−1)a is an isomorphism; in partic-

ular, Hk−1
G (Xd−1)a ∼= Hk

G(ν−d , ν
′
d)
a.

(ii) the sequence

0 // Hk−1
G (Xd, Xd−1)Γ2

αk−1
Γ2 // Hk−1

G (Xd)
Γ2

βk−1
Γ2 // Hk−1

G (Xd−1)Γ2

γk−1
Γ2 // 0

is exact.

Proof. First, by Lemma 4.19, Hk−1
G (Xd)

a = 0 = Hk
G(Xd)

a for k ≤ 4g −
4 − dE + 2d + 1. Next we claim that γk−1 maps Hk−1

G (Xd−1)Γ2 to zero for
all values of k (not just for k ≤ 4g − 4 − dE + 2d + 1). To see this, let
x ∈ Hk−1

G (Xd−1)Γ2 , and let y = γk−1(x) ∈ Hk
G(Xd, Xd−1)Γ2 . Exactness of

the horizontal LES in Diagram (29) implies αk(y) = αk ◦ γk−1(x) = 0. By
Corollary 4.17, αk is injective onHk

G(Xd, Xd−1)Γ2 ; hence, y = γk−1(x) = 0.
Therefore, γk−1(x) = 0, and so γk−1 is the zero map onHk−1

G (Xd−1)Γ2 . The
result then follows from Lemma 4.15. q.e.d.

Proof of Theorem 4.13. By the proof of Proposition 4.20, γkΓ2
= 0 for all k.

By Lemma 4.18,Hk
G(Xd−1)a is only nontrivial for k = 4g−4−dE+2d, and so

Proposition 4.20 (i) implies γk is injective onHk
G(Xd−1)a for all k. Therefore,

βk maps Hk
G(Xd)

Γ2 surjectively onto Hk
G(Xd−1)Γ2 for all k. Applying this

result to every stratum Xd completes the proof of the theorem. q.e.d.
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Proof of Proposition 4.14. For k ≤ 4g − 4 − dE + 2d + 1, Proposition 4.20
(i) implies kerαk ⊇ Hk

G(Xd, Xd−1)a, which together with Corollary 4.17 im-
plies kerαk = Hk

G(Xd, Xd−1)a ∼= Hk
G(ν−d , ν

′
d)
a. The two exact sequences in

Proposition 4.16 show that ker ζk = Hk
G(ν−d , ν

′
d)
a ∼= Hk

G(ν ′d, ν
′′
d )a. Therefore

Lemma 4.18 implies

kerαk ∼= ker ζk ∼= Hk−1
G (ν ′d, ν

′′
d )a

∼=
{
Hk−1−2µd(S̃2g−2d−2+dEM)a k = 4g − 4− dE + 2d+ 1

0 k < 4g − 4− dE + 2d+ 1

For k > 4g−4−dE +2d+1, Lemma 4.18 and Proposition 4.16 show that

Hk
G(Xd, Xd−1)a ∼= Hk

G(ν−d , ν
′
d)
a ∼= Hk−1

G (ν ′d, ν
′′
d )a = 0

Hence, Hk
G(Xd, Xd−1) = Hk

G(Xd, Xd−1)Γ2 , and so kerαk = 0 by Corollary
4.17. Together with the vanishing of Hk

G(ν−d , ν
′
d)
a, Proposition 4.16 implies

ker ζk = 0, and so ker ζk = kerαk = 0 for k > 4g − 4 − dE + 2d + 1.
Therefore, for all values of k we have kerαk = ker ζk. q.e.d.

5. Computation of the equivariant Betti numbers

Here we use the results above, specifically Proposition 4.14, together with
the commutative diagram (29), and derive an explicit formula for the equivari-
ant Poincaré polynomial of Bss0 (2, 0) and Bss(2, 0).

We have the following relationship between the equivariant Betti numbers
of Xd and Xd−1.

Lemma 5.1.

dim kerαk+1 − dim imαk = dimHk
G(ν ′d, ν

′′
d )− dimHk

G(ν−d , ν
′′
d )

Proof. Using the vertical LES in diagram (29) we have

ker ζk+1 ∼= im δk ∼=
Hk
G(ν ′d, ν

′′
d )

ker δk
∼=
Hk
G(ν ′d, ν

′′
d )

imλk

imλk ∼=
Hk
G(ν−d , ν

′′
d )

kerλk
∼=
Hk
G(ν−d , ν

′′
d )

im ζk

Therefore

dim ker ζk+1 = dimHk
G(ν ′d, ν

′′
d )− dim imλk

= dimHk
G(ν ′d, ν

′′
d )− dimHk

G(ν−d , ν
′′
d ) + dim im ζk

and so Proposition 4.14 implies

dim kerαk+1 − dim imαk = dim ker ζk+1 − dim im ζk

= dimHk
G(ν ′d, ν

′′
d )− dimHk

G(ν−d , ν
′′
d ).

completing the proof. q.e.d.
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Proposition 5.2.

dimHk
G(Xd)− dimHk

G(Xd−1) = dimHk
G(ν−d , ν

′′
d )− dimHk

G(ν ′d, ν
′′
d )

In the fixed determinant case

(42) dimHk
G(Xd)− dimHk

G(Xd−1)

= dimHk−2µd (Jd(M)×BU(1)))− dimHk−2µd(S̃2g−2+dE−2dM).

In the non-fixed determinant case

(43) dimHk
G(Xd)− dimHk

G(Xd−1)

= dimHk−2µd (Jd(M)× Jn(M)×BU(1)×BU(1))

− dimHk−2µd
(
S2g−2+dE−2dM × Jd(M)×BU(1)

)
.

Proof. Lemma 5.1 shows that

dimHk
G(Xd)− dimHk

G(Xd−1)

= dim imβk + dim kerβk − dim im γk − dim ker γk

= dim imβk + dim imαk − dim kerαk+1 − dim imβk

= dim imαk − dim kerαk+1

= dimHk
G(ν−d , ν

′′
d )− dimHk

G(ν ′d, ν
′′
d ).

In the fixed determinant case use eqs. (12), (13), (25) and (26) to obtain (42).
In the non-fixed determinant case use eqs. (12), (13),(27) and (28) to obtain
(43). q.e.d.

Inductively computing H∗G(Xd) in terms of H∗G(Xd−1) for each value of d,
we obtain the

Proof of Theorem 1.1. First we study the fixed determinant case. Eq. (42)
shows that in both the degree zero and degree one case we have

P Gt (B)− P Gt (Bss0 ) =
∞∑
d=1

t2µd
(1 + t)2g

1− t2
−

g−1∑
d=1

t2µdPt(S̃
2g−2+dE−2dM)

where µd = g − 1 + 2d− dE . Note that the second sum has only g − 1 terms
because H∗G(ν ′d, ν

′′
d ) is only non-zero if the vector space H0(L∗1L2 ⊗ K) is

non-zero, i.e. dE−2d+2g−2 ≥ 0, where degL1 = d and degL2 = dE−d.
Re-arranging this equation and substituting P Gt (B) = Pt(BG),

P Gt (Bss0 ) = Pt(BG)−
∞∑
d=1

t2µd
(1 + t)2g

1− t2
+

g−1∑
d=1

t2µdPt(S̃
2g−2+dE−2dM)

which proves (2). A similar argument using (43) in Proposition 5.2 proves (3).
q.e.d.
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As mentioned in the Introduction, in the degree one case this gives a new proof
of [9, Thm. 7.6 (iv)] (fixed determinant case) and the results of [7] (non-fixed
determinant case).

In [9, Sect. 7] an explicit formula is given for the sum
g−1∑
d=1

t2µdPt(S̃
2g−2d−1M)

for µd = g + 2d − 2, corresponding to the case where deg(E) = 1. For the
degree zero case we use eqs. (2) and (3), together with the techniques of [9] to
give the

Proof of Corollary 1.2. First, recall from [1, Section 2] that for the rank 2
fixed determinant case

(44) Pt(BG) =
(1 + t3)2g

(1− t2)(1− t4)
,

and for the non-fixed determinant case

(45) Pt(BG) =
(1 + t)2g(1 + t3)2g

(1− t2)2(1− t4)
.

Note that using the results from [9, eq. (7.13)], the last term in (2) is given by

g−1∑
d=1

t2µdPt(S̃
2g−2d−2M) =

g−1∑
d=1

t2(g+2d−1)Pt(S
2g−2d−2M)

+ (22g − 1)

g−1∑
d=1

(
2g − 2

2g − 2d− 2

)
t4g+2d−4

=

g−1∑
d=1

t2(g+2d−1)Pt(S
2g−2d−2M)

+ (22g − 1)t4g−4
g−1∑
d=1

(
2g − 2

2g − 2d− 2

)
t2d

(46)

Using the binomial theorem, the second term is

(47)
1

2
(22g − 1)t4g−4

(
(1 + t)2g−2 + (1− t)2g−2 − 2

)
The first term is calculated in the following lemma

Lemma 5.3.
g−1∑
d=1

t2(g+2d−1)Pt(S
2g−2d−2M) =− t4g−4 +

t2g+2(1 + t)2g

(1− t2)(1− t4)
+

(1− t)2gt4g−4

4(1 + t2)

− (t+ 1)2gt4g−4

2(t2 − 1)

(
2g

t+ 1
+

1

t2 − 1
− 1

2
+ (3− 2g)

)
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Part (b) of Corollary 1.2 immediately follows from eqs. (3), (45) and (5.3).
Part (a) follows from combining eqs. (2), (44), (46) and (47) and Lemma 5.3.
q.e.d.

Proof of Lemma 5.3. By [12], Pt(S2g−2d−2M) is the coefficient of x2g−2d−2

in (1+xt)2g

(1−x)(1−xt2)
, or equivalently the coefficient of x2g in x2d+2(1+xt)2g

(1−x)(1−xt2)
. There-

fore the sum
g−1∑
d=1

t2(g+2d−1)Pt(S
2g−2d−2M)

is the coefficient of x2g in

g−1∑
d=1

t2(g+2d−1)x2d+2 (1 + xt)2g

(1− x)(1− xt2)

which is equal to the coefficient of x2g in the following infinite sum

∞∑
d=1

t2(g+2d−1)x2d+2 (1 + xt)2g

(1− x)(1− xt2)

The sum above is equal to

∞∑
d=1

t2(g+2d−1)x2d+2 (1 + xt)2g

(1− x)(1− xt2)
= t2g+2x4 (1 + xt)2g

(1− x)(1− xt2)

∞∑
d=1

(xt2)2d−2

=
t2g+2x4(1 + xt)2g

(1− x)(1− xt2)(1− x2t4)

Therefore the coefficient of x2g in the above sum is equal to the residue at
x = 0 of the function

f(x) =
(1 + xt)2gt2g+2

(1− x)(1− xt2)2(1 + xt2)
· 1

x2g−3

As in [9], this residue can be computed in terms of the residues at the simple
poles x = 1 and x = −t−2, the residue at the double pole x = t−2, and
the integral of f(x) around a contour containing all of the poles. In this case
the same methods can be used to compute the residues. However, unlike the
situation in [9], the contour integral is not asymptotically zero as the contour
approaches the circle at infinity, so this must be computed here as well. To
compute the integral, let Cr be the circle of radius r in the complex plane
where r > 1 and r > t−2 (i.e. the disk inside Cr contains all the poles of
f(x)). Then for |x| = r we have the following Laurent expansion of f(x)
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centred at x = 0.

(1 + xt)2gt2g+2x3−2g

(1− x)(1− xt2)2(1 + xt2)
=−

( 1
x + t)2gt2g+2

xt6
(
1− 1

x

) (
1− 1

xt2

)2 (
1 + 1

xt2

)
=− 1

xt4

(
t

x
+ t2

)2g (
1 +

1

x
+ · · ·

)
×
(

1 +
1

xt2
+ · · ·

)2(
1− 1

xt2
+ · · ·

)
=− t4g−4

x
+ terms of orderx−n wheren > 1

This series expansion is uniformly convergent on the annulus {x : r − ε <
x < r + ε} for r > 1, r > t−2 and ε small enough so that the closure of
the annulus doesn’t contain any of the poles of f(x). As r → ∞ the series
asymptotically approaches −t4g−4/x, and so the integral approaches

(48) lim
r→∞

1

2πi

∫
Cr

(1 + xt)2gt2g+2x3−2g

(1− x)(1− xt2)2(1 + xt2)
dx = −t4g−4

The residues of f(x) at x = 1, x = −t−2 and x = t−2 are similar to the
results obtained in [9]. At the simple pole x = 1,

(49) Resx=1f(x) = − t2g+2(1 + t)2g

(1− t2)(1− t4)

At the simple pole x = −t−2

(50) Resx=−t−2f(x) = −(1− t)2gt4g−4

4(1 + t2)

and at the double pole x = t−2

(51) Resx=t−2f(x) =
(t+ 1)2gt4g−4

2(t2 − 1)

(
2g

t+ 1
+

1

t2 − 1
− 1

2
+ (3− 2g)

)
Combining (48), (49), (50) and (51) we have

g−1∑
d=1

t2(g+2d−1)Pt(S
2g−2d−2M) = −t4g−4 +

t2g+2(1 + t)2g

(1− t2)(1− t4)
+

(1− t)2gt4g−4

4(1 + t2)

− (t+ 1)2gt4g−4

2(t2 − 1)

(
2g

t+ 1
+

1

t2 − 1
− 1

2
+ (3− 2g)

)
thus completing the proof of the lemma and therefore also of Corollary 1.2.
q.e.d.
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