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Abstract We prove the holomorphic rigidity conjecture of Teichmüller space
which loosely speaking states that the action of the mapping class group
uniquely determines theTeichmüller space as a complexmanifold. Themethod
of proof is through harmonicmaps.We prove that the singular set of a harmonic
map from a smooth n-dimensional Riemannian domain to the Weil–Petersson
completion T of Teichmüller space has Hausdorff dimension at most n − 2,
and moreover, u has certain decay near the singular set. Combining this with
the earlier work of Schumacher, Siu and Jost-Yau, we provide a proof of the
holomorphic rigidity of Teichmüller space. In addition, our results provide as a
byproduct a harmonicmaps proof of both the high rank and the rank one super-
rigidity of the mapping class group proved via other methods by Farb–Masur
and Yeung.

1 Introduction

1.1 Statement of results and brief history

The main result of the paper is the following statement.
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Theorem 1.1 (Holomorphic Rigidity of Teichmüller Space). Let� denote the
mapping class group of an oriented surface S of genus g ≥ 2. Assume that
� acts (as a discrete automorphism group) on a contractible Kähler manifold
M̃ such that there is a finite index subgroup �′ of � satisfying the properties:

(i) M := M̃/�′ is a smooth quasiprojective variety.
(ii) M admits a compactification M as an algebraic variety such that the

codimension of M\M is ≥ 3.

Then M̃ is equivariantly biholomorphic or conjugate biholomorphic to the
Teichmüller space T of S where � acts on T as the mapping class group.

Wewill derive Theorem 1.1 as a consequence of the followingmore general
holomorphic rigidity Theorem and its Corollary.

Theorem 1.2 Let M be a complete, finite volume Kähler manifold with uni-
versal cover M̃ and π1(M) finitely generated. Let � be the mapping class
group of an oriented surface S of genus g and p marked points such that
k = 3g − 3 + p > 0, T the Weil–Petersson completion of the Teichmüller
space T of S and ρ : π1(M) → � a homomorphism. If there exists a finite
energy ρ-equivariant harmonic map u : M̃ → T , then there exists a stratum
T ′ of T such that u defines a pluriharmonic map into T ′. Furthermore,

∑

i, j,k,l

Ri jkld
′′ui ∧ d ′u j ∧ d ′uk ∧ d ′′ul ≡ 0

where Ri jkl denotes the Weil–Petersson curvature tensor. In particular, if addi-
tionally the (real) rank of u is ≥ 3 at some point, then u is holomorphic or
conjugate holomorphic.

The assumption about the existence of a finite energy ρ-equivariant har-
monic map to the Weil–Petersson completion T of Teichmüller space holds
in many important cases. For example, if M is compact and ρ is sufficiently
large (see definition below), then harmonic maps exist. More generally, this is
also true if we replace the assumption that M is compact by the assumption
M is complete, satisfies the assumptions of Theorem 1.2 and admits a finite
energy map to T .

Recall from [36, p.142] or [15, Definition 2.1] that two pseudo-Anosov
elements of the mapping class group are called independent if their fixed point
sets in the space of projective measured foliations do not coincide. A subgroup
of the mapping class group � is called sufficiently large if it contains two
independent pseudo-Anosov elements. A homomorphism ρ into the mapping
class group is called sufficiently large if its image is sufficiently large.

By combining Theorem 1.2 above with [15, Corollary 1.3] we obtain the
following.
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Corollary 1.3 Let M be a complete, finite volume Kähler manifold with uni-
versal cover M̃ and π1(M) finitely generated. Let � be the mapping class
group of an oriented surface S of genus g and p marked points such that
k = 3g−3+ p > 0 and ρ : π1(M)→ � a homomorphism that is sufficiently
large. If there exists a finite energy ρ-equivariant map M̃ → T , then there
exists a ρ-equivariant pluriharmonic map u : M̃ → T . Furthermore,

∑

i, j,k,l

Ri jkld
′′ui ∧ d ′u j ∧ d ′uk ∧ d ′′ul ≡ 0

where Ri jkl denotes the Weil–Petersson curvature tensor. In particular, if addi-
tionally the (real) rank of u is ≥ 3 at some point, then u is holomorphic or
conjugate holomorphic.

The rank condition also holds in many important applications, for example
in Theorem 1.1. This is usually verified by showing that certain nontrivial
homology classes in M of degree ≥ 3 are mapped nontrivially under u (see
for example [48]).

The following theorem, due to Farb–Masur and Yeung, also follows as a
byproduct of our methods.

Corollary 1.4 (Superrigidity of the MCG, cf. [17,59]). Let M̃ = G/K be
an irreducible symmetric space of noncompact type other than SO0(p, 1)/
SO(p)× SO(1), SU0(p, 1)/S(U (p)×U (1)). Let � be a discrete subgroup
of G with finite volume quotient and let� denote the mapping class group of an
oriented surface of genus g and p marked points such that k = 3g−3+ p > 0.
If the rank of M̃ is ≥ 2, we assume additionally that � is cocompact. Then
there exists no sufficiently large homomorphism ρ : �→ �.

The phenomenon of strong rigidity was discovered by Mostow for a large
class of locally symmetric spaces of nonpositive curvature. The famous
Mostow rigidity theorem of 1968 [39] states that if two compact hyperbolic
manifolds of dimension greater than two have the same fundamental group,
then they are isometric. In particular, Mostow’s result says that for compact
hyperbolic manifolds, the metric structure is rigidly determined by the topol-
ogy. This statement was later extended to other locally symmetric spaces of
nonpositive curvature, not necessarily compact but satisfying a finite volume
assumption (cf. [40,41]).

A natural question is whether structures other than metric structures are
also rigidly determined by the topology. One such case is holomorphic rigid-
ity within the class of Kähler manifolds. In fact, a weak form of holomorphic
rigidity was discovered earlier in the 1960 work of Calabi-Vesentini. [7]. They
showed that compact quotients of bounded complex symmetric domains of
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complex dimension at least two do not admit any nontrivial infinitesimal holo-
morphic deformations. In the late 1970’s, Yau conjectured that strong rigidity
holds for compact Kähler manifolds of complex dimension at least two and
negative sectional curvature. This was subsequently proved in 1980 using har-
monic maps by Siu [48] in the case when one of the manifolds has strong
negative curvature.

Siu’s work inspired an outburst of important results in geometric superrigid-
ity including the work of Corlette [8], Mok-Siu-Yeung [37], Jost-Yau (cf. [23]
and the references therein) andGromov–Schoen[21] among others. The proofs
of all the aforementioned results use harmonic maps. Indeed, one starts with
the work of Eells-Sampson [16] which asserts that if two Riemannian man-
ifolds are homotopy equivalent and if one of them is non-positively curved,
then there there exists a harmonicmap from themanifoldwithout the curvature
condition to the other manifold which is also a homotopy equivalence. Then
a Bochner-type formula leads to the conclusion that the harmonic map must
preserve either the metric or the holomorphic structure. The passage through
harmonic maps is necessary because the system of equations which deter-
mines that a map is either totally geodesic or holomorphic are overdetermined
whereas the system of harmonic map equations is not.

Siu [49] and Jost-Yau [25] extended Siu’s result to a class of non-compact
symmetric domains with appropriate metric properties at infinity. Given that
Teichmüller space resembles a complex symmetric domain and admits ametric
of strong negative curvature (as we will see in the next paragraph), Jost and
Yau also attempted to prove holomorphic rigidity of Teichmüller space [26].
Their proof was incorrect.

Before we continue, we briefly review some important properties of the
Teichmüller space T (of an oriented surface S of genus g and p marked points
such that k = 3g − 3 + p > 0) that are relevant to this article. First recall
that T endowed with the Weil–Petersson metric Gwp is a Kähler manifold [2]
whose sectional curvature is negative [50] and [52]. Moreover, the curvature
tensor of Gwp is strongly negative in the sense of Siu [45], which makes it
plausible that T is holomorphicaly rigid. However, the Weil–Petersson metric
is incomplete [54] and [10], and this causes major difficulties in pursuing Siu’s
approach.

Let (T , dT ) denote the metric completion of (T ,Gwp). The metric space
(T , dT ) is a complete NPC space; i.e. a geodesic space with non-positive
curvature in the sense of Alexandrov [15,53] and [58]. Set theoretically, T
is nothing but the augmented Teichmüller space [1,35]. Its boundary ∂T can
be stratified by smooth open strata corresponding to deformations of nodal
surfaces formed by pinching a finite set of nontrivial, nonperipheral, simple
closed curves [35] and [53]. In other words, T is a stratified space (with the
original Teichmüller space T being the top dimensional open stratum).
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Given the incompleteness of Teichmüller space, one is tempted to replace
T by T and study harmonic maps to the NPCmetric space T . Harmonic maps
to metric spaces was initiated in the seminal paper of Gromov and Schoen
[21] where they study harmonic maps to Euclidean buildings (a special type
of Riemannian polyhedra with non-positive curvature in the sense of Alexan-
drov). Their work was subsequently extended for harmonic maps into general
NPC spaces by Korevaar-Schoen and Jost [27,28] and [23]. For other work on
harmonic maps to singular spaces relevant to this paper, we refer to [11] and
[14].

In [21] (as well as in [11] and [14]), the main technical point is how to
handle the singularities of the harmonic map. To do this, one gains control of
the map near the set of points that do not map to smooth points in the target.
We do the same in this paper, but there are additional difficulties stemming
from the non-local compactness of T . By contrast, the spaces studied by [21]
were locally compact. The most important technical challenge tackled in this
paper is to overcome the difficulty presented by the non-local compactness of
T .

Before attempting to study harmonic maps, one needs to get a good
understanding of the geometry of T near its boundary. In [35], Masur ini-
tiated the study of the Weil–Petersson metric near the boundary of T . In
recent years, many authors have extended Masur’s work to establish stronger
asymptotic properties of the Weil–Petersson geometry. See for example,
[15,32,33,45,53,56,58] and [22] among many others. In [13], we proved
stronger C1-estimates which will be used in this paper. These estimates dif-
fer from the previously known derivative estimates because they estimate the
asymptotic difference of theWeil–Peterssonmetric and a product metric given
on the product of the boundary strata and its normal space (which will be
described in more detail below, cf. Sect. 1.2).

We end this summary by stating the two main technical theorems that allow
us to control the harmonic map near its singular set. Below we denote byR(u)
to be the set of points in the domain that possess a neighborhood mapping into
a single stratum in T and S(u) to be its complement.

Theorem 1.5 Let (T ,Gwp) denote the Teichmüller space of an oriented sur-
face of genus g and p marked points such that k = 3g − 3+ p > 0 with the
Weil–Petersson metric and let (T , dT ) be its metric completion. If (�, g) is
an n-dimensional Lipschitz Riemannian domain and u : (�, g)→ (T , dT ) is
a harmonic map, then

dimH
(
S(u)

)
≤ n − 2.
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Theorem 1.6 Let u : (�, g) → (T , dT ) be as in Theorem 1.5. For any
compact subdomain �1 of �, there exists a sequence of smooth functions ψi
with ψi ≡ 0 in a neighborhood of S(u)∩�1, 0 ≤ ψi ≤ 1 and ψi (x)→ 1 for
all x ∈ �1\S(u) such that

lim
i→∞

∫

�

|∇∇u||∇ψi | dμ = 0.

Theorem 1.6 should be viewed as an estimate on the growth of the norm of
the gradient ∇u of u near its singular set. The existence of the sequence ψi
allows us to justify Stoke’s Theorem, a crucial step in applying the Bochner
technique to rigidity.

1.2 Description of the main technical points

As mentioned before, all the above theorems are proved by using the theory of
harmonic maps to metric spaces. The proof takes advantage of the important
special feature of the metric space T near a boundary point—it is asymptoti-
cally isometric to the product of a smooth open stratum T ′ ⊂ ∂T (which has
the structure of a smooth Kähler manifold) and a simpler metric space H or
its product H× · · · ×H (cf. [15,32,33,53,56,58] and [13]). The metric space
H is called the model space. Thus, for a harmonic map u : � → T near a
singular point x ∈ S(u), we can write u = (V, v)where V is the regular com-
ponent that maps into the smooth manifold T ′ and v is the singular component
mapping into H or H× · · · ×H.

The difficulty in analyzing u = (V, v) is that the component maps V and v
are not necessary harmonic. This situation is further complicated by the fact
that the singular component v may be the non-dominant component (i.e. the
higher order term) of u. Moreover, one cannot use tools from elliptic PDE’s (as
one would for maps into Riemannian manifolds) because the harmonic maps
may a priori have a large singular set. Nonetheless, in this paper we will push
forward the harmonic map theory by overcoming two major obstacles. The
first obstacle is that the Weil–Petersson metric near the boundary of T is not
a product, but only asymptotically a product. The second obstacle is the non-
local compactness and degenerating geometry of T . The techniques that we
will introduce to handle these issues are the main accomplishments of this
paper and the crux of the proofs of the Regularity Theorems 1.5 and 1.6.

Overcoming obstacle 1: Monotonicity Formula and the
Order Function. A key technical tool in analyzing the structure of a har-
monicmapu : (�, g)→ (X, d) fromaRiemanniandomain into anNPCspace
is the order function Ordu of u. If u is a harmonic function, then Ordu(x0)
is the order with which u attains its value u(x0) at x0. In its simplest form, the
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order is the limit as r → 0 of the scale invariant ratio

r E(r)

I (r)
=

r
∫

Br (x0)
|∇u|2 dμ

∫

∂Br (x0)
d2(u, P0)d	

(1.1)

where the numerator is r times the energy E(r) of u in a geodesic ball Br (x0)
of radius r centered at x0 ∈ � and the denominator I (r) is the L2-distance
between P0 ∈ X and u on the boundary ∂Br (x0). A ratio of this type had been
previously used in the study of various elliptic PDE problems (e.g. [3,4,20,29–
31,38]), but Gromov and Schoen [21] were the first to introduce this idea in
the context of harmonic maps to NPC metric spaces.

The existence of the order function is due to the monotonicity (in the param-
eter r ) of the ratio (1.1) which in turn follows from the domain and target
variations of harmonic maps. The idea for the domain variation is as fol-
lows. Let Br (x0) be a geodesic neighborhood of x0 with normal coordinates
x = (x1, . . . , xn) centered at x0 = 0 and consider a diffeomorphism of the
form Ft (x) = (1+ τη(x))x where η has compact support in Br (x0) (hence Ft
is the identity outside Br (x0)). A domain variation of u is the one-parameter
family ut = u ◦ Ft with u0 = u. Since the total energy function

t �→ Eut =
∫

�

|∇ut |2dμ (1.2)

has a minimum at t = 0, we can differentiate the above equation in t and
obtain the domain variation formula

0 =
∫

Br (x0)
|∇u|2(2−n)η−|∇u|2

∑

i

x i ∂η

∂xi
+2

∑

i, j,k

gik ∂η

∂xi
x j ∂u

∂x j
· ∂u

∂xk
dμ.

(1.3)
For harmonic maps between smooth Riemannian manifolds, the domain vari-
ation formula yields the well known monotonicity of the scale-invariant (with
respect to dilation of the domain) energy,

r2−n E(r) = r2−n
∫

Br (x0)
|∇u|2dμ.

This has played an important role in the regularity theory of harmonic maps
between smooth Riemannian manifolds (notably in the Schoen-Uhlenbeck ε-
regularity theorem [SU]). Using a generalization of the notion of energy, for
harmonicmaps toNPC spaces (cf. [21] and [27]), the domain variation formula
readily generalizes to the case of NPC targets.
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Gromov and Schoen’s innovation in [21]was to improve the classicalmono-
tonicity formula to obtain a more sophisticated tool for studying harmonic
maps into NPC spaces. The idea is to combine the domain variation formula
with the convexity of the distance functiond on the targetNPCspace X . Indeed,
they consider target variations of u by pulling it back along a geodesic to a fixed
point. More precisely, fix x0 ∈ �, P0 ∈ X and a non-negative function ζ with
compact support in a neighborhood Br (x0) of x0. Consider an one-parameter
family of maps ut , for t > 0 sufficiently small, by setting ut (x) to be the point
on a geodesic between P0 and u(x) at a distance (1− tζ(x))d(P0, u(x)) from
P0. The minimizing property of the energy of u yields the subharmonicity of
the function d(u, P0); more precisely, d(u, P0) satisfies in the weak sense the
differential inequality (cf. [21, Proposition 2.2])

�d2(u(x), P0) ≥ 2|∇u|2. (1.4)

Combining the domain variation formula (1.3)with the target variation formula
(1.4), they obtain the monotonicity formula (cf. [21, proof of (2.5)])

1

r
+ E ′(r)

E(r)
− I ′(r)

I (r)
≥ O(r)

where O(r) measures how far away the domain metric g is from being
Euclidean. The monotonicity of the ratio (1.1) follows immediately from this
differential inequality if O(r) is identically equal to 0. If O(r) not equal to 0,
one simply adjusts the ratio (1.1) by multiplying it by ecr2 for an appropriate
choice of c > 0. The limit of (1.1) at each point on the domain defines the
order function Ordu : �→ [1,∞).

In [11] and in the present paper, we extend the notion of order to a wider
class of maps. To movivate this generalization, recall that a harmonic map
u = (u1, . . . , um) : � → R

m into the Euclidean space can be viewed
as n-independent harmonic functions. Assuming continuity, a harmonic map
between Riemannian manifolds can also be expressed as a set of component
functions u = (u1, . . . , um) by using local coordinates; but if the target metric
is non-Euclidean, the component functions are not independent of each other.
Indeed, the harmonic map equations

�ui +
∑

α,β

∑

j,k

gαβ�i
jk ◦ u

∂u j

∂xα
∂uk

∂xβ
= 0, i = 1, . . . ,m

show that the behavior of each component function is influenced by the behav-
ior of the other component functions via the Christoffel symbols �i

jk of the
target metric. On the other hand, Riemannianmanifolds are locally asymptotic
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to Euclidean space. Namely, normal coordinates centered at a point show that
a smooth Riemannian manifold is Euclidean up to second order at that point.
We can interpret this to mean that Riemannian manifolds are asymptotically
a product of m-copies of R.

Analogously to harmonic maps intoRm , a harmonic map u into a Euclidean
building can be expressed by componentmapswhich are themselves harmonic.
Indeed, we can locally write u = (V, v) where V is a harmonic map into a
Euclidean space and v is a harmonic map into a lower dimensional Euclidean
building. It is a serious technical issue that many of the techniques developed
by Gromov and Schoen cannot be directly applied to NPC spaces that don’t
decompose locally as a product.

In this paper, building upon earlier work in [11], we develop a technique
to study harmonic maps into spaces that are only asymptotically a product of
NPC spaces. In many ways, the step from harmonic maps into a product of
NPC spaces to harmonic maps into a space that is asymptotically a product
is analogous to the passage from harmonic functions to harmonic maps into
Riemannian manifolds. As indicated above, a harmonic map into T is given
by u = (V, v)where V maps into a smooth Riemannian manifold and v maps
into an NPC space. Since v is not a harmonic map, we will have to modify
(1.2). In fact, we will derive analogues of the domain and target variation
formulas (1.3) and (1.4) with correction terms. Combining these formulas, we
will obtain the monotonicity formula

1

r
+ E ′(r)

E(r)
− I ′(r)

I (r)
≥ −C

where C is a constant that not only depends on how far away the domain
metric g is from the Euclidean metric but also on how far the target metric is
from being a product metric. The conclusion is that we can associate an order
function Ordv : �→ [1,∞) to the singular component map v of u and use
it to analyze its behavior.

Overcoming obstacle 2: Inductive argument and regularity.
The second obstacle is the non-local compactness and degenerating geometry
of (T , dT ) near the boundary. In order to explain how we deal with this issue,
we will first introduce two fundamental concepts from the work of Gromov
and Schoen [21]. Let X be an NPC space, let’s say a Euclidean building
for the sake of concreteness, and X0 a totally geodesic subspace of X , for
example an apartment of X . The first fundamental concept is the notion of a
homogeneous degree 1 map l : Rn → X0 ⊂ X being effectively contained in
X0. This loosely means that a sufficiently small neighborhood of the image of
l is contained in X0 except for a set of small measure. The second is the notion
of X0 being essentially regular. Loosely, this means that a harmonic map into
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X0 has an approximation by a homogeneous map that is better than first order.
To illuminate these notions, we give the following example.

Example 1 Let X be a k-pod formed by k distinct copies E1, . . . , Ek of the
half-line [0,∞) identified at 0 (called the juncture of the k-pod). The distance
dX (p, q) between two points p ∈ Ei and q ∈ E j is defined to be |p − q| if
i = j and p + q if i �= j . Then (X, dX ) is an NPC space.

We identify X0 = E1 ∪ E2 as a totally geodesic subspace of X isometric
to R and let l be an affine function (a special case of a homogeneous degree 1
discussed in [21, Proposition 3.1]), i.e.

l : Rn → R � X0 ⊂ X, l(x) = �A · x + b, (1.5)

for some �A ∈ R
n and b ∈ R. In the above, we can assume b = 0; otherwise,

l maps a neighborhood of 0 ∈ R
n into a subset of X0 � R, away from the

juncture. Also by rotating our coordinates if necessary we may assume that
�A = (a, 0, . . . , 0). Note that in this case l(x) = ax1 and

Bδσ (l(x)) ∩ X\X0 �= ∅ ⇔ |l(x)| < δσ ⇔ |x1| < δ

|a|σ.

Hence, given ε > 0, there exists δ (for example, we can take δ = ε|a|
2vn−1 where

vn−1 denotes the Euclidean volume of the unit (n− 1)-dimensional ball) such
that

Vol{x ∈ Bσ (0) : Bδσ (l(x)) ∩ (X\X0) �= ∅} < εσ n. (1.6)

See Fig. 1. This defines the notion of a linear map effectively contained in a
totally geodesic subspace in the sense of [21, page 211].

We now come to the notion of essentially regular. In this example, the totally
geodesic subspace X0 = E1∪E2 � R is essentially regular in the sense of [21,
page 210].More precisely, for a harmonic function f : (B1(0), g)→ X0 � R,
the Taylor approximation implies

d( f (x), l(x)) ≤ C |x |2

where l(x) = ∇ f (0) · x + f (0) and the constant C depends only on the
geometry of the domain and the total energy of f . Thus, X0 � R is essentially
regular; namely there exists α > 0 (we can take α = 1 in this example) and
C > 0 such that

sup
x∈Bσ (0)

d( f (x), l(x)) ≤ Cσ 1+α sup
x∈B1(0)

d( f (x), L(x)), ∀σ ∈ (0, 1
2
] (1.7)
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Bσ(0)

x1

x2, ..., xn

X0

l(x)

l

0

Bδσ(l(x))

x
2εσ

0

Fig. 1 The non-shaded area shows the set of points whose image admits a δσ neighborhood
that does not intersect X\X0

for any affine function L(x) = �A · x + b. The important feature of essential
regularity is that the parameters α and C are independent of the subspace X0
and depend only the geometry of the domain and the total energy E f of f . The
case of Euclidean buildings is a higher dimensional generalization of the above
example with its apartments playing the role of essentially regular subspaces.

For the sake of this introduction and in order to illustrate the main ideas,
we will briefly discuss the Gromov–Schoen argument adapted to the simple
case where X is a k-pod as in Example 1. A more technical discussion will
be presented at the beginning of Sect. 5. We start with a harmonic map u :
B1(0) → X , where B1(0) ⊂ R

n is the unit ball, and a homogeneous degree
1 map l : B1(0) → X as in (1.5) is effectively contained in an essentially
regular totally geodesic subspace X0 � R. We also assume that u(0) = l(0)
and that u and l are D-close, i.e

sup
x∈B1(0)

d(u(x), l(x)) < D. (1.8)

From the initial data, u and l, the goal is to produce a linear scale approxima-
tion; i.e.

sup
x∈Bσ (0)

d(u(x), l(x)) < cσ, c > 0. (1.9)

The idea of proving regularity by the use of a linear scale approximation is
well known. Examples include the ε-regularity theorem of Schoen-Uhlenbeck
[43] and other work concerning the uniqueness of tangent maps [47, Chapter
3]. Estimate (1.9) is usually achieved by an inductive process, where at each
stage one improves the estimate by a fixed amount. In the example above, the
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idea is to show that there exists θ ∈ (0, 12 ] such that if an affine map

i l : Bθ i (0)→ X0

at the i th stage is “close” to u in a ball of radius θ i , then one can find a new
affine map

i+1l : Bθ i+1(0)→ X0

that is “closer” to u in a smaller ball radius θ i+1 for the (i + 1)th stage.
To find i+1l, consider the harmonic function v : Bθ i (0) → X0 ≈ R with

boundary condition π ◦ u where π : X → X0 is the closest point projection
map. Since X0 is essentially regular, v has a “good” linear approximation i+1l.
Since l is effectively contained in X0 and approximates u, then maps u and v
are “close.” One can show that indeed i+1l is the desired linear map for the
(i + 1)th stage. For the convenience of the reader, we will sketch this simpler
version of the inductive argument inSect. 5.1 before ourmain regularity results.

In this paper, we will apply a variation of the Gromov–Schoen argument
with the completion of Teichmüller space T playing the role of a Euclidean
building. Since all the degenerating geometry of T comes from the model
space H, we will limit our discussion to H in this introduction. This case was
treated in our previous paper [12], and what is outlined below can also serve
as its summary. In this paper, we will further extend these ideas to handle the
case of T .

We first define H precisely. Consider the Riemannian surface (H, gH) con-
sisting of the upper half plane

H = {(ρ, φ) ∈ R
2 : ρ > 0, φ ∈ R}

endowed with the Riemannian metric

gH = dρ2 + ρ6dφ2.

The NPC space H is the metric completion of H constructed by adding the
boundary line {ρ = 0} and identifying this line as a single point P0. We
call P0 the singular point of H. The difficulty in analyzing the behavior of a
harmonicmap intoH is caused by the degenerating geometry and the non-local
compactness of H.

The first step is to find essentially regular totally geodesic subspaces of
H. The difficulty is that, because of the degenerating geometry of H near P0
(the Gaussian curvature approaches −∞ near P0), the only totally geodesic
subspaces ofH that resemble Euclidean spaces and contain P0 are the point P0
itself and geodesics emanating from P0. (These geodesics are given by curves
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ρ �→ (ρ, φ0) for a fixed φ0.) The degenerating geometry of H is highlighted
by the harmonic map equations in H,

uρ�uρ = 3u6
ρ |∇uφ|2 and u4

ρ�uφ = −6∇uρ · u3
ρ∇uφ. (1.10)

Notice that the right hand side of each equation is bounded since u is Lipschitz.
The left hand side of each equation, though, involves uρ . Thus, the harmonic
map equations are degenerate since uρ(x)→ 0 as x → S(u). The following
example provides a hint on how to proceed.

Example 2 Consider the 2-dimensional space (H+, g0) where

H+ = {(r, θ) ∈ R2 : r > 0} and g0(r, θ) = dr2 + r2dθ2.

The Christoffel symbols with respect to the polar coordinates (r, θ) are

�r
rr = 0 �θθθ = 0

�r
rθ = 0 �θrθ =

1

r
�r
θθ = −r �θrr = 0.

For a map h into (H+, g0), write h = (hr , hθ ) with respect to the polar
coordinates (r, θ). Then the harmonic map equations are

hr�hr = h2
r |∇hθ |2 and h2

r�hθ = −2∇hr · hr∇hθ . (1.11)

This set of equations looks very similar to the harmonic map equations (1.10)
in the sense that they are both degenerate. Now assume that the value of hθ
is contained in [0, 2π) which allows us to apply the change of variables to
Euclidean coordinates

(r, θ) �→ (x = r cos θ, y = r sin θ). (1.12)

This change of variables converts equation (1.11) to the standard harmonicmap
equations with respect to the Eucledian metric, i.e. �hx = 0 and �hy = 0.
In this form, the smoothness of hx and hy can be immediately deduced from
the theory of elliptic partial differential equations.

Example 2 illustrates the following key points:

(i) The polar coordinates (r, θ) in R
2 are ill-suited for the regularity theory

of harmonic maps.
(ii) A bound on the angular component of a harmonic map implies regularity

results.
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By the same token as (i), the standard coordinates (ρ, φ) of (H, gH) are ill-
suited to study harmonic maps (although they are convenient when studying
the behavior of the degenerating Riemann surfaces corresponding to points of
T approaching its boundary). Furthermore, (ii) hints that one should look to
bound the “angular” coordinates in order to find essentially regular subspaces.

The idea of choosing the right coordinates and finding essentially regu-
lar subspaces to study the harmonic maps led to our paper [12]. There, we
introduced a change of variables which takes the coordinates (ρ, φ) to new
coordinates analogous to the change of variables (1.12) from polar coordi-
nates (r, θ) to Euclidean coordinates (x, y). In essence, we introduced a new
coordinate system for (H, gH) that can be used to study harmonic maps.

Before we describe the new coordinates of H, we will first discuss the
difficulty caused by the degenerating geometry and non-compactness of H in
relation to the key point (ii) above. For a harmonic map u : � → H and
x0 ∈ �, a consequence of having a well-defined order Ordu(x0) is that there
exists a sequence of blow-up maps of u at x0. (Loosely speaking, these are
maps constructed by concentrating in on the point x0 and scaling up u restricted
to small geodesic balls centered at x0.) Because of the non-local compactness
of H near P0, if u(x0) = P0, then this sequence of blow up maps does not
converge as a map into H since there exists no uniform bound on the angular
component for the sequence. In short, we cannot expect to approximate u by a
homogeneous degree 1map l with a goodboundon the angular componentmap
lφ . This poses a problem in setting up the Gromov–Schoen inductive argument
since the heart of this argument is to use an essentially regular subspace that
effectively contains a homogeneous degree 1 map approximating u (cf. (5.1)).

The problem described in the paragraph above led us to consider the NPC
space

H2 = H
+ �H

−
/ ∼ .

Here, H
+
and H

−
denote two distinct copies of H and ∼ indicates that the

singular point P0 from each copy is identified as a single point. The induced
distance function dH2 on H2 is given by

dH2((ρ1, φ1), (ρ2, φ2)) =
{

dH((|ρ1|, φ1), (|ρ2|, φ2)) if ρ1ρ2 ≥ 0
|ρ1| + |ρ2| if ρ1ρ2 < 0.

By using the identification (ρ, φ) �→ (−ρ, φ) in H
−
, we obtain “coordinates”

on H2 where
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H
+ = {(ρ, φ) ∈ R

2 : ρ > 0},
H
− = {(ρ, φ) ∈ R

2 : ρ < 0},
P0 = {(ρ, φ) ∈ R

2 : ρ = 0}.
(Calling (ρ, φ) coordinates is a slight misnomer as they are not coordinates
in the traditional sense near P0.) The importance of H2 can be explained
by the observation that harmonic maps into H2 exhibit a completely different
behavior than the one described in the previous paragraph. Indeed, at an order 1
singular point, a harmonicmap intoH2 can locally be approximated by a single
homogeneous degree 1 map l : B1(0)→ H2 given by l(x) = (lρ(x), lφ(x)) =
(Ax1, 0) for some constant A > 0 (after a rotation of the domain B1(0) and a
translation (ρ, φ) �→ (ρ, φ − c) of the target H2 for an appropriate constant
c ∈ R). Here, the key point is that the angular componentmap of l is identically
constant.

The map l is effectively contained in the subspace H2[φ0] for φ0 > 0.
(This assertion follows from essentially the same argument as the proof of
Lemma 5.2 below.) Since s �→ (s, φ0) and s �→ (s,−φ0) are geodesics,
H2[φ0] is geodesically convex in H2. A harmonic map whose image lies in
H2[φ0] has the property that its angular component function vφ is bounded.
The change of coordinates

(ρ, φ) �→ (ρ cos
√
3ρ2φ, ρ sin

√
3ρ2φ) (1.13)

in H2 is analogous to the change of coordinates in R2 from polar coordinates
(r, θ) to the standard coordinates (x, y). By applying elliptic theory after the
change of variables, we prove H2[φ0] is essentially regular.

The key to showing regularity of harmonic maps into H is the close rela-
tionship between the geometries of H and H2 near P0 which we now describe.
First, observe that the curve γ̂ (τ ) = (τ, φ∗), with φ∗ fixed, in H2 is a geodesic
line. In H, there are no geodesic lines through P0, only geodesic rays with P0
as an endpoint. On the other hand, since H2 is a union of two copies of H, γ̂
resembles the curve σ constructed by joining two geodesic rays in H. More
specifically, let

σφ0(τ ) =
⎧
⎨

⎩

(τ, φ0) for τ ∈ (0,∞)
P0 for τ = 0
(−τ,−φ0) for τ ∈ (−∞, 0).

Moreover, let γ φ0 be the geodesic segment inH from (1, φ0) to (1,−φ0). Then
since

lim
φ0→∞

d((1,−φ0), (1, φ0)) = 2 = length(σφ0
∣∣[−1,1]),
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the geodesic γ φ0 resembles the broken geodesic σφ0
∣∣[−1,1] for φ0 > 0

large. (Details of this phenomenon are given in Sect. 3.4.1; specifically, see
Lemma 3.17.) Therefore, the geodesic γ̂ of H2 resembles the geodesic γ φ0 of
H for φ0 > 0 large. We use this property of geodesics to identify H2 with H
as follows.

Observe that H2 is foliated by an one-parameter family of geodesic lines
{ρ �→ (ρ, φ)} (whose images are the horizontal lines in the left diagram of
Fig. 2). Motivated by this, we also foliate H by a family of geodesics (see in
the right diagram of Fig. 2). We define a map which associates the family of
geodesics in H2 to the family of geodesics in H. Indeed, let

c = (cρ, cφ) : (−∞,∞)× (−∞, 3
2
)→ H (1.14)

satisfying the following:

(i) s �→ c(s, t) = (cρ(s, t), cφ(s, t)) is a unit speed geodesic such that

cρ(s, t) = cρ(−s, t), cφ(s, t) = −cφ(s, t).

(ii) t �→ cρ(0, t) satisfies the equation

∂cρ
∂t
(0, t) = c3ρ(0, t).

(iii) cρ(0, 1) = 1 and cφ(0, t) = 0 for all t ∈ (−∞, 32 ).
The parameters s and t define coordinates of H via the map

(s, t) �→ c(s, t).

Given a homogeneous degree 1 map l(x) of the form l(x) = c(Ax1, t∗), we
apply a translation by t∗ to construct coordinates (�, ϕ). More precisely, since

l(0) = (0, t∗) in the coordinates (s, t), (1.15)

we define coordinates (�, ϕ) by setting

(�, ϕ) = (s, t − t∗). (1.16)

This results in

l(0) = (0, 0) in coordinates (�, ϕ).
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Fig. 2 H2 on the left and H on the right

Using the new coordinates (�, ϕ) anchored at t∗, we introduce a family of
totally geodesic subspaces of H which will play a central role in the proof of
the key technical Lemma.

Here,we emphasize that the coordinates (�, ϕ)not only dependon the family
of geodesics {s �→ c(s, t)} but also on the parameter t∗. We are interested in
the asymptotics as t∗ → −∞.

The expression of the metric gH in the coordinates (�, ϕ) is

gH(�, ϕ) =
( ∣∣ ∂c

∂s (�, ϕ + t∗)
∣∣2 < ∂c

∂s (�, ϕ + t∗), ∂c
∂t (�, ϕ + t∗) >

< ∂c
∂s (�, ϕ + t∗), ∂c

∂t (�, ϕ + t∗) >
∣∣ ∂c
∂t (�, ϕ + t∗)

∣∣2

)

=
(
1 0

0
∣∣ ∂c
∂t (�, ϕ + t∗)

∣∣2

)
.

The top diagonal entry is equal to 1 because s �→ u(s, t) is unit speed (cf. (i)).
The off-diagonal terms are equal to 0 because of the following reason: First,
note that the curve t �→ c(0, t) parametrizes the line φ = 0 by (ii) and (iii).
Next, since the geodesic s �→ cρ(s, t) is symmetric in the variable s by (i),

its minimum value is achieved at s = 0. In particular, ∂cρ
∂s (0, t) = 0 which in

turn implies ∂c
∂s (0, t) is parallel to the line ρ = 0. Therefore, we conclude that

the Jacobi field ∂c
∂t is perpendicular to the velocity vector

∂c
∂s of the geodesic at

s = 0, and theymust be perpendicular for all s by a standard property of Jacobi
fields. This justifies that the off-diagonal entries are equal to 0. The bottom
diagonal term

∣∣ ∂c
∂t

∣∣ quantifies how the family of geodesics {ct (s)} = {c(s, t)}
are spread apart. The differential equation ∂cρ

∂t (0, t) = c3ρ(0, t) of (ii) gives the
initial spread (i.e. the spread at s = 0). In [12, Section 4], we have shown that
this is enough to prove

∣∣ ∂c
∂t (s, t)

∣∣− c3ρ(s, t)→ 0 uniformly for s in a compact
set away from s = 0 as t∗ → −∞. In summary, in the coordinates (�, ϕ), gH
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has the property that

gH(�, ϕ) =
(
1 0

0
∣∣ ∂c
∂t (�, ϕ + t∗)

∣∣2

)
≈

(
1 0
0 �6

)
as t∗ → −∞. (1.17)

In analogy with H2, we showed in [12] that the totally geodesic subspaces

H[ϕ0] = {(�, ϕ) ∈ H : |ϕ| ≤ ϕ0}

(pictured in the right diagram of Fig. 2) are essentially regular, and we can set-
up the Gromov–Schoen inductive argument with H[ϕ0] as the totally geodesic
set effectively containing the homogeneous degree 1map l(x) = (l�(x), lϕ) =
(Ax1, 0). With this, we can prove the regularity of harmonic maps into H
(cf. [12, Theorem 35]).

As explained above, T near a boundary point is asymptotically isometric to
the product of a smooth Kähler manifold and the product of a finite number of
copies of the model space. In this paper, we use the strategy described above
but also incorporating this almost product structure, to prove the regularity of
harmonic maps into T (cf. Theorem 1.5).

1.3 Summary of the paper

In the following paragraphs, we outline the organization of the paper and
explain the main ideas:

In Sect. 2, we discuss the asymptotic geometry of the Weil–Petersson
completion T of Teichmüller space. According to [15,53,58] and [13], the
Weil–Petersson completion of a Teichmüller space near a boundary point is
asymptotically isometric to the product of a boundary stratum T ′ and a normal

space H
k− j = H×· · ·×H. We refer to Sect. 2.1 for a precise definition of the

metric space (H, dH) given as a metric completion of the incomplete Riemann
surface (H, gH). Since each open boundary stratum T ′ can be identified with
a product of lower dimensional Teichmüller spaces hence a smooth Hermitian
manifold, the singular behavior of theWeil–Petersson geometry is completely
captured by themodel spaceH. For one, the Gauss curvature of gH approaches
−∞ near its boundary reflecting the sectional curvature blow-up of Gwp near
∂T . Moreover, the non-local compactness of T is also captured by H. Indeed,
a geodesic ball in (H, dH) centered at a boundary point is not compact. The
degenerating geometry and the lack of compactness imposes severe challenges
in the theory of harmonic maps and the core of this paper is to deal with these
phenomena. In Sect. 2.2, we define a stratification preserving homeomorphism
between a neighborhoodN ⊂ T of a point on a boundary stratum and a neigh-
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borhood in C
j × H

k− j
. In Sect. 2.3, we detail the precise way in which the

Weil–Petersson metric in N is asymptotically a product metric.
In Sect. 3, we prove the Regularity Theorem 3.1 for harmonic maps into the

model space (H, dH). The importance of this section is that, by considering
(H, dH) as the target space, we isolate the main difficulties (namely, the non-
compactness and degenerating geometry) that we will need to deal with when
the target space is T . Central to the proof is the notion of order of a harmonic
map into anNPC space introduced in [21]. The order and other relevant notions
from the theory of harmonic maps are summarized in Sect. 3.1. We remark
that the order of a harmonic function is the order with which it attains its value;
equivalently, it is the degree of the monomial that best approximates it.

The strategy of the proof of the Regularity Theorem 3.1 is to first prove
that the set of higher order points (i.e. the set of points of order > 1) is of
Hausdorff codimension at least 2. We then complete the proof by showing that
no order 1 singular points exist. We do this in Sect. 3.4 by applying the key
technical Lemma for the Model Space (cf. Lemma 3.21), a special case of the
key technical Lemma 4.11. This lemma gives sufficient conditions for a map
into (H, dH) not to hit the boundary point P0. The ideas surrounding the key
technical Lemma is the lynchpin of the proof of the regularity theorem as we
address the degeneration and non-compactness of the model space at P0. We
note that the most technically difficult part, the proof the of the key technical
Lemma 4.11 is postponed until Sect. 5.

In Sect. 4, we prove the Regularity Theorems 1.5 and 1.6 for harmonic maps
into T . The proof follows the similar strategy as for the proof of Regularity
Theorem 3.1 for the model space. The first step of showing that the set of
higher order points is of Hausdorff codimension at least 2 is done in much
the same way as in Sect. 3. On the other hand, the second step of dealing
with the order 1 singular points is more difficult because of the complicated
structure of the stratification for T . Nonetheless, the main issue is the same for
both T and H, namely, the non-compactness and the degenerating geometry
near the boundary. We will again invoke the key technical Lemma 4.11. The
idea is to use the asymptotic product structure of (T , dT ) near its boundary
to decompose the given harmonic map into two maps, one of which maps
into a boundary stratum (which is a smooth Kähler manifold) and the other

into the normal space H
k− j

. These two maps are not harmonic because of the
lack of product structure, but the latter map is asymptotically harmonic in an
appropriate sense. We thus adjust the arguments of Sect. 3 so that they work
for asymptotically harmonic maps. For the reader’s convenience, we will give
a detailed outline of this argument at the beginning of Sect. 4.

In Sect. 5, we prove the key technical Lemma. This can be thought of as the
core of the paper and the most technically challenging part of this work.
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In Sect. 6, we specialize to the case when the domain dimension is 2. In
fact, we prove that there are no singular points in this case (cf. Theorem 1.7
below).

In Sect. 7, we prove our Theorem 1.2 and Corollary 1.3. This follows fairly
easily from Theorem 1.5 and Theorem 1.6 by applying the result of [48].

In Sect. 8, we deduce Theorem 1.1 from our main Theorem 1.2 and Corol-
lary 1.3. Additionally, as a by-product, we provide a harmonic maps proof of
Corollary 1.4.

We would like to point out that for a harmonic map u defined on a general
Riemannian domain Theorem 1.5 only asserts that the singular set S(u) of u is
of codimension at least 2 (or more precisely that u maps a connected domain
into a single stratum up to codimension at 2) and does not necessarily imply
that u maps into of T (or even a single stratum). Our main theorem asserts that
the stronger statement is true only when the harmonic map u is holomorphic.
However, we show that for two dimensional domains, this assertion is always
true. Namely,

Theorem 1.7 If u : (�, g)→ (T , dT ) is a harmonic map from a connected
Lipschitz domain � in a Riemann surface, then there exists a single stratum
T ′ of T such that u(�) ⊂ T ′.

It is reasonable to conjecture that this assertion holds for higher dimensions;
however, this is not needed for the applications discussed in this article.

As a final comment, we would like to point out that due to the length of this
paper, we have omitted several important topics that will be presented else-
where. First is the connection with symplectic Lefschetz fibrations which, by
Theorem 1.7, induce harmonic maps and in some cases even minimal surfaces
into the Teichmüller space. More generally, our results imply a classification
theorem for surface fibrations over quasi projective varieties. Indeed, Theo-
rem 1.2 and Corollary 1.3 imply that, under mild non degeneracy conditions
on the rank of the harmonic map (which can be checked by topological consid-
erations), any smooth fibration on a quasiprojective variety with quasiperiodic
monodromy at infinity is isomorphic to a holomorphic fibration. (We would
like to thank J. Jost for originally pointing this out to us.) In another direction,
we would like to remove Assumption (ii) on the codimension of the singular
set of M̄ from Theorem 1.1. This Assumption was added by Jost and Yau in
[26], in order to guarantee the existence of a finite energy map from M to T .
The existence of a finite energy map is also one of our Assumptions in The-
orem 1.2 and Corollary 1.3. It is possible that a more careful analysis would
yield a finite energy map in general. However, in an upcoming article, we will
circumvent this issue by considering infinite energy maps.
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2 The Weil–Petersson completion of Teichmüller space

In this section, we discuss the asymptotic geometry of the Weil–Petersson
completion T of Teichmüller space. Near its boundary, T is asymptotically
isometric to the product of theWeil–Petersson metric on a stratum T ′ which is
a product of lower dimensional Teichmüller spaces and the normal spaceH

k− j

which is a product of the model space H. Moreover, the singular behavior of
the Weil–Petersson geometry is completely captured by the model space H.
In Sect. 2.1, we collect several properties of the model space H that we will
need later. In Sect. 2.2, we define a stratification preserving homeomorphism
between a neighborhood N ⊂ T of a point on the boundary stratum and a

neighborhood inC j×H
k− j

. This homeomorphismwill be used to define local
coordinates in T . In Sect. 2.3, we give a precise description of the asymptotic
product structure of the Teichmüller space near its boundary. Indeed, The-
orem 2.10 states the C1-estimates of the Weil–Petersson metric proved in
[13]. These estimates improve other C1-estimates existing in the literature,
for example [32] and [33]; more precisely, we show that the C1-error term of
the Weil–Petersson metric is the derivative of the error appearing in the well
known C0-estimates of [15,58] and [53]. In Theorem 2.12, the C1-estimates
reformulated in the precise way needed to apply the techniques developed in
[11]. (The other well-known estimates in the literature, for example [56], are
to our knowledge insufficient for this purpose.)

2.1 The model space

Consider the smooth Riemannian manifold (H, gH) consisting of the upper
half plane

H = {(ρ, φ) ∈ R
2 : ρ > 0, φ ∈ R}

endowed with the Riemannian metric

gH = dρ2 + ρ6dφ2.

(Note that in most literature on Weil–Petersson geometry, one considers the
slightly different metric 4dr2 + r6dθ2 which is clearly isometric to gH via
the change of coordinates ρ = 2r, φ = θ

8 .) We call (ρ, φ) the standard model
space coordinates and gH the model space metric. The Christoffel symbols of
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gH are given by
�
ρ
ρρ = 0 �

φ
φφ = 0

�
ρ
ρφ = 0 �

φ
ρφ =

3

ρ

�
ρ
φφ = −3ρ5 �φρρ = 0.

(2.1)

The Gauss curvature is

K = − 6

ρ2
.

The geodesic equations for γ = (γρ, γφ) are given by the equations

γ φ0ρ
d2γ

φ0
ρ

ds2
= 3(γ φ0ρ )

6

(
dγ φ0φ

ds

)2

and (γ φ0ρ )
4

d2γ
φ0
φ

ds2
= −6(γ φ0ρ )3

dγ φ0ρ
ds

dγ φ0φ
ds

.

(2.2)

Let dH be the distance function of H induced by the metric gH; i.e. for
P = (ρ, φ), P = (ρ′, φ′) ∈ H, let

dH(P, P ′) = inf
GP,P ′

length(γ )

where GP,P ′ is the set of all piecewise C1 curves γ : [a, b] → H with
γ (0) = P and γ (1) = P ′. The metric space (H, gH) is incomplete since for
any fixed φ0 ∈ R, the geodesic

γ = (γρ, γφ) : [0, 1)→ (H, gH), γρ(t) = 1− t, γφ(t) = φ0

leaves every compact subset of H and is of length 1. On the other hand

Lemma 2.1 (H, dH) is geodesic; i.e. for any P, P ′ ∈ H, there exists a curve
γ ∈ GP,P ′ such that dH(P, P ′) = length(γ ).

Proof Suppose not. Then, there exist a sequence γi ∈ GP,P ′ and ti ∈ [0, 1]
such that length(γi ) → dH(P, P ′) and ρ̂i → 0 for (ρ̂i , φ̂i ) := γi (ti ). Since
length(γi ) = length(γi

∣∣[0,ti ])+ length(γi
∣∣[ti ,1]) ≥ (ρ1 − ρ̂i )+ (ρ2 − ρ̂i ), this

implies dH(P, P ′) ≥ ρ0+ρ1. This is a contradiction; indeed, if we let γε be the
join of the straight line from P = (ρ, φ) to (ε, φ), followed by the straight line
from (ε, φ) to (ε, φ′) followed by the straight line from (ε, φ′) to P ′ = (ρ′, φ′),
then length(γε) = ρ − ε + ε3|φ − φ′| + ρ′ − ε < ρ + ρ′ ≤ dH(P, P ′) for
ε > 0 sufficiently small. ��
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The metric completion of (H, dH) is denoted by (H, dH). Here,

H = H ∪ {P0}
where we can think of the entire axis ρ = 0 is identified to a single point P0.
The distance function dH : H×H→ [0,∞) is given by

dH(P, Q) =
{

dH(P, Q) if P, Q ∈ H
ρ if P = P0 and Q = (ρ, φ) ∈ H.

Since every neighborhood of P0 contains points with arbitrary large φ-
coordinate, it follows that the space (H, dH) is not locally compact. This is
the source of many technical hurdles in this paper. However, (H, dH) is an
NPC space since it is a metric completion of a geodesically convex negatively
curved surface. We also record the following two simple lemmas.

Lemma 2.2 If P1, P2 ∈ H are given as P1 = (ρ1, φ1) and P2 = (ρ2, φ2),
then

|ρ1 − ρ2| ≤ dH(P1, P2).

Proof Let γ be the geodesic from P1 to P2. Let π be the projection map onto
the geodesic {φ = φ1}∪ {P0}. Then π is distance decreasing and d(P1, P2) =
length(γ ) ≥ length(π ◦ γ1) ≥ |ρ1 − ρ2|. ��
Lemma 2.3 The tangent cone TP0H is isometric to [0,∞).
Proof First, note that any unit speed geodesic emanating from P0 is of the
form

γφ0 : [0,∞)→ H, γφ0(t) =
{

P0 for t = 0
(t, φ0) for t > 0

for some fixed φ0 ∈ (−∞,∞). Comparing the length of the geodesic from
(ε, φ0) to (ε, φ′0) to the length of the vertical line from (ε, φ0) to (ε, φ′0), we
obtain

d(γφ0(ε), γφ′0(ε)) ≤ ε3|φ0 − φ′0|.
Thus, the angle between the two geodesics γφ0 and γφ′0 at P0 is given by

� P0(γφ0, γφ′0) = lim
ε→0

cos−1
2ε2 − d2(γφ0(ε), γφ′0(ε))

2ε2

≤ lim
ε→0

cos−1
2ε2 − ε6|φ0 − φ′0|2

2ε2
= 0.
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It follows that the space of directions at P0 (i.e. the space of equivalence
classes of geodesics emanating from P0) contains exactly one element. Since
the tangent cone is the metric cone over the space of directions, it is isometric
to [0,∞). ��

Another important feature of the space (H, gH) is that it possesses a homo-
geneous structure. More precisely, we can define new coordinates (ρ,�) of
H where the first coordinate function ρ is the same as that of the original
coordinates, but the second coordinate function � defined by setting

� = ρ3φ.

We call (ρ,�) the homogeneous coordinates and in these coordinates the
metric is given by

gH =
⎛

⎝
1+ 9�2ρ−2 −3ρ−1�

−3ρ−1� 1

⎞

⎠ . (2.3)

For λ > 0 consider the dilation map

λ : H→ H

given in homogeneous coordinates by

P = (ρ,�) �→ λP = (λρ, λ�) and P0 �→ P0.

It follows immediately from (2.3) that the local expression of gH is invariant
under dilations. This implies that if we extend the dilation map λ to H by

λP =
{
λP if P �= P0
P0 if P = P0

(2.4)

then the distance function dH is homogeneous of degree 1; i.e.

dH(λP, λQ) = λdH(P, Q), ∀P, Q ∈ H. (2.5)

The stratification of H = H ∪ {P0} induces a stratification on the product

space H
l
for any positive integer l. The metric gH defines a metric h on the

stratified space H
l
so that (H

l
, h) becomes a stratified Hermitian space. The

distance function dh induced by h coincideswith the completion of the distance
function on Hl induced from the metric gH.
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Definition 2.4 For a positive integer l, we refer to the stratified Hermitian

space (H
l
, h) and the NPC metric space (H

l
, dh) as the normal space (to the

boundary of Techmüller space). This terminology will be justified in Theo-
rem 2.12 below.

In the following, we summarize the properties of the normal space.

Proposition 2.5 (Homogeneous structure of the Model Space). The metric

space (H
k− j
, dh) is an NPC space with a homogeneous structure with respect

to P0 = (P0, . . . , P0) ∈ H
k− j

. In other words, there is a continuous map

R>0 ×H
k− j → H

k− j
, (λ, P) �→ λP

such that λP0 = P0 for every λ > 0 and the distance function dh is homoge-
neous of degree 1 with respect to this map, i.e.

dh(λP, λQ) = λdh(P, Q), ∀P, Q ∈ H
k− j
, λ ∈ (0,∞).

Proof Indeed, using the homogeneous structure on H defined by (2.4), we can

define a continuous map R>0 ×H
k− j → H

k− j
by setting

(λ, (P1, . . . , Pk− j ))→ (λP1, . . . , λPk− j ).

��

2.2 Local coordinates of T near ∂T

Let T denote the Teichmüller space of an oriented surface of genus g with
p marked points such that k = 3g − 3 + p > 0. Endowed with the Weil–
Petersson metric Gwp, (T ,Gwp) is a smooth Kähler manifold of complex
dimension k = 3g−3−p (cf. [2]) and has negative sectional curvature (cf. [50]
and [52]). However, (T ,Gwp) is incomplete (cf. [10] and [54]). Let (T , dT )
denote its metric completion. The metric space (T , dT ) is no longer a smooth
manifold, but it is an NPC metric space (cf. [15,53] and [58]). Furthermore,
T is a stratified space (cf. [35]), sometimes called the augmented Teichmüller
space; more precisely, we can write

T =
⋃

T ′ (2.6)

where T ′ = T or T ′ is the space parametrizing nodal surfaces obtained from
the original surface with a number of (mutually disjoint) simple closed curves
pinched. (One can show that T ′ is a product of lower dimensional Teichmüller
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spaces.) We call T ′ an open stratum of T . Recall that all the strata are totally
geodesic with respect to the Weil–Petersson distance (cf. [15,53] and [58]).

Define # : T → {0, . . . , k} by setting

#P = j (2.7)

if P ∈ T ′ where T ′ is a j-dimensional open stratum. Consider P ∈ T with
#P = j corresponding to a nodal surface R0. Let s = (s1, . . . , s j ) ∈ C

j �→ Rs
be a parameterization of the neighborhood of R0 in T ′. We can regularize each
node of Rs by the plumbing construction, and let t = (t1, . . . , tk− j ) ∈ C

k− j

denote the plumbing coordinates. Thus, provided that all the t ′i s are nonzero,
we can construct an analytic family of Riemann surfaces Rs,t of genus g with
p marked points degenerating as (t1, . . . , tk− j ) → (0, . . . , 0) to the nodal
surface Rs . The parameters s and t together define a set of coordinates on T
near P (see [1,15,35,58] and [53] for further details).

The parameter t gives rise to the normal space Hk− j . Indeed, we define

t = (t1, . . . , tk− j ) ∈ C
k− j �→ ((ρ1, φ1), . . . , (ρk− j , φk− j )) ∈ Hk− j (2.8)

by setting

ρi = 2(− log |ti |)− 1
2 and φi = 1

8
arg ti .

The stratification of the space C
j × H

k− j
induced from the stratification of

H = H ∪ {P0} is compatible with the stratification on T given in (2.6). More
precisely, given P ∈ T with #P = j (cf. (2.7)), there exists a neighborhood
N ⊂ T of P , a neighborhood U ⊂ C

j of O = (0, . . . , 0), a neighborhood
V ⊂ H

k− j
of P0 = (P0, . . . , P0) such that the map

� : N → U × V ⊂ C
j ×H

k− j
(2.9)

given in terms of the parameters described above as

Q �→ �(Q) = (s1, . . . s j , (ρ1, φ1), . . . , (ρk− j , φk− j ))

has the following properties:

(i) �(P) = (O,P0) = (0, . . . , 0, P0, . . . , P0) ∈ C
j ×Hk− j .

(i i) � is a stratification preserving homeomorphism and when restricted to
each open stratum is a biholomorphism, hence:
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(i i i) If G denotes the pullback of the Weil–Petersson metric GW P under
�−1, then G is a Hermitian metric along each stratum of U × V such
that

� : (N ,GW P)→ (U × V,G)

is a Hermitian isometry between stratified spaces. In particular �
induces an isometry � : (N , dGW P )→ (U × V, dG), where dGW P and
dG denote the distance functions defined by GW P and G respectively.

Throughout the rest of the paper, we will use the map� as local coordinates
near a j-dimensional stratum and express the Weil–Petersson metric in terms
of�. Using the natural identification U = U ×{P0}, let H denote any smooth

extension of G
∣∣∣
U×{P0}

from U to C j . Let V = (V 1, . . . , V j ) be normal coor-

dinates of H near 0 and assume without loss of generality that they are the
restriction of the standard coordinates on C

j . Let h denote the metric on the
statified space H

k− j
as in Definition 2.4.

It is a straightforward computation to show that in terms of the complex
parameter t = (t1, . . . , tk− j ) of Hk− j given by (2.8), the Hermitian metric h
has the expression

h = (hi j̄ ) where hi j̄ =
{
π3|ti |−2(− log |ti |)−3 for i = j

0 for i �= j.

The co-metric is

h = (hi j̄ ) where hi j̄ =
{
π−3|ti |2(− log |ti |)3 for i = j

0 for i �= j.

Definition 2.6 The metric G above will again be called the Weil–Petersson
metric. Additionally, with H and h as above, metric H ⊕ h will be called the
product metric.

2.3 C0 and C1-estimates of Weil–Petersson metric

The C0-asymptotic behavior of the Weil–Petersson metric near the boundary
of Teichmüller space is given by the well-known estimates below. Notice that
we use the upper case I, J to index the s-coordinates and lower case i, j, k
for the t-coordinates.
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Theorem 2.7 ([15,35,53,58]). The Weil–Petersson co-metric G−1W P = (G∗∗)
satisfies the following estimates (assuming i, j, k are all distinct):

(i ′) Gii = hii

⎛

⎝1+ O

⎛

⎝
k− j∑

l=1
(− log |tl |)−2

⎞

⎠

⎞

⎠

(i i ′) G jk = O(|t j ||tk |)
(i i i ′) G I j = O(|t j |)

(iv′) G I J = G I J̄ (0)+ O

⎛

⎝
k− j∑

l=1
(− log |tl |)−2

⎞

⎠ .

The Weil–Petersson metric GW P = (G∗∗) satisfies the following estimates
(assuming i, j, k are all distinct):

(i) Gii = hii

⎛

⎝1+ O

⎛

⎝
k− j∑

l=1
(− log |tl |)−2

⎞

⎠

⎞

⎠

(i i) G jk = O
(
(− log |t j |)−3(− log |tk |)−3|t j |−1|tk |−1

)

(i i i) G I j = O
(|t j |−1(− log |t j |)−3

)

(iv) G I J = G I J̄ (0)+ O

⎛

⎝
k− j∑

l=1
(− log |tl |)−2

⎞

⎠ .

TheC0-estimates above are not strong enough for the proof of Theorem 1.2.
Indeed, in [11], we developed a general harmonic map theory in the setting
where the target space has a C1-asymptotic product structure. Subsequently,
in [13] we proved the asymptotic C1-estimates for the Weil–Petersson met-
ric suited for the techniques of [11]. These estimates (cf. Theorem 2.8 and
Theorem 2.10 below) give a more precise description of the asymptotic prod-
uct structure than the ones given in [22,32,33,45] and [34]. In particular, our
results estimate the derivatives of the difference between the Weil–Petersson
metric GW P and the model metric h and can be summarized as follows:

The C1-error terms of the co-metric is of the same order as the derivative
of C0-error terms.

Our results in [13] also differ from the ones in [56] in the sense that they are
expressed in terms of local coordinates on T . Notice that Wolpert expresses
his asymptotic estimates in terms of a certain frame given by gradients of
geodesic length functions, but unfortunately this frame does not come from a
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set of local coordinates on Teichmüller space. It is not clear to the authors how
to useWolpert’s estimates in conjunctionwith harmonicmaps. In the estimates
below,we again use theupper case I, J, K to index the s-coordinates and lower
case i, j, k for the t-coordinates.

Theorem 2.8 ([13] Theorem2).The Weil–Petersson co-metric G−1W P = (G∗∗)
satisfies the following estimates (assuming i, j, k are all distinct):

(i)
∂

∂ti
Gii = ∂

∂ti
hii + O (|ti |(− log |ti |))

(i i)
∂

∂ti
G j j = O

(|ti |−1(− log |ti |)−3|t j |2(− log |t j |)3
)

(i i i)
∂

∂ti
Gi j = O

(|t j |
)

(iv)
∂

∂ti
G jk = O

(|ti |−1(− log |ti |)−3|t j ||tk |
)

(v)
∂

∂ti
G I J = O

(|ti |−1(− log |ti |)−3
)

(vi)
∂

∂ti
G j I = O

(|ti |−1(− log |ti |)−3|t j |
)

(vi i)
∂

∂ti
G I j = O

(|ti |−1(− log |ti |)−3|t j |
)

(vi i i)
∂

∂ti
G I i = O(1).

We also record the following estimates of Liu, Sun and Yau, to get the
complete picture of the C1-asymptotic behavior of the Weil–Petersson co-
metric.

Theorem 2.9 ([34], formula (3.16)). The Weil–Petersson co-metric satisfies
the following estimates (assuming i, j are distinct):

(i)
∂

∂sI
Gii = O

(|ti |2(− log |ti |)3
)

(i i)
∂

∂sI
Gi j = O

(|ti ||t j |
)

(i i i)
∂

∂sI
G Ji = O (|ti |)

(vi)
∂

∂sI
Gi J = O (|ti |)

(v)
∂

∂sI
G J K = O(1).
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By inverting the matrix Gi j and combining the above three theorems, we
obtain the C1-estimates of the Weil–Petersson metric.

Theorem 2.10 ([13], Theorem 3). The Weil–Petersson metric satisfies the fol-
lowing t-derivative estimates (assuming i, j, k, are all distinct):

(i)
∂

∂ti
Gii =

∂

∂ti
hii + O

(
|ti |−3(− log |ti |)−5

)

(i i)
∂

∂ti
G j j = O

(|ti |−1(− log |ti |)−3|t j |−2(− log |t j |)−3
)

(i i i)
∂

∂ti
Gi j = O

(|ti |−2(− log |ti |)−3(|t j |−1(− log |t j |)−3
)

(iv)
∂

∂ti
G jk = O

(|ti |−1(− log |ti |−3)(|t j |−1(− log |t j |)−3(|tk |−1(− log |tk |)−3
)

(v)
∂

∂ti
G I J = O

(|ti |−1(− log |ti |)−3
)

(vi)
∂

∂ti
G I j = O

(|ti |−1(− log |ti |)−3|t j |−1(− log |t j |)−3
)

(vi i)
∂

∂ti
G j I = O

(|ti |−1(− log |ti |)−3|t j |−1(− log |t j |)−3
)

(vi i i)
∂

∂ti
G I i = O

(|ti |−2(− log |ti |)−3
)

Theorem 2.11 The Weil–Petersson metric satisfies the following sI -derivative
estimates (we are not assuming i, j are distinct):

(i)
∂

∂sI
Gi j = O

(
(|ti |−1(− log |ti |)−3(|t j |−1(− log |t j |)−3

)

(i i)
∂

∂sI
G J K = O (1)

(i i i)
∂

∂sI
G J j = O

(|t j |−1(− log |t j |)−3
)

(iv)
∂

∂sI
G j J = O

(|t j |−1(− log |t j |)−3
)

In the next corollary, we reformulate the estimates in Theorem 2.7, Theo-
rem 2.8, Theorem 2.10 and Theorem 2.11 in terms of the metrics G, H and
h. Again, we use the upper case I, J, K to index the V = (V 1, . . . , V j )-
coordinates of C j and lower case i, l,m to index the v = (v1, . . . , vk− j )

coordinates of H
k− j

.

Proposition 2.12 (C1-Asymptotic Product structure of the WP-Metric). The
Weil–Petersson metric G is asymptotically the product metric H ⊕ h of Defi-
nition 2.6 in the following sense:
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Let V = (V 1, . . . , V j ) be coordinates for C j and v = (v1, . . . , vk− j ) be
coordinates for Hk− j . There exists a constant C > 0 such that if we write

H(V ) = (HI J (V )), H−1(V ) = (H I J (V )),

h(v) = (hil(v)), h−1(v) = (hil (v)),

G(V, v) =
(

G I J (V, v) G Il(V, v)
Gl J (V, v) Gil(V, v)

)
, G−1(V, v) =

(
G I J (V, v) G Il(V, v)

Gl J (V, v) Gil (V, v)

)

with respect to coordinates (V, v) of C j ×Hk− j , then the following estimates
hold near (0,P0) with I, J, K = 1, . . . , j and i, l,m = j + 1, . . . , k:

C0-estimates:

|G I J (V, v)− HI J (V )| ≤ C HI I (V )
1
2 HJ J (V )

1
2 d2(v,P0)

|G Il(V, v)| ≤ C HI I (V )
1
2 hll(v)

1
2 d2(v,P0)

|Gil(V, v)− hil(v)| ≤ Chii (v)
1
2 hll(v)

1
2 d2(v,P0)

(2.10)

C0-estimates of the inverse:

|G I J (V, v)− H I J (V )| ≤ C H I I (V )
1
2 H J J (V )

1
2 d2(v,P0)

|G Il(V, v)| ≤ C H I I (V )
1
2 hll(v)

1
2 d2(v, P0)

|Gil(V, v)− hil(v)| ≤ Chii (v)
1
2 hll(v)

1
2 d2(v,P0)

(2.11)

C1-estimates:

| ∂
∂V I G J K (V, v)| ≤ C HI I (V )

1
2 HJ J (V )

1
2 HK K (V )

1
2

| ∂
∂V I G Jl(V, v)| ≤ C HI I (V )

1
2 HJ J (V )

1
2 hll(v)

1
2 d(v,P0)

| ∂
∂V I Gi j (V, v)| ≤ C HI I (V )

1
2 hii (v)

1
2 h j j (v)

1
2

(2.12)

| ∂
∂vi G I J (V, v)| ≤ Chii (v)

1
2 HI I (V )

1
2 HJ J (V )

1
2 d(v,P0)

| ∂
∂vi G I j (V, v)| ≤ C HI I (V )

1
2 hii (v)

1
2 h j j (v)

1
2

| ∂
∂vm

(
Gi j (V, v)− hi j (v)

)
| ≤ Chmm(v)

1
2 hii (v)

1
2 h j j (v)

1
2

(2.13)

Proof The estimates we need to prove are coordinate independent. Thus, we
can assume that V are normal coordinates centered at 0 for the metric H and
v = t . With this, we have

HI I (V ) = O(1), hii (v) = O(|ti |−2(− log |ti |)−3)
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and

(− log |ti |)−1 ≤
k− j∑

l=1
(− log |tl |)−1 ≤ Cd2(v,P0).

As an example, we check the first and the second estimate in (2.13). For the

first, we use Theorem 2.10(iv) and the fact that HI I (V )
1
2 HJ J (V )

1
2 = O(1)

to obtain (for |ti | sufficiently small such that (− log |ti |)−1 < 1 and a generic
constant C)

∣∣∣∣
∂

∂vi
G I J

∣∣∣∣ ≤ C
(|ti |−1(− log |ti |)−3

)

≤ C
(
|ti |−1(− log |ti |)− 3

2

) (
(− log |ti |)− 1

2

)

≤ Chii (v)
1
2 HI I (V )

1
2 HJ J (V )

1
2 d(v,P0).

For the second estimate with i �= j , we use Theorem 2.10(vi) to obtain
∣∣∣∣
∂

∂vi
G I j

∣∣∣∣ ≤ C
(|ti |−1(− log |ti |)−3|t j |−1(− log |t j |)−3

)

≤ C
(
|ti |−1(− log |ti |)− 3

2

) (
|t j |−1(− log |t j |)− 3

2

)

≤ C HI I (V )
1
2 hii (v)

1
2 h j j (v)

1
2

If i = j we use Theorem 2.10(viii) to obtain
∣∣∣∣
∂

∂vi
G I i

∣∣∣∣ ≤ C
(|ti |−2(− log |ti |)−3

)

≤ C HI I (V )
1
2 hii (v).

The other estimates can be justified the same way. ��

3 Maps into the model space H

Given a map u into the model space H, a regular point is a point of the domain
of u that maps into H and a singular point is a point of the domain of u that
maps to P0. The regular set R(u) is the set of regular points and the singular
set S(u) is the set of singular points of u. The goal of this section is to prove
the following slightly easier version of the main theorem; more specifically,
we prove a regularity theorem for harmonic maps into the model space of the
Weil–Petersson metric.
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Theorem 3.1 (Regularity Theorem for Harmonic Maps into the Model
Space). If u : (�, g) → (H, dH) is a harmonic map from an n-dimensional
Lipschitz Riemannian domain, then

dimH
(
S(u)

)
≤ n − 2.

The strategy is to first show that the set S>1(u) of singular points of order
> 1 (for the definition of the order see (3.1)), is of Hausdorff codimension
at least 2 (cf. Sect. 3.3, Proposition 3.16), then to prove that there exist no
order 1 singular points (cf. Sect. 3.4, Proposition 3.22). Note that the order
is always ≥ 1 by Lipschitz continuity (cf. [21], Theorem 2.3). The proof of
Proposition 3.22 relies heavily on the key technical Lemma for the Model Space
(cf. Sect. 3.4, Lemma 3.21) which gives sufficient conditions when a harmonic
map into (H, dH) does not hit the boundary point P0. This is a special case of
the key technical Lemma stated in Sect. 4 that is used to address the regularity
theorem for harmonicmaps into (T , dT ). The key technical Lemma is themost
challenging aspect of this paper as it introduces new techniques to address the
non-local compactness and degenerating geometry of the target space (H, dH)

or (T , dT ) near the boundary.

3.1 Harmonic maps into NPC spaces

In this subsection, we recall some basic facts regarding harmonic maps into
general NPC spaces. The standard references are [21,27] and [28]. Addition-
ally, [11] discusses harmonic map theory in a setting most relevant of this
paper.

Let (�, g) be an n-dimensional Riemannian domain and let (Y, d) an NPC
space. For a finite energy map u : (�, g) → (Y, d), let |∇u|2 denote the
energy density as defined in [27] (1.10v). A map u is said to be harmonic if it
is energy minimizing amongst all finite energy maps with the same boundary
conditions on every bounded Lipschitz subdomain �′ ⊂ � (cf. [27]). We
record the following important result.

Theorem 3.2 (Lipschitz continuity: [21,27,46]). A harmonic map u :
(�, g) → (Y, d) into an NPC space is locally Lipschitz continuous with the
local Lipschitz constant depending on the geometry of (�, g), the total energy
of u and the distance to the boundary. If the boundary of � is smooth and the
boundary data are Cα (0 < α < 1), the map u extends up to the boundary
with the Cα norm depending on the boundary data and on the total energy.
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Next, we recall the notion of order. Let v : (�, g)→ (Y, d) be a map (not
necessarily harmonic). For x0 ∈ �, define

Evx0(σ ) :=
∫

Bσ (x0)
|∇v|2dμ and I vx0(σ ) :=

∫

∂Bσ (x0)
d2(v, v(x0))d	.

When the dependence of point x0 is understood, we will omit it from the
notation above and write Ev(σ ) and I v(σ ) instead. The order of the map v at
x0 is defined by

Ordv(x0) := lim
σ→0

σ Ev(σ )

I v(σ )
provided the limit exists. (3.1)

Definition 3.3 The set

S>1(v) := {x0 ∈ � : Ordv(x0) exists and is > 1}
is the higher order points of v.

Remark 3.4 For a harmonic function u : (�, g)→ R and x0 ∈ �, Ordu(x0)
is the order with which u attains its value u(x0) at x0.

Theorem 3.5 (Existence of the order function: [21,27]). For a harmonic map
u : (�, g)→ (Y, d) into an NPC space and a compact subset K of �, there
exist constants c > 0 and σ0 > 0 depending only on the domain metric (with
c = 0 when g is a Euclidean metric) such that for any x0 ∈ K ,

σ �→ ecσ 2 σ Eu(σ )

I u(σ )
is non-decreasing for σ ∈ (0, σ0).

Thus, Ordu(x0) exists for all x0 ∈ K . Furthermore,

σ �→ ecσ 2 Eu(σ )

σ n−2+2α , and σ �→ ecσ 2 I u(σ )

σ n−1+2α are non-decreasing for σ ∈ (0, σ0).

Proof The statements above follow from Section 1.2 of [21] combined with
[27,28]. ��

We record the following important result of [28] Proposition 3.7 and The-
orem 3.11.

Theorem 3.6 (Compactness Theorem [28]). Assume the following:

(i) The sequence of smooth metrics gi on BR(0) converges in C∞ to the
Euclidean metric g0.

(ii) (Yi , di ) is a sequence of NPC spaces.
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(iii) The sequence vi : (BR(0), gi ) → (Yi , di ) of maps has a uniform Lips-
chitz constant on compact subsets of BR(0).

Then there exists a subsequence vi ′ of vi converging locally uniformly in the
pullback sense (cf. [28] Definition 3.3) to a map v0 : (B1(0), g0)→ (Y0, d0)
into an NPC space, and v0 has the same local Lipschitz constant as vi . Fur-
thermore, if vi is harmonic, then v0 is also a harmonic and

Ev00 (r) = lim
i→∞ E

vi ′
0 (r), ∀r ∈ (0, R).

Remark 3.7 The first assertion of the Compactness Theorem 3.6 statement can
be viewed as a generalized version of the Arzela-Ascoli theorem for maps into
different target spaces. Note that (by an application of the usual Arzela-Ascoli
Theorem to the sequence of pullback distance functions)

d(vi ′(·), vi ′(·)) converges locally uniformly to d0(v0(·), v0(·)). (3.2)

This latter property will be important in the application of Theorem 3.6.

We now define the notion of blow-up maps of a map v : (�, g)→ (Y, d)
(not necessarily harmonic) at x0 ∈ �. Throughout the paper we will define
different cases of blow-up maps so it is important to deal with the general case
first. Below, g0 denotes the standard Euclidean metric. We identify x0 = 0
via normal coordinates (x1, . . . , xn) centered at x0 and let v : (BR(0), g)→
(Y, d) be a Lipschitz map. For σ0 > 0 sufficiently small, a function

ν : (0, σ0)→ R>0 with lim
σ→0+

ν(σ ) = 0

is called a scaling factor. Let gσ denote the rescaled metric on BR(0) given in
terms of the coordinates (x1, . . . , xn) as

gσ i j (x) = gi j (σ x) (3.3)

and

dσ (P, Q) = ν(σ )−1d(P, Q).

The blow-up map of v at x0 = 0 with scaling factor ν(σ ) is the map defined
by

vσ : (B1(0) ⊂ Bσ−1R(0), gσ )→ (Y, dσ ), vσ (x) = v(σ x). (3.4)
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Remark 3.8 For a harmonic map u : � → (Y, d) and x0 ∈ �, we make a
special choice of the scaling factor. More specifically, we let ν(σ ) be equal to

μ(σ) :=
√

I u(σ )

σ n−1 .

With this choice, the blow-up map

uσ : (B1(0), gσ )→ (Y, dσ )

satisfies

I uσ (1) = 1 and Euσ (1) ≤ 2Ordu(x0) for σ > 0 sufficiently small.

In particular, the sequence uσ has uniformly bounded energy. Again applying
the monotonicity properties of Theorem 3.5, we have

Euσ (θ) ≤ θn−2+2αE0 (3.5)

where the constant E0 can be chosen independently of σ and α = Ordu(x0) ≥
1. Moreover, uσ is a harmonic map and Theorem 3.2 and (3.5) imply

uσ has uniform local Lipschitz bound. (3.6)

Thus, applying the Compactness Theorem 3.6, we can find a sequence σi → 0
such that uσi converges locally uniformly in the pullback sense to a non-
constant harmonic map

u∗ : (B1(0), g0)→ (Y∗, d∗)

from a Euclidean ball into an NPC space. By following the argument of [21]
Proposition 3.3, we conclude that the map u∗ is homogeneous degree α; more
precisely, for any ξ ∈ ∂B1(0), the image {u∗(tξ) : t ∈ (0, 1)} is a geodesic
and

d∗(u∗(tξ), u∗(0)) = tαd∗(u∗(ξ), u∗(0)), ∀t ∈ (0, 1).
Since u∗ is Lipschitz continuous by Theorem 3.2, it follows that

Ordu(x0) = Ordu∗(0) = α ≥ 1.

In the case of a harmonic map u into a smooth Riemannian manifold M ,
the target space of a tangent map u∗ at x is the tangent space Tu(x)M . On the
other hand, the target space (Y∗, g∗) of a tangent map u∗ at x may be quite
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different from the tangent cone Tu(x)Y . For example, if u : (�, g)→ (H, dH)

is a harmonic map with u(x) = P0, then a tangent map u∗ cannot map to the
tangent cone TP0H at P0. Indeed, if the image of u∗ is TP0H, then we have
a violation of the minimum principle since TP0H is isometric to [0,∞) (cf.
Lemma 2.3). This is one of the technical issues dealt in this paper.

Definition 3.9 The homogeneous harmonic map u∗ defined in Remark 3.8 is
called a tangent map of u at x0.

We will record three lemmas about the upper semicontinuity of the order
and Hausdorff dimension. Some version of the lemmas are more or less known
to the experts, but we will include their proofs here for completeness since the
exact version stated below is hard to find in literature.

Lemma 3.10 Let u : (�, g) → (Y, d) be a harmonic map. Let x0 ∈ � and
uσi be a sequence of blow-up maps of u at x0 converging locally unifomrly in
the pullback sense to a tangent map u∗. If xi → x∗, then

lim inf
σi→0

Orduσi (xi ) ≤ Ordu∗(x∗).

Proof Fix r ∈ (0, 1). By Theorem 3.6 and (3.6), we have

Eu∗
x∗ (r) = lim

σi→0
E

uσi
x∗ (r).

Furthermore, we claim

lim
σi→0
|Euσi

x∗ (r)− E
uσi
xi (r)| = 0. (3.7)

To prove (3.7), for ε > 0 choose i large so that |xi − x∗| < ε. By the uniform
Lipschitz assumption (3.6) there exists C > 0 such that

E
uσi
x∗ (r)− Cε ≤ E

uσi
x∗ (r − ε) ≤ E

uσi
xi (r) ≤ E

uσi
x∗ (r + ε) ≤ E

uσi
x∗ (r)+ Cε

which immediately implies the desired equality. Combining the above, we
have

Eu∗
x∗ (r) = lim

σi→0
E

uσi
xi (r).

Furthermore, by the local uniform convergence of the pullback distance func-
tions (3.2)

I u∗
x∗ (r) = lim

σi→0
I

uσi
xi (r).
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Combining the above two equalities, we obtain

lim
σi→0

r E
uσi
xi (r)

I
uσi
xi (r)

= r Eu∗
x∗ (r)

I u∗
x∗ (r)

.

Now we apply the monotonicity property of Theorem 3.5, namely

Orduσi (xi ) ≤ ecr r E
uσi
xi (r)

I
uσi
xi (r)

.

Taking liminf as i →∞ in the above inequality, we obtain

lim inf
σi→0

Orduσi (xi ) ≤ ecr r Eu∗
x∗ (r)

I v0x∗ (r)
.

Finally, letting r → 0 yields

lim inf
σi→0

Orduσi (xi ) ≤ Ordu∗(x∗).

��
Lemma 3.11 Let Ei be a sequence of compact subsets of Rn and let E0 ⊂ R

n

be a compact set. Assume that if xi is a sequence such that xi ∈ Ei and
xi → x∗, then x∗ ∈ E0. Then

lim sup
i→∞

dimH(Ei ) ≤ dimH(E0).

Proof First, for any subset E ⊂ R
n and any real number s ∈ [0, n], recall that

[19]
dimH(E) = inf{s : Ĥs(E) = 0} (3.8)

where

Ĥs(E) = inf

{ ∞∑

i=1
rs

i : all coverings {Bri (xi )}∞i=1 of E by open balls.

}
.

Since E0 is compact, we may consider finite coverings E0 ⊂ ⋃N
i=1 Bri (xi ).

Fix ε > 0. By the assumption, we have that for i sufficiently large

Ei ⊂ {x : |x − E0| < ε}
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where |x − E0| = inf{|x − y| : y ∈ E0}. Thus, if Ĥs(E0) = 0 for some
s ∈ [0, n], then Ĥs(Ei ) = 0 for i sufficiently large. The assertion follows
from (3.8). ��
Lemma 3.12 Let u : (�, g) → (Y, d) be a map. For any x0 ∈ S>1(u),
assume that there exists a sequence uσi of blow-up maps of u at x0 converging
locally uniformly in the pullback sense to a homogeneous harmonic map u∗
with the following properties:

(i) If a sequence {xi } ⊂ B1(0) is such that xi ∈ S>1(uσi ) with xi → x∗,
then x∗ ∈ S>1(u∗).

(ii) dimH(S>1(u∗)) ≤ n − 2.

Then

dimH(S>1(u)) ≤ n − 2.

Proof Assume on the contrary that dimH(S>1(u)) > n − 2; i.e., there exists
s > n−2 such thatHs(S>1(u)) > 0.By [18] 2.10.19, there exists x0 ∈ S>1(u)
such that

lim
σ→0

Hs(S>1(uσ )) = lim
σ→0

Hs(S>1(u) ∩ Bσ (x00))

σ s
≥ 2−s .

Thus, dimH(S>1(uσi )) ≥ s forσi sufficiently small. From (i) andLemma3.11,
we conclude that

n − 2 < s ≤ lim sup
σi→0

dimH(S>1(uσi )) ≤ dimH(S>1(u∗)).

This contradicts (ii). ��

3.2 The order gap

In this subsection, we prove an order gap theorem for the limit map of a
sequence of harmonic maps into (H, dH). (We note that an important example
of such a limit is a tangent map of harmonicmap into (H, dH) as we shall see in
Sect. 3.3.) For two dimensional domains, many of the ideas in this subsection
first appeared in [51] in a slightly different language.

We will use the following properties of a map u : (�, g)→ (H, dH). Given
an open set U ⊂ � such that u(U ) is contained in the smooth Riemannian
manifold (H, gH), we can write

u = (uρ, uφ)
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in U with respect to the standard coordinates (ρ, φ) of H. If u is Lipschitz
continuous in U , then there exists a constant C > 0 such that

|∇uρ | ≤ C and |u3
ρ∇uφ| ≤ C. (3.9)

If u : (�, g) → (H, dH) is a harmonic map, then uρ and uφ satisfy the
equations in �\S(u)

uρ�uρ = 3u6
ρ |∇uφ|2 and u4

ρ�uφ = −6∇uρ · u3
ρ∇uφ. (3.10)

In the above ∇ and � denote the gradient and the Laplacian with respect to
the metric g.

Lemma 3.13 Let BR(0) ⊂ R
n. There exists ε0 > 0 depending only on the

domain dimension n such that ifwi = (wρi , wφi ) : (BR(0), gi )→ (H, dH) is a
sequence of harmonic maps with uniformly bounded energy converging locally
uniformly in the pullback sense (cf. Theorem 3.6) to a homogeneous harmonic
map v0 : (BR(0), g0)→ (Y0, d0) into an NPC space, limi→∞wi (0) = P0 =
H\H and the metric gi converging in C∞ to the standard Euclidean metric
g0, then

Ordv0(0) = 1 or Ordv0(0) ≥ 1+ ε0.

If Ordv0(0) = 1, then v0 maps into a geodesic. Furthermore, the set of higher
order points of v0 has Hausdorff codimension at least 2; i.e.

dimH(S>1(v0)) ≤ n − 2.

Remark 3.14 The notion of local uniform convergence in the pullback sense
that appears in Lemma 3.13 was discussed in Theorem 3.6. On the other
hand, in the proof of Lemma 3.13, we only need the fact that the sequence
of pullback distance functions dH(wi (·), wi (·)) converges locally uniformly
to the pullback distance function d0(v0(·), v0(·)). In particular, a sequence of
blow-up maps of a harmonic map has a subsequence satisfying this property
(cf. (3.2) and Remark 3.8).

Proof For the sake of simplicity, we will assume that gi is the standard
Euclidean metric g0. We break up the proof of Lemma 3.13 into four claims.

��
Claim 1. If �0 is a connected component of the open set {x ∈ BR(0) :

v0(x) �= v0(0)}, then v0 maps �0 into a geodesic ray starting at v0(0).
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Proof of Claim 1. Since Ewi (R) is uniformly bounded, Theorem 3.2 and (3.9)
imply that, for any r ∈ (0, R), there exists C > 0 such that for all i and
x ∈ Br (0)\{x : wi (x) �= P0}

|∇wρi |(x) ≤ C, (wρi (x))
3|∇wφi |(x) ≤ C. (3.11)

Fix x�0 ∈ �0 and let K be a compact set contained in �0 and containing
x�0 . The local uniform convergence in the pullback sense of wi to v0 and the
fact that limi→∞wi (0) = P0, imply

lim
i→∞w

ρ
i (x) = lim

i→∞ dH(wi (x), P0)

= lim
i→∞ dH(wi (x), wi (0)) = d0(v0(x), v0(0)) =: f (x)

for x ∈ BR(0). Since K is compactly contained in �0, the convergence
w
ρ
i (x)→ f (x) is uniform in K , and it follows that the functionwρi is bounded

away from 0 in K for i sufficiently large. Therefore (3.11) implies that wφi is

uniformly Lipschitz in K , and there exists a subsequence of wφi − wφi (x�0)

(which we shall still denote by wφi − wφi (x�0) by an abuse of notation) that
converges uniformly in K . By taking a compact exhaustion of �0 and apply-
ing a diagonalization procedure, we can assume (by taking a subsequence if
necessary) that wφi − wφi (x�0) converges locally uniformly to some function

g in�0. Thus, (w
ρ
i , w

φ
i −wφi (x�0)) converges locally uniformly in�0 to the

map ( f, g) : �0→ H. Since (wρi , w
φ
i −wφi (x�0)) is a sequence of harmonic

maps into a smooth Riemannian manifold (H, gH), this convergence is actu-
ally locally C∞. The mapwi is harmonic which implies that the functionswρi
and wφi satisfy

w
ρ
i �wρi = 3(wρi )

6|∇wφi |2 in �0.

Thus, the functions f and g also satisfy

f� f = 3 f 6|∇g|2 in �0. (3.12)

Furthermore, the homogeneity of v0 implies the homogeneity of f . Thus,
extend the domain of f is Rn , assume �0 is a cone and write

f (r, θ) = rαF(θ) in �0

where α = Ordv0(0),

F : �0 ∩ ∂B1(0) =: � ⊂ S
n−1→ R+
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and θ = (θ1, . . . , θn−1) are the coordinates of Sn−1. The above two equations
imply that

α(α + n − 1)F +�θ F = r4α+2F6(θ)|∇g|2.

Since this inequality holds for any r > 0, we can conclude that |∇g|2 = 0.
Hence f is a harmonic function by (3.12). Sincewφi −wφi (x�0) = 0 at x = x�0 ,

we see that g(x�0) = 0.Hence g = 0 in�0 and (w
ρ
i , w

φ
i −wφi (x�0)) converges

locally uniformly to ( f, 0) in �0. This in turn implies (wρi , w
φ
i ) converges

locally uniformly in the pullback sense to ( f, 0) in �0. Since ( f, 0) maps
into the geodesic ray {(ρ, 0) ∈ H} ∪ {P0}, wi (0) → P0 and (wρi , w

φ
i ) also

converges locally uniformly in the pullback sense to v0 in �0, v0 also maps
�0 into a geodesic ray starting at v0(0).

Claim 2. There exists ε0 ∈ (0, 1) sufficiently small depending only on
the domain dimension n such that if Ordv0(0) < 1 + ε0, then there exists a
geodesic γ such that v0(B1(0)) ⊂ γ .
Proof of Claim 2. This argument essentially goes back to [21], but we include
it here for the sake of completeness. Let�0, f , F ,� and θ = (θ1, . . . , θn−1)
be as in the proof of Claim 1; i.e. �0 is extended to a cone in R

n , F(θ) is
defined in � = �0 ∩ S

n−1 and

� f = 0 and f (r, θ) = rαF(θ) in �0 with α = Ordv0(0). (3.13)

Combining the above two equations, we conclude that F is a Dirichlet eigen-
function with eigenvalue α + n − 1; i.e. F satisfies

{
α(α + n − 1)F +�θ F = 0 in �
F

∣∣
�
= 0

in the domain �.
Now assume that there exists at least three distinct connected components of
{x ∈ BR(0) : v0(x) �= v0(0)}. Then at least one of the components, which we
will call �0, has the property that Vol(�) ≤ 1

3Vol(S
n−1) for � = �0 ∩ S

n−1
(after extending �0 as a cone in R

n as in the proof of Claim 1). Recall that
the Faber-Krahn theorem implies that the first Dirichlet eigenvalue λ1(�) of
� is bounded from below by the first eigenvalue λ1(B) of a geodesic ball B in
S

n−1 with volume equal to 1
3Vol(S

n−1). Since λ1(B) ≥ n − 1 + δn for some
number δn > 0 depending only on n, it follows that

α(α + n − 1) ≥ λ1(�) ≥ λ1(B) ≥ n − 1+ δn.
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Therefore, there exists ε0 > 0 depending only on n such that α ≥ 1 + ε0.
Consequently, if α < 1 + ε0, then {x ∈ BR(0) : v0(x) �= v0(0)} has at most
two components. Themaximum principle applied to the subharmonic function
f = d0(v0, v0(0)) implies that there cannot be only one component. Therefore,
α < 1+ε0 implies that there exist exactly two connected components�+ and
�− of {x ∈ BR(0) : v0(x) �= v0(0)}. Let γ+ and γ− be geodesic rays starting
at v0(0) such that v0(�+) ⊂ γ+ and v0(�+) ⊂ γ−. Since v0 is harmonic,
γ := γ+ ∪ γ− is a geodesic.

Claim 3. Either Ordv0(0) = 1 or Ordv0(0) ≥ 1+ ε0. If Ordv0(0) = 1,
then v0 maps into a geodesic.

Proof of Claim 3. Let ε0 ∈ (0, 1) be as in Claim 2 and assume Ordv0(0) <
1+ ε0. By Claim 2, the image of v0 is contained in a geodesic γ . Thus, we can
identify γ with R and assume v0 is a harmonic function. Since Ordv0(0) <
1+ε0 < 2 and the order of a harmonic function is integer valued, we conclude
Ordv0(0) = 1. In this case, v0 is a degree 1 harmonic function, hence linear.

Claim 4. dimH(S>1(v0)) ≤ n − 2.

Proof of Claim 4. We will apply Federer’s dimension reduction argument.
Assume on the contrary that dimH(S>1(v0)) > n−2; i.e. there exists s > n−2
such that Hs(S>1(v0)) > 0. By [18] 2.10.19, there exists x0 ∈ S>1(v0) such
that x0 �= 0 and

lim
σ→0

Hs(S>1(v0,σ )) = lim
σ→0

Hs(S>1(v0) ∩ Bσ (x0))

σ s
≥ 2−s

where v0,σ is the blow-up map of v0 at x0. We claim that

Ordv0(x0) ≥ 1+ ε0 (3.14)

for the same ε0 > 0 as Claim 2. Indeed, since v0 maps into a union of
geodesics, the function f (x) = dH(v0(x), v0(0)) is a homogeneous harmonic
functions in each component �0 of B1(0)\{v0(x) = v0(0)}. In particular, f
in �0 satisfies (3.13). Thus, we can apply the same argument as in Claim 2
to show an order gap for v0 with the same ε0. Since Ordv0(x0) �= 1 (because
x0 ∈ S>1(v0)), the claim follows.

By rotating if necessary, we can assume x0 = (0, . . . , 0, |x0|). The homo-
geneity of v0 implies that Ordv0(0, . . . , 0, t) ≥ 1+ ε0 for 0 < t < 1. This in
turn implies that Ordv0,σ (0, . . . , 0, t) ≥ 1+ ε0 for−1 < t < 1. By the upper
semicontinuity of order (cf. Lemma 3.10), this implies Ordv0,∗(0, . . . , 0, t) ≥
1 + ε0 for −1 < t < 1 where v0,∗ is a tangent map of v0 at x0. Thus, if
�e1, . . . , �en are the standard basis vectors of Rn , then v0,∗ is independent of the
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�en-direction and its restriction to Rn−1 spanned by �e1, . . . , �en−1 denoted ṽ0,∗,
is a homogeneous map of degree α0,∗ ≥ 1+ ε0. We then have

S>1(v0,∗) = S>1(ṽ0,∗)× R and dimH(S>1(ṽ0,∗)) ≥ s − 1.

Since s > n−2, we can repeat this argument inductively to produce a geodesic
with order not equal to 1 at some point, which is contradiction. (This part of
the argument is essentially the same as in [21] Lemma 6.5 where we refer the
reader for further details). ��

3.3 Higher order points

The goal of this subsection is to prove that the set of higher order points of
a harmonic map into (H, dH) is of Hausdorff codimension 2 (cf. Proposi-
tion 3.16). To do this, we apply Lemma 3.13 to a sequence of blow-up maps
of a harmonic map into (H, dH). Generally speaking, note that the blow-up
maps of a map into an NPC space do not necessarily map into the same NPC
space as the original map (because the distance function dσ is different from
the original distance function d). On the other hand, for a map into (H, dH), we
can use the homogeneous structure of (H, dH) discussed in Sect. 2.1 to define
its blow-up maps as a map again into (H, dH). Indeed, given a harmonic map
u = (uρ, uφ) : (BR(0), g)→ (H, dH) with u(0) = P0, we can define

uσ : (B1(0), gσ )→ (H, dH), uσ (x) = ν−1(σ )u(σ x). (3.15)

In other words, if we write u = (uρ, u�) and uσ = (uσρ, uσ�) in the homo-
geneous coordinates, then

uσρ(x) = ν−1(σ )uρ(σ x) and uσ�(x) = ν−1(σ )u�(σ x).

Because of the homogeneity of the distance function under the dilation map,
this is equivalent to the construction of blow-up maps given by (3.4). By
Remark 3.8, there exists a sequence σi → 0 such that uσi = (uρσi , u

φ
σi ) con-

verges locally uniformly in the pullback sense to a tangent map u∗ of u. The
next is a corollary of Lemma 3.13.

Corollary 3.15 If u = (uρ, uφ) : B1(0)→ (H, dH), x0 ∈ B1(0) and u∗ is a
tangent map of u at x0, then

Ordu(x0) = 1 or Ordu(x0) ≥ 1+ ε0, and dimH(S>1(u∗)) ≤ n − 2.

Moreover, if u(x0) = P0 and Ordu(x0) = 1, then u∗ maps into a geodesic.
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Proof First, assume u(x) �= P0. Then u maps a neighborhood of x into a
smooth Riemannian manifold, and u∗ maps into Tu(x)H = R

2 and the lemma
holds trivially with ε0 = 1. Next, assume u(x) = P0 which then implies
uσi (0) = P0. The lemma follows by applying Lemma 3.13 withwi = uσi and
v0 = u∗. ��

We now arrive at the following.

Proposition 3.16 If u = (uρ, uφ) : B1(0) → (H, dH) is a harmonic map,
then the set of points such that Ordu > 1 is of Hausdorff codimension at least
2, i.e.

dimH(S>1(u)) ≤ n − 2.

Proof Given x0 ∈ B1(0), there exists a sequence {uσi } of blow-up maps that
converges locally uniformly in the pullback sense to a tangent map u∗ (cf.
Remark 3.8). It suffices to check assumptions (i) and (ii) of Lemma 3.12.
First, assume xi ∈ S>1(uσi ) with xi → x∗. By the order gap property of
Corollary 3.15, we have Orduσi (xi ) ≥ 1 + ε0. The upper semicontinuity of
order (cf. Lemma 3.10) implies Ordu∗(x∗) ≥ 1 + ε0 which in turn implies
x∗ ∈ S(u∗). This verifies (i). By Corollary 3.15, we have dimH(S>1(u∗)) ≤
n − 2. This verifies (ii). ��

3.4 Order 1 points

We continue with the proof of Regularity Theorem 3.1. In view of Propo-
sition 3.16, it suffices to show that there exists no order 1 singular points
of a harmonic map. In this subsection, we analyze the order 1 points. An
important tool for this analysis is a global coordinate system of H that are
constructed by foliating H by symmetric geodesics. We introduce symmetric
geodeiscs in Sect. 3.4.1 and study their properties. The important observation
(cf. Lemma 3.20) is that blow-up maps at an order 1 point behave like sym-
metric geodesics. In Sect. 3.4.2, we will complete the proof of Theorem 3.1
by showing that there exists no order 1 singular points.

3.4.1 Symmetric geodesics

A symmetric geodesic is an arclengthparameterizedgeodesicγ : (−∞,∞)→
(H, gH) such that if we write γ = (γρ, γφ) with respect to the original coor-
dinates (ρ, φ) of H, then

γρ(s) = γρ(−s) and γφ(s) = −γφ(−s).
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1

ρ

Qφ0
− Qφ0

+

φ−φ0 φ0

Fig. 3 As φ0 →∞ the geodesic becomes almost vertical

The behavior of symmetric geodesics is explained by the following lemma.
See also Fig. 3.

Lemma 3.17 Let φ0 > 0 and σφ0 = (σφ0ρ , σφ0φ ) : (−∞,∞)→ (H, dH) be a
piecewise geodesic defined by

σφ0(s) =
⎧
⎨

⎩

(s, φ0) for s ∈ (0,∞)
P0 for s = 0
(−s,−φ0) for s ∈ (−∞, 0).

Let γ φ0 = (γ φ0ρ , γ φ0φ ) : (−∞,∞) → (H, dH) be the unit speed symmetric
geodesic passing through the points

Qφ0− = (1,−φ0) and Qφ0+ = (1, φ0).
Then

dH(γ
φ0, σφ0)→ 0 as φ0→∞ uniformly on the interval [−1, 1].

Proof We break up the proof into three claims. ��
Claim 1. For any φ0, γ

φ0
ρ (0) ≤ γ φ0ρ (s) for all s ∈ (−∞,∞).

Proof of Claim 1. The first of the geodesic equations (2.2) implies that γ φ0ρ is

convex. Combining this with the symmetry of γ φ0ρ , Claim 1 follows.

Claim 2. γ φ0ρ (0)→ 0 as φ0→∞.

Proof of Claim 2. If γ φ0ρ (0) ≥ c > 0, then γ φ0ρ (s) ≥ c for all s by claim (i)
and hence

1 =
∣∣∣∣
dγ φ0

ds

∣∣∣∣
2

=
(

dγ φ0ρ
ds

)2

+ γ 6ρ (s)
(

dγ φ0φ
ds

)2

≥ c6
(

dγ φ0φ
ds

)2

.
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Thus,

φ20 ≤ |γ φ0φ (1)|2 ≤
(∫ 1

0

∣∣∣∣∣
dγ φ0φ

ds

∣∣∣∣∣ ds

)2

≤
∫ 1

0

∣∣∣∣∣
dγ φ0φ

ds

∣∣∣∣∣

2

ds ≤ c−6.

Since this impossible for large φ0, we have Claim 2.

Claim 3. dH(Q
φ0− , γ φ0(−1)) = dH(Q

φ0+ , γ φ0(1))→ 0 as φ0→∞.

Proof of Claim 3. This assertion follows immediately from the fact that γ φ

is a unit speed geodesic passing through points Qφ0− and Qφ0+ and that

d(Qφ0− , Qφ0+ )→ 2 as φ0→∞. This proves Claim 3.
Claims 2 and 3 assert

dH(σ
φ0(0), γ φ0(0)) = dH(P0, γ

φ0(0)) = γ φ0ρ (0)→ 0

and

dH(σ
φ0(1), γ φ0(1)) = dH(Q

φ0+ , γ φ0(1))→ 0.

Since γ φ0 and σφ0 are geodesics on the interval [0, 1], the assertion follows
from the convexity of the function t �→ d(γ φ0(t), σφ0(t)) (which follows from
the NPC condition). ��
Definition 3.18 A map l = (lρ, lφ) : B1(0) → (H, gH) is said to be a sym-
metric homogeneous degree 1 map if

l(x) = γ (Ax1) (3.16)

where A > 0 and γ is a symmetric geodesic. We call A the stretch factor or
simply the stretch of l.

Definition 3.19 A map

T : H→ H

given by

T (P0) = P0 and T (ρ, φ) = (ρ, φ + c), (ρ, φ) ∈ H

for some c ∈ R is called a translation isometry. Notice that if T is a translation
isometry, l is a symmetric homogeneous degree 1 map and R : Rn → R

n is a
rotation, then

L = T ◦ l ◦ R : B1(0)→ (H, gH)
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is a homogeneous degree 1 in the sense of Remark 3.8.

Let uσi be a sequence of blow-upmaps of a harmonicmap u : (BR(0), g)→
(H, dH) at x0 = 0 ∈ BR(0) converging locally uniformly in the pullback sense
a tangent map u∗ : (B1(0), g0) → (Y∗, d∗). If Ordu(0) = 1, then u∗ maps
into a geodesic by Lemma 3.13. Let A be the norm of the gradient of u∗.
The following lemma gives more precise information of u∗ by embedding this
geodesic in (H, gH) as a (translation of) a sequence of symmetric geodesics.
This also explains why symmetric homogeneous degree 1 maps given in Def-
inition 3.19 naturally arise in the study of harmonic maps into (H, dH).

Lemma 3.20 For a harmonic map u : (BR(0), g) → (H, dH), let uσi , u∗
and A be as above. If Ordu(0) = 1, then there exist a sequence of translation
isometries Ti : H→ H, a rotation R : Rn → R

n and a sequence of symmetric
homogeneous degree 1 maps li : B1(0) → (H, gH) with dH(P0, li (0)) → 0
and stretch A such that

lim
σi→0

sup
Br (0)

dH(uσi , Ti ◦ li ◦ R) = 0, ∀r ∈ (0, 1).

Proof By Corollary 3.15, u∗ maps onto a geodesic. By identifying this
geodesic with R, we can assume for the rest of the of the proof that u∗ is
a linear function. After rotating the domain B1(0) ⊂ R

n if necessary, we may
assume

u∗ : B1(0)→ R, u∗(x) = Ax1 (3.17)

for some constant A and

�± = {x = (x1, . . . , xn) ∈ B1(0) : ±x1 > 0}.
Following the proof of Lemma 3.13, Claim 1, we obtain that

dH(uσi , L±,i )→ 0 uniformly on compact sets of �± (3.18)

where

L±,i (x) = (Ax1, φ±,i ), x ∈ �±
with φ±,i equal to the φ-coordinate of uσi (x�±) and x�± = (±1

2 , 0, . . . , 0) ∈
�±. (Here, x�± and�± replace x�0 and�0 in Lemma 3.13, Claim 1). Define
the map Li : B1(0)→ H by setting

Li (x) =
⎧
⎨

⎩

L+,i (x) if x1 > 0
P0 if x1 = 0
L−,i (x) if x1 < 0
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Since uσi converges locally uniformly to u∗(x) = Ax1 and dH(Li (·), Li (·)) =
dR(u∗(·), u∗(·)) we have,

dH(uσi (·), uσi (·))− dH(Li (·), Li (·))→ 0 (3.19)

uniformly on compact sets of B1(0). We claim that

dH(uσi , Li )→ 0 uniformly on compact subsets of B1(0). (3.20)

Indeed, let K ⊂ B1(0) be a compact set and ε > 0 be given. For all i , we can
choose δ > 0 such that

|x1| < δ ⇒ dH(Li (x), P0) < ε.

By (3.19)

lim
σi→0

dH(uσi (x), P0) = lim
σi→0

dH(uσi (x), uσi (0))

= lim
i→∞ dH(Li (x), Li (0)) = lim

i→∞ dH(Li (x), P0)

hence for i sufficiently large,

x ∈ K and |x1| < δ ⇒ dH(uσi (x), P0) < ε.

Thus, for i sufficiently large, x ∈ K and |x1| < δ imply

dH(ui (x), Li (x))

≤ dH(ui (x), P0)+ dH(Li (x), P0)

< 2ε

For x ∈ K with |x1| ≥ δ, we have dH(uσi (x), Li (x)) < ε for sufficiently
large i by (3.18). This proves (3.20).

We now use Lemma 3.17 to replace Li (up to a translation isometry) with
a symmetric homogeneous degree 1 map. Indeed, recall that by construction,
the φ-coordinate of the point Li (x�±) is φ±,i . Define

φi := |φ+,i − φ−,i |
2

,

and let li be a symmetric homogeneous 1 map with li (x) = γ (Ax1) where γ
is a geodesic passing through (A, φi ) and (A,−φi ) and Ti be the translation
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isometry such that the φ-coordinate of Ti ◦ li (x�±,i ) is equal to φ±,i . By
Lemma 3.17, we conclude that

dH(Li , Ti ◦ li )→ 0 uniformly on compact subsets of B1(0).

Combined with (3.20), we have proved the assertion. ��
3.4.2 The completion of the proof of regularity Theorem 3.1

The following lemma is the heart of the argument of Regularity Theorem 3.1.
Due to its highly technical nature, we postpone the proof until Sect. 5.

Lemma 3.21 (The Key Technical Lemma for the Model Space). Given c0,
E0, A > 0, there exists D0 ∈ (0, 1) that give the following implication.

Assumptions. The metric metric g on B1(0) and the map v : (B1(0), g)→
(H, dH) satisfy:

(i) (almost Euclidean domain metric) The metric g is close to the
Euclidean metric in the sense of (5.21).

(ii) (energy decay) The energy of the map v satisfies

Ev(ϑ) ≤ ϑn E0, ∀ϑ ∈ (0, 1
2
).

(iii) (close to a symmetric homogeneous degree 1 map) There exists a
symmetric homogeneous degree 1 map

l : B1(0)→ (H, gH)

with stretch A such that

sup
B 1
2
(0)

dH(v, l) < D0.

(iv) (subharmonicity of the distance) For ϑ ∈ (0, 1
24), R ∈ [58 , 78 ] and a

harmonic map w : (BϑR(0), g)→ (H, dH),

sup
B 15ϑR

16
(0)

d2
H
(v,w) ≤ c0

(ϑR)n−1

∫

∂BϑR(0)
d2

H
(v,w)d	. (3.21)

Conclusion. Then v(0) �= P0

Proof This is a special case of the key technical Lemma 4.11. The proof is
given in Sect. 5.5. ��
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By combining Lemma 3.20 with Lemma 3.21, we obtain the following

Proposition 3.22 If u = (uρ, uφ) : B1(0) → (H, dH) is a harmonic map,
then there exist no order 1 singular points of u.

Proof For x0 ∈ S(u), let uσi be a sequence of blow-up maps of u at x0
converging to a tangent map u∗. We want to show Ordu(x0) > 1. On the
contrary, assume Ordu(x0) = 1. As in the proof of Lemma 3.20, we assume
that u∗(x) = Ax1 (cf. (3.17). For sufficiently small σi > 0, assumption (i) of
Lemma 3.21 is satisfied with g replaced by gσi .

Next, since gσi converges to g0 in Ck (for any k = 1, 2, . . . ) as σi → 0,
there exists c0 > 0 (independent of σi for σi > 0 sufficiently small) such that
for any subharmonic function f : B1(0)→ R with respect to the metric gσi ,
we have

sup
B 15ϑR

16
(0)

f ≤ c0
(ϑR)n−1

∫

∂BϑR(0)
f d	.

Furthermore, by (3.5), there exists E0 > 0 such that

Euσi (ϑ) ≤ ϑn E0, ∀ϑ ∈ (0, 1
2
).

Choose D0 > 0 as in Lemma 3.21 depending on E0, A and c0 above. By
Lemma 3.20 there exists σi > 0 sufficiently small, a rotation R : Rn → R

n ,
a translation isometry T and a symmetric homogeneous degree 1 map l with
stretch A such that

sup
B 1
2
(0)

dH(T ◦ uσi ◦ R, l) < D0.

In other words, assumption (iii) of Lemma 3.21 is satisfied with v replaced
by T ◦ uσi ◦ R. Since T and R are isometries, assumption (ii) of Lemma 3.21
is satisfied with v replaced by T ◦ uσi ◦ R. Furthremore, since T ◦ uσi ◦ R
is a harmonic map, hence d2

H
(T ◦ uσi ◦ R, w) is a subharmonic function for

any harmonic map w. Thus, assumption (iv) of Lemma 3.21 is satisfied with
v = T ◦ uσi ◦ R. Lemma 3.21 implies that T ◦ uσi ◦ R(0) �= P0 which in turn
implies u(x0) �= P0, a contradiction. ��
Proof of Theorem (3.1). Combine Proposition 3.16 and Proposition 3.22. ��

4 Harmonic maps into T

In this section, we prove the Regularity Theorems 1.5 and 1.6 for harmonic
maps into the Weil–Petersson completion (T , dT ) of Teichmüller space T .
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Recall that T is a stratified space

T =
⋃

T ′ (4.1)

where T ′ is either the original Teichmüller space T or an open stratum of T
(cf. Sect. 2.3). For a map u : (�, g) → (T , dT ), we say x ∈ � is a regular
point if u maps a neighborhood of x into an open stratum T ′ of T . A point
x ∈ � is a singular point of u if it is not a regular point. We define the regular
set R(u) as the set of regular points and the singular set S(u) as a set of
singular points.

Analogously to the proof of the Regularity Theorem 3.1 for harmonic maps
into (H, dH), the strategy is to first show that the set of higher order points is
of Hausdorff codimension at least 2, then to study the order 1 points. However,
this is more involved for harmonic maps into (T , dT ). More precisely, because
of the more complicated structure of the stratification for T as compared to H,
we will use an induction based on the codimension of the boundary stratum.
Nonetheless, the main issue is the same for both T and H, namely, the non-
compactness and degenerating geometry near the boundary.

We will now give the outline of this section. According to Sect. 2.3, a
neighborhood of a point on an j-dimensional open stratum is asymptotically
the product of a smooth Kähler manifold of dimension j and a neighborhood

of P0 = (P0, . . . , P0) in the normal space H
k− j

. In Sect. 4.1, we define a local
representation u = (V, v) with respect to this asymptotic product structure;
more specifically, V maps into a smooth Kähler manifold of dimension j

(hence is referred to as the regular component map) and vmaps into (H
k− j
, dh)

(hence is referred to as the singular component map).Wewill prove that the set
of higher order points of u is of Hausdorff codimension at least 2 in Sect. 4.2.

The rest of Sect. 4 is devoted to studying the order 1 points of u. For
this, we will rely on the key technical Lemma (whose proof is deferred until

Sect. 5) which gives sufficient conditions for a map into (H
k− j
, dh) to not

hit the boundary point P0. This is the most challenging aspect of this paper
as it introduces techniques to address the non-compactness and degenerating
geometry of (T , dT ). The difference between this section and Sect. 3 (where
we prove the regularity theorem for harmonic maps into the model space)
is that the singular component map v is not a harmonic map. Again, this is
because the Weil–Petersson metric is not a product near the boundary. (Recall
that in the proof of Theorem 3.1, the key technical Lemma for the Model
Space is applied to a sequence of blow-up maps of a harmonic map into
(H, dH).) For this reason, we introduce in Sect. 4.3 the notion of a sequence

of approximately harmonic maps into (H
k− j
, dh) and prove that if vi is such a

sequence converging to a harmonic map v0 with Ordv0(0) = 1, then v0(0) �=
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P0. (This is the generalization of the result contained in Proposition 3.22 for
the case of a sequence of harmonic maps).

In Sect. 4.4, we begin the proof that the set of order 1 singular points of
u is of Hausdorff codimension at least 2 by setting up an induction on the
codimension of the stratum intersecting the image of u. Notice that if the
codimension is 0, then u maps into the interior of Teichmüller space. Hence u
is regular and there is nothing to prove. The method follows closely our paper
[11], where we developed a theory of harmonic maps u = (V, v) into spaces
with an asymptotic product structure with the map v not necessarily harmonic.
More specifically, in [11] we developed the tools such as monotonicity, order
function and tangent map for almost harmonic maps to study the singular
component map v. The purpose of Sect. 4.5 is to introduce the results from
[11] needed in this paper and sketch the main ideas of their proof adapted to
the case of maps to the Weil-Petesson completion of Teichmüller space. In
particular, we define the order of the singular component v. Analogously to
the case of a harmonic map, we first show that the set of higher order points of
v is of codimension at least 2 and then show that there are no singular points
of u that are also order 1 points of v. Finally, in Sect. 4.6, we finish the proof
of the Regularity Theorems 1.5 and 1.6 by completing the inductive step of
the argument.

4.1 A local represention for maps into T

For a map u : (�, g) → (T , dT ), recall that R(u) is the set of points in �
that possess a neighborhood mapping into a single stratum in T and S(u) is its
complement. We decompose the singular set S(u) as a disjoint union of sets

S(u) =
k⋃

j=0
Ŝ j (u) (4.2)

where

Ŝ j (u) = {x ∈ S(u) : #u(x) = j}, j = 0, . . . , k.

In other words, x ∈ Ŝ j (u) implies that u(x) is a point in a j-dimensional
stratum. If #u(x) = k, then u(x) ∈ T , and hence u(x) ∈ R(u). Thus,

Ŝk(u) = ∅. (4.3)
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For x� ∈ Ŝ j (u), consider the composition � ◦ u in Bσ�(x�) for a sufficiently
small σ� > 0 where

� : N ⊂ (T , dT )→ U × V ⊂ C
j ×H

k− j

is the coordinate chart defined in Sect. 2.2.

Definition 4.1 For x� ∈ Ŝ j (u), we will write the composition� ◦u in Bσ�(x�)
as

u = (V, v) : (Bσ�(x�), g)→ (U × V, dG) (4.4)

where dG is the distance function induced from the Weil–Petersson metric G
(cf. Definition 2.6) and refer to it as a local representation of u at x�.

Let H and h be as in Corollary 2.12. The regular component map of u is
the map

V : (Bσ�(x�), g)→ (C j , H) (4.5)

into the hermitian manifold (C j , H). The singular component of u is the map

v = (v1, . . . , vk− j ) : (Bσ�(x�), g)→ (H
k− j
, h). (4.6)

In particular, we observe that (since v can map into interior points of H
k− j

),
#u(x) ≥ j for all x ∈ Bσ�(x�). Therefore,

Ŝl(u) ∩ Bσ�(x�) = ∅, ∀l = 0, . . . , j − 1. (4.7)

Remark 4.2 Let u as in (4.1) be a harmonic map, x0 ∈ Bσ�(
x�
2 ), σ0 ∈ (0, σ�2 )

and φ ∈ C∞c (Bσ0(x0)). By considering a variation ut = (V + tη, v),
where V = (V 1, . . . , V j ) is as in (4.5) and η = (η1, . . . , η j ) with ηI =∑

K G I K (V, v)ϕ, a straightforward computation implies

−
∫

Bσ0 (x0)
gαβ
∂V I

∂xα
∂ϕ

∂xβ
dμ =

∫

Bσ0 (x0)
ϕ · f dμ

for a bounded function f . (For explicit details, see [11, Lemma 50].) Thus, by
elliptic regularity, V ∈ W 2,p(Bσ0(x0)) and V is (Hölder) continuous.

4.2 Higher order points of u

The purpose of this subsection is to show that the set of higher order points of
a harmonic map u : (�, g) → (T , dT ) is of Hausdorff codimension at least
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2. Let x� ∈ Ŝ j (u) and

u = (V, v) : (Bσ�(x�), g)→ (U × V, dG)

be a local representation (cf. Definition 4.1). For x0 ∈ Ŝ j (u)∩Bσ�(x�), identify
x0 = 0 via normal coordinates for the metric g and identify V (x0) = 0 via
normal coordinates for the metric H . We consider the family of blow-up maps
uσ of the harmonic map u described in Remark 3.8; in other words, uσ is
scaled with respect to the scaling factor

μ(σ) =
√

I u(σ )

σ n−1 . (4.8)

More precisely, we consider the maps

Vσ : (B1(0), gσ )→ (C j , Hμ(σ)) vσ : (B1(0), gσ )→ (H
k− j
, dh) (4.9)

and
uσ = (Vσ , vσ ) : (B1(0), gσ )→ (U × V, dGμ(σ)) (4.10)

where

Vσ (x) = μ−1(σ )V (σ x) and vσ (x) = μ−1(σ )v(σ x).

The metrics gσ and Hμ(σ) are defined in terms of the normal coordinates of g
on B1(0) and the coordinates V 1, . . . , V j on C j by

gσ kl(x) = gkl(σ x), and Hμ(σ) I J (y) = HI J (μ(σ)y).

The metric Gμ(σ) on the stratified space U × V is defined similarly by

Gμ(σ)kl(y, P) = Gkl(μ(σ)y, μ(σ )P)

in terms of the coordinates V 1, . . . , V j on C
j and the homogeneous coordi-

nates (ρ1,�1), . . . , (ρk− j ,�k− j ) on H
k− j

. In the above, the dilation map on

C
j is the standard multiplication map, whereas the dilation map on H

k− j
is

defined in (2.4). We denote by

H ⊕ hμ(σ) = Hμ(σ) ⊕ hμ(σ)

the product metric on the stratified space C j ×H
k− j

and let dH⊕hμ(σ) , dGμ(σ)
denote the corresponding distance functions.
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Lemma 4.3 Let u = (V, v), uσ = (Vσ , vσ ) be as above and dH⊕h, dG be the
distance functions on U ×V induced by the metric H ⊕ h and G respectively.

(i) There exists a constant C > 0 such that for P, Q ∈ U ×V at distance at
most λ from (0,P0),

(
1− Cλ2

) ≤ dH⊕h(P, Q)

dG(P, Q)
≤ (

1+ Cλ2
)
.

(ii) If h = (W, w) : B1(0)→ (U × V,G) is Lipschitz continuous in BR(0),
for some R ∈ (0, 1), then there exists C > 0 such that

∣∣|∇h|2(x)− (|∇W |2(x)+ |∇w|2(x))∣∣ ≤ Cd2
h (w(x), (0,P0))

for almost every x ∈ BR(0). Here, we view W andw as maps into (U, H)
and (V, dh) respectively.

(ii) Given R ∈ (0, 1), there exists C > 0 such that for almost every x ∈
BR(0), every x ∈ R(u) ∩ BR(0) and σ > 0 sufficiently small, the blow-
up map

uσ = (Vσ , vσ ) : (B1(0), gσ )→ (U × V, dGμ(σ))

of the harmonic map u with scaling factor (4.8) satisfies

(1+ Cσ 2)−1|∇uσ |2(x) ≤ |∇Vσ |2(x)+
k− j∑

i=1
|∇vi

σ |2(x) ≤ (1+ Cσ 2)|∇uσ |2(x).

Proof Part (i) follows from the C0-estimates of G contained in Theorem 2.7.
Indeed, for any vector γ ′ ∈ TP ′(C j ×Hk− j ) with P ′ ∈ Bλ(P0), we have

∣∣< γ ′, γ ′ >H⊕h − < γ ′, γ ′ >G
∣∣ ≤ Cλ2 < γ ′, γ ′ >H⊕h .

Let

γ : [0, dG(P, Q)] → C
j ×Hk− j
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be the arclength parameterized geodesic with respect to dG between P ∈
Bλ(P0) and Q ∈ Bλ(P0). Then

d2
H⊕h(P, Q) ≤

(∫ dG(P,Q)

0
< γ ′, γ ′ >

1
2
H⊕h dt

)2

≤ dG(P, Q)
∫ dG(P,Q)

0
< γ ′, γ ′ >H⊕h dt

≤ (1+ Cλ2)dG(P, Q)
∫ dG(P,Q)

0
< γ ′, γ ′ >G dt

≤ d2
G(P, Q)

(
1+ Cλ2

)
.

Next, let

γ : [0, d2
H⊕h(P, Q)] → C

j ×Hk− j

be the arclength parameterized geodesic with respect to dH⊕h between P and
Q. Thus

d2
G(P, Q) ≤

(∫ dH⊕h(P,Q)

0
< γ ′, γ ′ >

1
2
G dt

)2

≤ dH⊕h(P, Q)
∫ dH⊕h(P,Q)

0
< γ ′, γ ′ >G dt

≤ (1+ Cλ2)dH⊕h(P, Q)
∫ dH⊕h(P,Q)

0
< γ ′, γ ′ >H⊕h dt

≤ d2
H⊕h(P, Q)

(
1+ Cλ2

)
.

This completes the proof of (i). The inequalities of (ii) hold for almost every
x ∈ BR(0) by the definition of energy density (cf. [27]) and (i). Finally, since
uσ is uniformly Lipschitz continuous in BR(0) (cf. (3.6)), (iii) follows from
(ii). ��

Lemma 4.4 Let u = (V, v) a local representation at x� ∈ Ŝ j (u). For x0 ∈
Ŝ j (u) ∩ Bσ�(x�), there exists a sequence σi → 0 such that the blow-up maps
uσi = (Vσi , vσi ) of u at x0 converge locally uniformly in the pullback sense to
a nonconstant map

u∗ = (V∗, v∗) = (V∗, v1∗, . . . , vk− j∗ ) : B1(0)→ C
j × Y1∗ × · · · × Yk− j∗
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where (Y1∗, d1∗), . . . , (Yk− j∗, dk− j∗) are NPC spaces and the sequences Vσi ,

v1σi
, . . . , vk− j

σi converge locally uniformly in the pullback sense to homogeneous

degree α harmonic maps V∗, v1∗, . . . , v
k− j∗ respectively.

Proof For any r ∈ (0, 1), Lemma 4.3 and (3.6) imply that there exists C > 0
such that

|∇Vσ |2, |∇v1σ |2, . . . , |∇vk− j
σ |2 ≤ C in Br (0) (4.11)

for sufficiently small σ (with respect to the metric g(0) on the domain which is
uniformly equivalent to gσ for σ small). Let σi → 0 be such that uσi converges
to a tangent map u∗ locally uniformly in the pullback sense (cf. Remark 3.8).
Applying the Compactness Theorem 3.6 and a diagonalization argument, we
also have that there exist a subsequence of σi (which we call again σi for the
sake of simplicity), NPC spaces (Y1∗, d1∗), . . . , (Yk− j∗, dk− j∗) and maps V∗ :
Rn → (C j , H(0)), v1∗ : Rn → (Y1∗, d1∗), . . . , vk− j∗ : Rn → (Yk− j∗, dk− j∗)
such that Vσi , v

1
σi
, . . . , vk− j

σi converge locally uniformly in the pull-back sense

to V∗, v1∗, . . . , v
k− j∗ respectively. Furthermore, Lemma 4.3 implies that for

x ′, x ′′ ∈ B1(0),

d2
Gσi
(uσi (x

′), uσi (x
′′)) = d2

Hσi
(Vσi (x

′), Vσi (x
′′))

+
k− j∑

μ=1
d2

H(v
μ
σi
(x ′), vμσi

(x ′′))+ O(σ 2i ).

Thus, we conclude that uσi converges locally uniformly in the pullback sense
to

(V∗, v1∗, . . . , v
k− j∗ ) : B1(0)→ C

j × Y1∗ × · · · × Yk− j∗

and

d2∗(u∗(x ′), u∗(x ′′)) = |V∗(x ′)− V∗(x ′′)|2 +
k− j∑

m=1
d2

m∗(vm∗ (x ′), vm∗ (x ′′)).

In particular, we can now assume that u∗ is the map (V∗, v1∗, . . . , v
k− j∗ ). The

harmonicity of V∗, v1∗, . . . , v
k− j∗ is implied by the harmonicity of the tan-

gent map u∗. Furthermore, the homogeneity of tangent map u∗ implies the
homogeneity of V∗, v1∗, . . . , v

k− j∗ . ��
Lemma 4.5 Let u : (�, g) → (T , dT ) be a harmonic map. There exists
ε0 > 0 depending only on the dimension n of � such that for x0 ∈ Ŝ j (u) and
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a tangent map u∗ of u at x0, we have

Ordu(x0) = 1 or Ordu(x0) ≥ 1+ ε0 (4.12)

and
dimH(S>1(u∗)) ≤ n − 2. (4.13)

Proof For x0 ∈ R(u), statements (4.12) and (4.13) obviously hold (with ε0 =
1) since all the strata of T are smooth manifolds. Thus, now consider x0 ∈
Ŝ j (u). By Lemma 4.4, there exists a sequence of blow-up uσi = (Vσi , vσi ) at
x0 that converges locally uniformly in the pullback sense to a map

u∗ = (V∗, v1∗, . . . , vk− j∗ ) : B1(0)→ C
j × Y1∗ × · · · × Yk− j∗

with V∗, v1∗, . . . , v
k− j∗ homogeneous harmonic maps and Vσi , vσi =

(v1σi
, . . . , v

k− j
σi ) converging locally uniformly in the pullback sense to V∗,

v∗ = (v1∗, . . . , v
k− j∗ ) respectively. First, assume V∗ is non-constant. Then

Ordu∗(0) = OrdV∗(0), and since V∗ is a harmonic map into Euclidean space,
statements (4.12) and (4.13) obviously hold (again with ε0 = 1). Alternatively,
assume that V∗ is a constant map. In this case,

lim
σi→0

sup
∂Br (0)

dHμ(σi )
(Vσi (0), Vσi ) = 0, ∀r ∈ (0, 1). (4.14)

Define

ûσi : B 1
2
(0)→ (C j ×H

k− j
, dH⊕hμ(σi )

), ûσi = (Vσi (0), vσi )

and let

φσi : B 1
2
(0)→ (C j ×H

k− j
, dH⊕hμ(σi )

), φσi = (Wσi , wσi )

be the harmonic map with boundary values equal to ûσi . Since φσi and uσi

are harmonic maps, d2
H⊕hμ(σi )

(φσi , uσi , ) is a weakly subharmonic function by

[27] Lemma 2.4.2. Thus, there exists a constant c0 > 0 such that

d2
H⊕hμ(σi )

(φσi (x), uσi (x)) ≤ c0

∫

∂B 1
2
(0)

d2
H⊕hμ(σi )

(φσi , uσi )d	.
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By Lemma 4.3 and noting that φσi = ûσi on B 1
2
(0), we have

lim
σi→0

sup
B 1
4
(0)

d2
h (wσi (x), vσi (x)) ≤ C lim

σi→0
sup

B 1
4
(0)

d2
H⊕hμ(σi )

(φσi (x), uσi (x))

≤ Cc0 lim
σi→0

∫

∂B 1
2
(0)

d2
H⊕hμ(σi )

(φσi , uσi )d	

= Cc0 lim
σi→0

∫

∂B 1
2
(0)

d2
H⊕hμ(σi )

(ûσi , uσi )d	

≤ C lim
σi→0

∫

∂B 1
2
(0)

d2
Hμ(σi )

(Vσi (0), Vσi )d	

= 0 (by (4.14)).

Thus, the sequence wσi of harmonic maps into H
k− j

converges locally uni-
formly in the pullback sense to v∗ and wσi (0)→ P0. Applying Lemma 3.13
withwi = wσi and v0 = v∗, we conclude that there exists ε0 ∈ (0, 1] satisfying
(4.12) and also that (4.13) is valid. ��

The following is the main result of this subsection.

Proposition 4.6 If u : (�, g) → (T , dT ) is a harmonic map from an n-
Riemannian domain, then the setS>1(u) of higher order points is of Hausdorff
co-dimension 2; i.e.

dimH(S>1(u)) ≤ n − 2.

Proof Given x0 ∈ �, let uσi be a sequence of blow-up maps that converges
locally uniformly in the pullback sense to a tangent map u∗. It suffices to
check assumptions (i) and (ii) of Lemma 3.12. To check (i), assume xi ∈
S>1(uσi ) with xi → x∗. By the order gap property of Lemma 4.5, we have
Orduσi (xi ) ≥ 1 + ε0. The upper semicontinuity of order (cf. Lemma 3.10)
implies Ordu∗(x∗) ≥ 1+ε0 which in turn implies x∗ ∈ S>1(u∗). This verifies
(i). By Corollary 3.15, we have dimH(S>1(u∗)) ≤ n − 2. This verifies (ii). ��

In view of Proposition 4.6, it makes sense to disregard the higher order
points of the singular set of u. Thus, with the notation as in Sect. 4.1, we set

S j (u) = Ŝ j (u)\S>1(u). (4.15)

In other words, S j (u) is the set singular points of Ŝ j (u) of order 1.
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4.3 A sequence of asymptotically harmonic maps

Let u : (�, g)→ (T , dT ) be a harmonic map, x� ∈ S j (u) and u = (V, v) be
a local representation at x�. Since the Weil–Petersson metric is not a product
near the boundary of T , neither the regular component map V nor the singular
component map v is a harmonic map. We will see later (cf. Lemma 4.19 and
Lemma 4.32) that the singular component v is asymptotically harmonic in the
sense that a sequence of blow-up maps of v at x0 ∈ S j (u) ∩ B σ�

2
(x�) is a

sequence of asymptotically harmonic maps. We now define this notion.

Definition 4.7 We say that a sequence ofmaps vi : (B1(0), gi )→ (H
k− j
, dh)

with vi (0) = P0 is a sequence of asymptotically harmonic maps if the follow-
ing conditions are satisfied:

(i) The sequence of metrics gi on B1(0) ⊂ Rn converges in C∞ to the
Euclidean metric g0 on B1(0) ⊂ Rn .

(ii) There exists a constant E0 > 0 such that Evi (ϑ) ≤ ϑn E0 for ϑ ∈ (0, 34 ]
where n is the dimension of the domain B1(0).

(iii) The sequence vi
∣∣

B 1
2
(0) converges locally uniformly in the pullback sense

to a homogeneous harmonic map v0 : (B 1
2
(0), g0) → (Y0, d0) into an

NPC space. (Note that we also allow v0 to be the constant map for
technical purposes.)

(iv) For any fixed R ∈ (0, 1), r ∈ (0, 1) and c > 0, there exist c0 > 0 and
a sequence ci → 0 such that for any harmonic map w : (BR(0), gi )→
H

k− j
with

sup
BR(0)

dh(w,P0) ≤ c,

we have

sup
Brϑ (0)

d2
h (vi , w) ≤ c0

ϑn−1

∫

∂Bϑ (0)
d2

h (vi , w)d	gi + ciϑ
3, ∀ϑ ∈ (0, R]

(4.16)
where 	gi is the volume form on ∂Bϑ(0) with respect to the metric gi .

Remark 4.8 The sequence of blow-up maps of a harmonic map u :
(B1(0), g) → (H

k− j
, dh) with u(0) = P0 as in Remark 3.8 is a sequence

of asymptotically harmonic maps. In particular, since uσi is harmonic for each
i , inequality (4.16) is satisfied with vi = uσi and ci = 0 (cf. [27] Lemma
2.4.2; replace η by tη and take the limit t → 0).

Remark 4.9 The theory we developed for a sequence of asymptotically har-
monic maps in [11] only requires that inequality (4.16) holds for the following
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two types of harmonic maps: (i) the Dirichlet solution with w
∣∣
∂B 3

4
(0) =

vi
∣∣
∂B 3

4
(0) when vi is uniformly Lipschitz continuous in B 3

4
(0) and (ii) w is

identically equal to P0.

The importance of a sequence of asymptotic harmonic map is that the limit
map v0 satisfies the following property. This should be compared to the result
about the limit of harmonic maps in Lemma 3.13.

Lemma 4.10 Let vi : (B1(0), gi )→ (H
k− j
, dh) be a sequence of asymptotic

harmonic maps with vi (0) = P0. Then v0 (cf. Definition 4.7 (iii)) maps into a
product of NPC spaces; i.e.

v0 = (v10, . . . , vk− j
0 ) : B 1

2
(0)→ Y0 = Y 1

0 × · · · × Y k− j
0

where vμ0 : B 1
2
(0) → (Yμ0 , d

μ
0 ) (for μ = 1, . . . , k − j ) is a homogeneous

harmonic map into an NPC space. If v0 is non-constant, then there exists
ε0 > 0 such that

Ordv0(0) = 1 or Ordv0(0) ≥ 1+ ε0. (4.17)

If Ordv0(0) = 1, then either vμ0 maps into a geodesic or vμ0 (x) = P0 for all
x ∈ B 1

2
(0). Furthermore, set of higher order points of v0 has codimension at

least 2; i.e.
dimH(S>1(v0)) ≤ n − 2. (4.18)

Proof Let wi : B 3
4
(0) → (Hk− j , dh) be the harmonic map whose boundary

values agree with that of vi
∣∣

B 3
4
(0). Let

R = ϑ = 3

4
, r = 2

3
. (4.19)

By Definition 4.7 (ii)

Ewi (
3

4
) ≤ Evi (

3

4
) ≤ (3

4
)n E0, (4.20)

hence Theorem 3.2 implies that for a fixed z0 ∈ ∂B 3
4
(0) and any x ∈ B 3

4
(0),

d(wi (x), wi (z0))
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is uniformly bounded. This, combined with Definition 4.7 (iii), implies for any
x ∈ B 3

4
(0),

d(wi (x),P0) ≤ d(wi (x), wi (z0))+ d(wi (z0),P0)

= d(wi (x), wi (z0))+ d(vi (z0), vi (0))

≤ c,

hence by (iv) of Definition 4.7 we obtain

lim
i→∞ sup

B 1
2
(0)

d2
h (vi , wi ) = 0. (4.21)

Again by (4.20), Theorem 3.2 implies that {wi } has uniform local Lipschitz
estimateswhich in turn implies that {wμi } has uniform local Lipschitz estimates
for each μ = 1, . . . , k − j . Thus, by Compactness Theorem 3.6, there exists
a subsequence of wμi

∣∣
B 1
2
(0) (which we shall still denote again by the same

notation for simplicty) that converges locally uniformly in the pullback sense
to a limit map vμ0 : B 1

2
(0) → (Yμ0 , d

μ
0 ) into an NPC space. By (4.21), the

sequencevμi also converges locally uniformly in the pullback sense tovμ0 . Thus,

combining this with Definition 4.7 (iii), we can write v0 = (v10, . . . , vk− j
0 ).

Furthermore, (4.21) also implies that limi→∞(wμi (0), P0) = 0. Thus, the
assertions (4.17) and (4.18) follow from Lemma 3.13. ��

Lemma 4.10 leaves the possibility that Ordv0(0) = 1. We will next elimi-
nate this case inProposition4.12below.For this purpose,weneed the following
key technical Lemma4.11 (that generalizesLemma3.21)which is the lynchpin
to the regularity theorem. We reiterate that this lemma handles the difficulties
stemming from the non-compactness and the degenerating geometry of the
target space T (like Lemma 3.21) with the additional complication that v is
not necessarily harmonic but only approximately harmonic in a certain sense
(unlike Lemma 3.21). The proof is deferred until Sect. 5 because of its highly
technical nature.

Lemma 4.11 (Key Technical Lemma). Given c0 ≥ 1, E0, A1, . . . , Am > 0,
there exist D0 ∈ (0, 1√

8
) and c > 0 that give the following implication.

Assumptions. The metric metric g on B1(0) and the map v =
(v1, . . . , vk− j ) : (B1(0), g)→ (H

k− j
, dh) satisfy:

(i) (almost Euclidean domain metric) The metric g is C∞-close to the
Euclidean metric.
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(ii) (energy decay) The energy of the map v satisfies

Ev(ϑ) ≤ ϑn E0, ∀ϑ ∈ (0, 1
2
).

(iii) (close to a symmetric homogeneous degree 1 map) There exists a map

l = (T 1 ◦ l1 ◦ R1, . . . , T m ◦ lm ◦ Rm , lm+1, . . . , lk− j ) : Bθ i (0)→ (Hk− j , h)

where for μ = 1, . . . ,m,

Rμ : Bθ i (0)→ Bθ i (0) is a rotation,
Tμ : H→ H is a translation isometry,

lμ : B1(0)→ H is a symmetric homogeneous degree 1 map

with stretch Aμ such that

sup
B 1
2
(0)

dh(v, l) < D0,

dH(P0, l
μ(0)) <

1√
8
, ∀μ ∈ {1, . . . ,m}

and

lμ is identically equal to P0

for μ = m + 1, . . . , k − j .
(iv) (almost subharmonicity of the distance) There exists c0 ≥ 1 such that

for ϑ ∈ (0, 1
24), R ∈ [58 , 78 ] and a harmonic map w : (BϑR(0), g) →

(H
k− j
, dh),

sup
B 15ϑR

16
(0)

d2
h (v,w) ≤

c0
(ϑR)n−1

∫

∂BϑR(0)
d2

h (v,w)d	 + cϑ3. (4.22)

Conclusion. Then v(0) �= P0.

Proof See Subection 5.5. ��

Proposition 4.12 Let vi : (B1(0), gi )→ (H
k− j
, dh) be a sequence of asymp-

totic harmonic maps. If v0 (defined in Definition 4.7 (iii)) is non-constant, then
Ordv0(0) �= 1.
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Proof On the contrary, assume Ordv0(0) = 1.ByLemma4.10,we can assume
that v0 maps into a product of NPC spaces; i.e.

v0 = (v10, . . . , vk− j
0 ) : B 1

2
(0)→ Y0 = Y 1

0 × · · · × Y k− j
0

where (Yμ0 , d
μ
0 ) is an NPC space for μ = 1, . . . , k − j . Since v0 is a homo-

geneous harmonic map, each component map vμ0 : B 1
2
(0) → (Yμ0 , d

μ
0 ) is

a homogeneous harmonic map. By reordering if necessary, we can assume
v10, . . . , v

m
0 are non-constant maps and vm+1

0 (x) = P0, . . . , v
k− j
0 (x) = P0 for

all x ∈ B 1
2
(0).

Let wi = (w1
i , . . . , w

μ) : B 3
4
(0) → (Hk− j , dh) be the harmonic map

whose boundary values agrees with that of vi
∣∣

B 3
4
(0) as in the proof of

Lemma 4.10. Then wi
∣∣

B 1
2
(0) converges locally uniformly in the pullback

sense to v0 by Definition 4.7 (iv) which in turn implies that wμi
∣∣

B 1
2
(0) con-

verges locally uniformly in the pullback sense to vμ0 for each μ = 1, . . . ,m.
Therefore, by Lemma 3.13, vμ0 maps into a geodesic since we are assum-
ing Ordv0(0) = 1. Therefore, we can apply the same argument as the
proof of Lemma 3.20 with wi replacing uσi and v0 replacing u∗ to con-
clude that there exists a sequence of translation isometries Tμi , a rotation
Rμ : Bθ i (0)→ Bθ i (0) and a sequence of symmetric homogeneous degree 1
maps lμi with

dH(P0, l
μ
i (0))→ 0 (4.23)

and stretch Aμ such that

lim
i→∞ sup

B 1
2
(0)

d(wμi , Tμi ◦ lμi ◦ Rμ) = 0.

This defines the constant Aμ. Combined with (4.21), we see that

lim
i→∞ sup

B 1
2
(0)

d(vμi , Tμi ◦ lμi ◦ Rμ) = 0. (4.24)

Let E0 and c0 be the constants in Definition 4.7 (ii) and (iv) respectively. Let
D0 ∈ (0, 1√

8
) and c be constants in Lemma 4.11 corresponding to c0, E0,

A1, . . . , Am . By Definition 4.7 (iv), (4.23) and (4.24), we can fix i sufficiently
large such that ci ≤ c, and

d(P0, l
μ
i (0)) <

1√
8
, ∀μ ∈ {1, . . . ,m}
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and

sup
B 1
2
(0)

d(vμi , Tμi ◦ lμi ◦ Rμ) <
D0

m
, ∀μ ∈ {1, . . . ,m}.

Define l = (l1, . . . , lk− j ) : B1(0)→ H
k− j

by setting

lμ = Tμi ◦ lμi ◦ Rμ, ∀μ = 1, . . . ,m and lμ ≡ P0, ∀μ = m + 1, . . . , k − j

which gives us

sup
B 1
2
(0)

d(vi , l) < D0.

Applying Lemma 4.11, we obtain vi (0) �= P0. This contradiction proves
Ordv0(0) �= 1. ��

4.4 The inductive hypothesis

In this subsection, we begin the proof of Theorems 1.5 and 1.6 by starting
a backwards induction on j . We need the following two statements for a
harmonic map u : (�, g)→ (T , dT ):

Statement 1[ j]: For any x� ∈ S j (u) and a local representation u =
(V, v) : (Bσ�(x�), g)→ (U × V, dG) at x� (cf. Definition 4.1), we have

dimH
(
S(u) ∩ B σ�

2
(x�)

)
≤ n − 2.

Statement 2[ j]: For x� ∈ S j (u), a local representation u = (V, v) :
(Bσ�(x�), g)→ (U × V, dG) at x�, q ∈ [1, 2) sufficiently close to 2 and any
subdomain � compactly contained in

B σ�
2
(x�)\

(
S(u) ∩ v−1(P0)

)
,

there exists a sequence of smooth functions ψi and a neighborhood of Ni
contained in an εi -neighborhood of S(u) with ψi ≡ 0 in a neighborhood of
S(u) ∩ �, ψi ≡ 1 outside of Ni , εi → 0, 0 ≤ ψi ≤ 1, ψi → 1 for all
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x ∈ �\S(u)

lim
i→∞

∫

B σ�
2
(x�)
|∇u||∇ψi | dμ = 0,

lim
i→∞

∫

B σ�
2
(x�)
|∇u||∇ψi |q dμ = 0

and

lim
i→∞

∫

B σ�
2
(x�)
|∇∇u||∇ψi | dμ = 0.

Wewill proveStatement 1[ j] andStatement 2[ j] for all j ∈ {0, . . . , k}
by a backwards induction on j as follows:

Initial Step. Statement 1[k] and Statement 2[k] hold since Ŝk(u) =
∅ (cf. (4.3)).

Inductive Hypothesis [j+1]: Statement 1[m] and Statement 2[m]
hold for m = j + 1, j + 2, . . . , k.

Inductive Step. The Inductive Hypothesis [j+1] implies that Statement
1[ j] and Statement 2[ j] hold.

Before we prove the Inductive Step in Sect. 4.6, we will need to further
analyze the singular component v of the harmonic map u in the next section.

4.5 Order of the singular component map

In this section, we prove existence of the order function for the singular com-
ponent v of a harmonic map into T . The difference with Gromov–Schoen is
that v is not necessarily energy minimizing, but only almost energy minimiz-
ing. However, the basic steps are the same as in Gromov–Schoen with the
additional complication of keeping track of the error terms coming from the
almost harmonic map v. As in [21], before proving that the order function
exists we have to show a target variation formula and a domain variation for-
mula. These theorems have been proved for approximate harmonic maps to a
wide range of spaces in [11].

For the sake of completeness we state these theorems and sketch their proof
in Proposition 4.16 andCorollary 4.17 for the target variation, Proposition 4.22
and Corollary 4.23 for the domain variation and Proposition 4.24 for the exis-
tence of the order function. These theorems parallel [21, Proposition 2.2] for
the target variation, [21, Formula (2.3)] for the domain variation and [21, For-
mula (2.5)] for the monotonicity and thus the existence of the order function.
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Throughout this subsection, we assume that the Inductive Hypothesis [j+1]
holds for a harmonic map u : (�, g)→ (T , dT ), and let

u = (V, v) : (Bσ�(x�), g)→ (U × V, dG)

be a local representation of u at x� ∈ S j (u). We start with the following
proposition which is a restatement of our inductive hypothesis.

Proposition 4.13 For any q ∈ [1, 2) sufficiently close to 2 and any subdomain
�1 compactly contained in

B x�
2
(x�)\(S(u) ∩ v−1(P0)),

there exists a sequence of smooth functions ψi and a neighborhood of Ni
contained in an εi -neighborhood of S(u) with 0 ≤ ψi ≤ 1, ψi ≡ 0 in a
neighborhood of S(u) ∩ �1, ψi ≡ 1 outside of Ni , εi → 0, ψi → 1 for all
x ∈ �1\S(u) such that

lim
i→∞

∫

�1

|∇u||∇ψi | dμ = 0.

lim
i→∞

∫

�1

|∇u||∇ψi |q dμ = 0.

lim
i→∞

∫

�1

|∇∇u||∇ψi | dμ = 0.

Proof Since v(�1) does not contain (the most singular point) P0, this follows
from the inductive hypothesis Statement 2[ j + 1], …, Statement 2[k]
and a partition of unity argument. ��

Beforewe discuss the target variationwe need two preliminary propositions.
In the language of [11] these correspond to Assumptions 3 and 4.

Proposition 4.14 The set S j (u) satisfies the following:

(i) v(x) = P0 for x ∈ S j (u) ∩ Bσ�(x�)
(ii) dimH((S(u)\S j (u)) ∩ B σ�

2
(x�)) ≤ n − 2.

Proof Assertion (i) follows immediately from the definition of S j (u). The
inductive assumption along with Proposition 4.6 implies the assertion (ii). ��
Proposition 4.15 For BR(x0) ⊂ B σ�

2
(x�) and any harmonic map w :

(BR(x0), g)→ (H
k− j
, dh), the setR(u, w) = R(u)∩R(w) is of full measure

in R(u) ∩ BR(x0).
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Proof By Theorem 3.1, we have dimH(S(w)) ≤ n− 2. Thus,R(w) is of full
measure in Bσ (x0) which immediately implies R(u, w) is of full measure in
R(u) ∩ Bσ (x0). ��

By target variation, we mean the one-parameter family of maps

vtη : Bϑ(x0)→ H
k− j
, vtη(x) = (1− tη(x))v(x)+ tη(x)w(x)

where η ∈ C∞c (Bϑ(x0)) and w : Bϑ(x0)→ H
k− j

is a Lipschitz map. Here,
the sum indicates geodesic interpolation; in other words, given two points

P, Q ∈ H
k− j

, τ �→ (1 − τ)P + τQ for τ ∈ [0, 1] denotes a constant speed
parameterization of the unique geodesic from P to Q.

We start by observing that if v was energy minimizing, we would have

Evx0(ϑ)− E
vtη
x0 (ϑ) ≤ 0. (4.25)

However, since the singular component map v is not necessarily energy min-
imizing, we don’t expect (4.25) to hold. On the other hand, the full map
u = (V, v) is energy minimizing and hence for utη = (V, vtη)

Eu
x0(ϑ)− E

utη
x0 (ϑ) ≤ 0.

Furthermore, since by Proposition 2.12, the Weil–Petersson metric is asymp-
totically a product, we have

Eu
x0(ϑ) ≈ E V

x0(ϑ)+ Evx0(ϑ)

Eu
x0(ϑ) ≈ E V

x0(ϑ)+ E
vtη
x0 (ϑ).

These approximations mean that the equalities are correct up to a small error.
By precisely accounting for these errors, we obtain the following theorem and
its corollary which is the target variation formula.

Proposition 4.16 There exists R > 0 and C > 0 such that

lim sup
t→0+

Evx0(ϑ)− E
vtη
x0 (ϑ)

t
≤ C

∫

Bϑ (x0)
ηdh(v,P0)dh(v,w)dμ (4.26)

for any x0 ∈ S j (u) ∩ B σ�
2
(x�), ϑ ∈ (0, R], η ∈ C∞0 (Bϑ(x0)) and harmonic

map

w : (BR(x0), g)→ (H
k− j
, dh)
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where

vtη(x) := (1− tη(x))v(x)+ tη(x)w(x).

Proof This is proved in [11, Proposition 37] by a straightforward computation
by using the precise asymptotic estimates of the Weil–Petersson metric given
in Proposition 2.12 and Propositions 4.14 and 4.15. We omit the details here.

��
If v is harmonic, then the target variation formula (cf. [21, (2.2)]) is

�d2
h (v, Q) ≥ 0, (4.27)

where Q is any point on the target space. However, since v is only approxi-
mately harmonic, we have to modify (4.27) by adding an error term to obtain
equation (4.29). The precise estimate is

Corollary 4.17 There exists R > 0 and C > 0 such that

− C
∫

Bϑ (x0)
ηd2

h (v, P0)dμ+ 2
∫

Bϑ (x0)
η|∇v|2dμ ≤ −

∫

Bϑ (x0)
∇η · ∇d2

h (v, P0) dμ (4.28)

and

0 ≤ −
∫

Bϑ (x0)
∇η · ∇d2

h (v,w)dμ+C
∫

Bϑ (x0)
ηdh(v,P0)dh(v,w)dμ (4.29)

for any x0 ∈ S j (u) ∩ B σ�
2
(x�), ϑ ∈ (0, R], η ∈ C∞0 (Bϑ(x0)) and harmonic

map

w : (BR(x0), g)→ H
k− j
.

Proof For inequality (4.28), we combine the computation of the target varia-
tion formula in [21, Section 2] with Proposition 4.16. See also [11, Corollary
39]. We now prove (4.29). Let R > 0 and C > 0 be as in Proposition 4.16.
By [27, Lemma 2.4.2] (with u0 = v, u1 = w, replacing η by tη, integrating
over Bϑ(x0) and noting that w is an energy minimizing map)

t
∫

Bϑ (x0)
∇η · ∇d2

h (v,w)dμ− O(t2) ≤ Evx0(ϑ)− E
vtη
x0 (ϑ) (4.30)

which combined with Proposition 4.16 implies the result. ��
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Lemma 4.18 For x0 ∈ S j (u) ∩ B σ�
2
(x�), let vσ be the singular component of

the blow-up map uσ = (Vσ , vσ ) of u at x0 (cf. (4.9)). For a fixed R ∈ (0, 1)
and r ∈ (0, 1), there exists a constant C > 0 that can be chosen independently
of σ such that for any harmonic map

w : (BR(0), gσ )→ H
k− j

with sup
BR(0)

dh(w,P0) ≤ c,

we have

sup
Brϑ (0)

d2
h (vσ , w) ≤

C

ϑn−1

∫

∂Bϑ (0)
d2

h (vσ , w)d	σ + Cσ 2ϑ3, ∀ϑ ∈ (0, R]
(4.31)

where d	σ is the volume form with respect to the metric gσ .

Proof Throughout this proof, we use c to denote an arbitrary constant that
is independent of σ that may change from line to line. In the estimate of
Corollary 4.17, identify x0 = 0 and replace ϑ by σϑ . Multiply the resulting
inequality by μ−1σ and apply change of variables to obtain

0 ≤ −
∫

Bϑ (0)
∇η · ∇d2

h (vσ , w)dμσ + cσ 2
∫

Bϑ (0)
ηdh(vσ ,P0)dh(vσ , w)dμσ

where dμσ is the volume formwith respect to the metric gσ (cf. (3.3)). Fix r ∈
(0, 1). Let x ∈ Brϑ(0), s ∈ (0, ϑ(1− r)) and η approximate the characteristic
function of Bs(x) ⊂ Bϑ(0). We then obtain

0 ≤
∫

Bs(x)

∂

∂s
d2

h (vσ , w)d	σ + cσ 2
∫

Bs(x)
dh(vσ ,P0)dh(vσ , w)dμσ

≤ sn−1 d

ds

(
ecs

sn−1

∫

∂Bs(x)
d2

h (vσ , w)d	σ

)

+cσ 2
∫

Bs(x)
dh(vσ ,P0)(dh(vσ ,P0)+ dh(w,P0))dμσ .

Multiply this by s1−n and apply Holder inequality to obtain

0 ≤ d

ds

(
ecs

sn−1

∫

∂Bs(x)
d2

h (vσ , w)d	σ

)

+ cs1−nσ 2
∫

Bs(x)
d2

h (vσ ,P0)dμσ

+ cs1−nσ 2
(∫

Bs(x)
d2

h (vσ ,P0)dμσ

) 1
2
(∫

Bs(x)
d2

h (w,P0)dμσ

) 1
2

. (4.32)
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Since the blow up map uσ has Lipschitz bound that can be chosen indepen-
dently of σ in BR(0) (cf. (3.6)), so does the singular component map vσ by
Lemma 4.3. Indeed, there exists a constant c > 0 that can be chosen indepen-
dently of σ such that

sup
Bs(0)

dh(vσ ,P0) ≤ cs.

Additionally,

Volgσ (Bs(x0)) ≤ csn.

Combining the above two inequalitieswith the assumption supBs(0) dh(w,P0) ≤
c, we conclude that the last two terms of the right hand side of (4.32) can be
replaced by cσ 2s2; i.e.

0 ≤ d

ds

(
ecs

sn−1

∫

∂Bs(x)
d2

h (vσ , w)d	σ

)
+ cσ 2s2. (4.33)

Integrating this over s ∈ (0, t) for t ≤ ϑ(1− r) yields

d2
h (vσ (x), w(x)) ≤

c

tn−1

∫

∂Bt (x)
d2

h (vσ , w)d	σ + cσ 2t3.

Multiplying the above by tn−1, integrating over t ∈ (0, ϑ(1− r)) and noting
that Bt (x) ⊂ Bϑ(x0),

sup
Brϑ (x0)

d2
h (vσ , w) ≤

c

ϑn

∫

Bϑ (x0)
d2

h (vσ , w)dμσ + cσ 2ϑn+3. (4.34)

Now we consider (4.33) with x = x0 and integrate this over s ∈ (t, ϑ). We
obtain

1

tn−1

∫

∂Bt (x0)
d2

h (vσ , w)d	σ ≤
c

ϑn−1

∫

∂Bϑ (x0)
d2

h (vσ , w)d	σ + cσ 2ϑ3.

Multiplying by tn−1 and integrating this over t ∈ (0, ϑ),
1

ϑn

∫

Bϑ (x0)
d2

h (vσ , w)d	σ ≤
c

ϑn−1

∫

∂Bϑ (x0)
d2

h (vσ , w)d	σ+cσ 2ϑ3. (4.35)

Combine (4.34) and (4.35) yields the desired inequality. ��
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Lemma 4.19 If x0 ∈ S j (u) ∩ B σ�
2
(x�) and uσi = (Vσi , vσi ) is a sequence of

blow-up maps of u at x0 as in Lemma 4.4, then vσi is a sequence of asymptot-
ically harmonic maps.

Proof By Lemma 4.4, there exists a sequence of blow-up maps uσi =
(Vσi , vσi ) that converges locally uniformly in the pullback sense to a map
u∗ = (V∗, v∗) where V∗, v∗ are homogeneous degree α harmonic maps and
the sequences Vσi , vσi converge to V∗, v∗ respectively. We check properties
(i)-(iv) of Definition 4.7 for vi = vσi and gi = gσi . Property (i) regarding the
metric gi follows immediately from the definition of gσi . Property (ii) follows
from the fact that uσi and hence vσi is uniformly locally Lipschitz continuous
by (3.6) and Lemma 4.3. Since vσi converges to v∗, we have Property (iii).
Finally, Property (iv) follows from Lemma 4.18 with c0 = C and ci = Cσ 2i .��
Lemma 4.20 If x0 ∈ S j (u)∩B σ�

2
(x�)and u∗ = (V∗, v∗) = (V∗, v1∗, . . . , vk− j∗ )

is a tangent map of u at x0 as in Lemma 4.4, then v∗ is a constant map.

Proof Let uσi = (Vσi , vσi ) be the sequence of blow-up maps converging
locally uniformly in the pullback sense to u∗ = (V∗, v∗) as in Lemma 4.4.
By Lemma 4.19, vσi is a sequence of asymptoticly harmonic maps converg-
ing to v∗. Since x0 ∈ S j (u), we have by definition that vσi (0) = P0 and
Ordu∗(0) = 1 (cf. (4.15)). By Proposition 4.12, v∗ is identically constant. ��
Proposition 4.21 For a.e. x ∈ S j (u) ∩ B σ�

2
(x�), we have

|∇v|2(x) = 0 and |∇V |2(x) = |∇u|2(x).
Proof Let x0 ∈ S j (u) ∩ Bσ�(x�) and identify x0 = 0 via normal coordinates.
By Lemma 4.20, we can fix a sequence uσi = (Vσi , vσi ) of blow-up maps of u
such that uσi and Vσi converge to a tangent map u∗ = V∗ : B1(0)→ C

j and
vσi converges to a constant map. Lemma 4.3 implies

Euσi (r) =
(

E Vσi (r)+ Evσi (r)
)
+ O(σ 2i ). (4.36)

Therefore,

lim sup
σi→0

E Vσi (r) ≤ lim sup
σi→0

(E Vσi (r)+ Evσi (r))

= lim
σi→0

Euσi (r) (by (4.36))

= Eu∗(r) (by Theorem 3.6)

= E V∗(r) (since u∗ = V∗)
≤ lim inf

σi→0
E Vσi (r) (by the lower semicontinuity of energy).
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This immediately implies

lim
σi→0

E Vσi (r) = lim
σi→0

Euσi (r) and lim
σi→0

Evσi (r) = 0. (4.37)

Since |∇v|2 is an integrable function, almost every point of Bσ�(x�) is a
Lebesgue point. In particular, at almost every x ∈ S j (u) ∩ Bσ�(x�),

|∇v|2(x) = lim
σi→0

1

V ol(Bσi r (x))

∫

Bσi r (0)
|∇v|2dμ

= lim
σi→0

μ2
σi

V ol(Br (0))

∫

Br (0)
|∇vσi |2dμσi

≤ lim
σi→0

C2

V ol(Br (0))

∫

Br (0)
|∇vσi |2dμσi

= 0 (by (4.37)).

This implies the first assertion. The second follows immediately from the first.
��

Next, we discuss the variation of the domain which gives an estimate on
how far v is from being an energy minimizing map with respect to domain
variations. By a domain variation, we mean the one-parameter family of maps

vt : Bσ (x0)→ (H
k− j
, d), vt (x) = v ◦ Ft (x)

where Ft is a diffeomorphism given by

Ft (x) = (1+ tξ(x))x, ξ ∈ C∞c (Bσ (x0)), 0 ≤ ξ ≤ 1.

In the next Proposition, if v was a minimizer as in [21], then the right hand
side would be 0. The error terms come because v is almost energy minimizing
with respect to the asymptotic product structure of the Weil–Petersson metric.

Proposition 4.22 There exists C > 0 such that for x0 ∈ S j (u)∩ B σ�
2
(x�) and

σ ∈ (0, r0), we have

lim
t→0

Evx0(σ )− Evt
x0(σ )

t
≤ C

∫

Bσ (x0)
ξd2(v, P0)dμ+ Cσ

∫

Bσ (x0)
ξ |∇v|2dμ

Furthermore, C depends only on the constant in the estimates for the target
metric G, the domain metric g and the Lipschitz constant of u.
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Proof Follows from Proposition 4.16 and the computation of [11, Chapter 7
and Chapter 8] (cf. [11, Lemma 52]). ��

An important consequence of Proposition 4.22 is the domain variation for-
mula.

Corollary 4.23 There exist R0 > 0 and C > 0 such that for x0 ∈ S j (u) ∩
B σ�

2
(x�) and σ ∈ (0, R0), we have

σ
d

dσ
Evx0(σ )+ (2− n + Cσ)Evx0(σ )− 2σ

∫

∂Bσ (x0)

∣∣∣∣
∂v

∂r

∣∣∣∣
2

d	 ≥ 0. (4.38)

Furthermore, C depends only on the constant in the estimates for the Weil–
Petersson metric GW P, the domain metric g and the Lipschitz constant of
u.

Proof Combine the usual computation for harmonic maps (cf. [47, Chapter
2.4] or [21, p. 192-193])with the domain variation formula of Proposition 4.22.
The details are given in [11, Proposition 53] ��

Finally, we discuss the existence of the order of the singular component
map v. If v is harmonic, then we have the monotonicity formula [21, (2.5)]

d

dσ

(
ecσ 2 σ Ev(σ )

I v(σ )

)
≥ 0

which immediately implies that the order exists. Furthermore, by [21, proof
of Theorem 2.3], we also obtain

d

dσ

(
ecσ 2 Ev(σ )

σ n−2+2α

)
≥ 0 and

d

dσ

(
ecσ 2 I v(σ )

σ n−1+2α

)
≥ 0.

Since v is not necessarily harmonic, by applying the target variation formula
(cf. Corollary 4.17with η approximating the characteristic function of Bσ (x0))
and the domain variation formula (cf. Proposition 4.22), we obtain

Proposition 4.24 The singular component map v has a well-defined order at
any point of S j (u) ∩ B σ�

2
(x�). In other words,

Ordv(x0) := lim
σ→0

σ Ev(σ )

I v(σ )
exists for any x0 ∈ S j (u) ∩ B σ�

2
(x�). (4.39)

Furthermore, there exist constants c > 0, C1 > 0 and R0 > 0 depending
continuously on the point x0 such that

Ordv(x0) ≤ ecσ σ Ev(σ )

I v(σ )
, ∀σ ∈ (0, R0) (4.40)
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and

e−C1σ
σ Evx (σ )

I vx (σ )
≤ eC1ρ

ρEvx (ρ)

I vx (ρ)
∀σ < ρ < R0. (4.41)

Finally,

σ �→ ecσ I v(σ )

σ n−1+2α , σ �→ ecσ Ev(σ )

σ n−2+2α (4.42)

are non-decreasing functions in (0, R0) where α = Ordv(x0) ≥ 1.

Proof See [11, Proposition 54 and Corollary 60]. ��
As the consequence of the existence of order, wewill show that the sequence

of blowupmaps is sequence of approximately harmonicmaps (cf. Lemma4.32
below).

Definition 4.25 Let x0 ∈ S j (u) ∩ B σ�
2
(x�), identify x0 = 0 via normal coor-

dinates and let gσ as in (3.3). For

ν(σ ) =
√

I v(σ )

σ n−1 , (4.43)

define

vσ : (B1(0), gσ )→ (H
k− j
, dh), vσ (x) = ν−1(σ )v(σ x). (4.44)

We call vσ the blow-up map of v at x0.

Remark 4.26 We emphasize that the scaling factor in the map vσ of (4.44)
is different from the one in the map vσ of (4.9) although we use the same
notation. More specifically, vσ of (4.44) (i.e. the blow-up map of v) is scaled

with respect to the scaling factor
√

I v(σ )
σ n−1 , whereas the map vσ of (4.9) (i.e. the

singular component map of the blow-up uσ of u) is scaled with respect to the

scaling factor
√

I u(σ )

σ n−1 . For a singular component map of the blow-up uσ of u,
the energy bound follows from the energy bound of uσ (cf. Lemma 4.3). On

the other hand, the blow-up map vσ of v is rescaled by
√

I v(σ )
σ n−1 , which may

tend to 0 much quicker than
√

I u(σ )

σ n−1 and hence the energy bound for uσ does
not help. On the other hand, by Proposition 4.24, we can now give a uniform
energy bound for the blow-up map vσ of v at x0. More precisely, for σ > 0
sufficiently small, (4.39) implies

Evσ (1) = σ Ev(σ )

I v(σ )
≤ E0 := 2Ordv(x0). (4.45)
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.

Definition 4.27 The harmonic map

wσ : B 3
4
(0)→ (Hk− j , dh)

whose boundary values agree with that of vσ
∣∣

B 3
4
(0) is called the approximating

harmonic map for vσ .

Lemma 4.28 Let vσ and wσ be as in Definitions 4.25 and 4.27 respectively.
There exists a sequence σi → 0 and a constant C > 0 such that

|Evσi (r)− Ewσi (r)| ≤ Cσi , ∀r ∈ (0, 1
2
).

Proof The main issue is that the map vσ is not a competitor to the harmonic
mapwσ in the domain Br (0) because their boundary values do not necessarily
match. Therefore, we “bridge” the gap between vσ and wσ using [28, Lemma
3.12]. This is estimate [11, estimate (132)] where we refer for complete details.

��
We next prove the existence of blow up maps of the singular component

map converging to a tangent map. We will need the following.

Lemma 4.29 For x0 ∈ S j (u) ∩ B σ�
2
(x�), let vσ be a blow-up map of v at

x0 (cf. Definition 4.25). For a fixed R ∈ (0, 1) and r ∈ (0, 1), there exists
a constant C > 0 that can be chosen independently of σ such that for any
harmonic map

w : (BR(0), gσ )→ H
k− j

with sup
BR(0)

dh(w,P0) ≤ c,

we have

sup
Brϑ (0)

d2
h (vσ , w) ≤

C

ϑn−1

∫

∂Bϑ (0)
d2

h (vσ , w)d	σ + Cσ 2ϑ3, ∀ϑ ∈ (0, R]

where d	σ is the volume form with respect to the metric gσ .

Proof We argue in a similar way as in the proof of Lemma 4.18. The only
difference is that we do not know vσ is Lipschitz continuous in this proof.
Instead, we use the monotonicity property of the singular component map v
given by Proposition 4.24. Indeed, the first estimate of (4.42) implies

∫

∂Bρ(0)
d2

h (vσ ,P0)d	σ

ρn−1 ≤ cρ2, ∀ρ ∈ (0, 1).
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Multiplying by ρn−1 and integrating over ρ ∈ (0, s), we obtain
∫

Bs(0)
d2

h (vσ ,P0)dμσ ≤ csn+2, ∀s ∈ (0, 1). (4.46)

Arguing as in the proof of Lemma 4.18, we obtain the analogue of (4.32).
Combining it with (4.46), we obtain

0 ≤ d

ds

(
ec1s

sn−1

∫

∂Bs(0)
d2

h (vσ , w)d	σ

)
+ cσ 2s2

which should be compared to (4.33) in the proof of Lemma 4.18. The rest of
the proof follows exactly as the proof of Lemma 4.18. ��
Lemma 4.30 For x0 ∈ S j (u) ∩ B σ�

2
(x�), there exists a sequence of blow-up

maps vσi of v at x0 (cf. Definition 4.25) converging locally uniformly in the
pullback sense to a homogeneous harmonic map v0 : B1(0)→ (Y0, d0) into
an NPC space with

Ordv0(0) = Ordv(x0).

Proof Letwσ : B 3
4
(0)→ (Hk− j , dh) be the approximating harmonic map for

vσ (cf. Definition 4.27). Since

Ewσ (
3

4
) ≤ Evσ (

3

4
) ≤ E0 (4.47)

by (4.45), the family of harmonic maps wσ has a uniform local Lipschitz
estimate by Theorem 3.2. The Compactness Theorem 3.6 implies that there
exists a sequence ofwσi

∣∣
B 1
2
(0) that converges locally uniformly in the pullback

sense to a harmonic map v0 : B 1
2
(0)→ (Y0, d0) into an NPC space and

Ev0(r) = lim
σi→0

Ewσi (r), ∀r ∈ (0, 1
2
).

By Lemma 4.29,

lim
σi→0

sup
B 1
2
(0)

d2
h (vσi , wσi ) = 0,

and thus

vσi

∣∣
B 1
2
(0) converges locally uniformly in the pullback sense to v0. (4.48)
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In particular, we have

I v0(r) = lim
σi→0

I vσi (r), ∀r ∈ (0, 1
2
).

Furthermore, by Lemma 4.28, there exists a constant C > 0 such that

|Evσi (r)− Ewσi (r)| ≤ Cσi , ∀r ∈ (0, 1
2
), (4.49)

and hence

Ev0(r) = lim
σi→0

Evσi (r), ∀r ∈ (0, 1
2
).

Thus, for r ∈ (0, 12 ),
r Ev0(r)

I v0(r)
= lim
σi→0

r Evσi (r)

I vσi (r)
= lim
σi→0

rσi Ev(rσi )

I v(rσi )
= Ordv(x0).

Note that the right hand side is independent of r . Thus, by following the
argument of [21] Proposition 3.3, we conclude that themap v0 is homogeneous
degree α = Ordv(x0). Furthermore, letting r → 0 above, we obtain

Ordv0(0) = Ordv(x0).

��
Definition 4.31 The homogeneous harmonic map v0 of Lemma 4.30 will be
referred to as a tangent map of v at x0 ∈ S j (u) ∩ B σ�

2
(x�). Note that v0 may

be different from v∗ of Lemma 4.4, the singular component of a tangent map
u∗ = (V∗, v∗).

For the convenience of the reader bellow we summarize the different blow-
up and tangent maps used in the paper:

• The blow-up maps uσi = (Uσi , vσi ) of the harmonic map u = (U, V )
defined in (4.10) with scaling factor μσ defined in (4.8) and converging in
the pullback sense to the tangent map u∗ = (V∗, v∗) = (V∗, v1∗, . . . , vk∗)
(cf. Lemma 4.4).
• The blow-up maps vσi of the singular component v of the harmonic map

u = (U, V ) defined in (4.44) with scaling factor νσ defined in (4.43)
converging to the homogeneous harmonic map v0 (cf. Lemma 4.30).
• The approximating harmonicmapwσ : B 3

4
(0)→ (Hk− j , dh) for vσ whose

boundary values agree with that of vσ
∣∣

B 3
4
(0) (cf. Definition 4.27).
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Lemma 4.32 If x0 ∈ S j (u)∩ B σ�
2
(x�), then the sequence vσi of blow-up maps

of v at x0 converging to a tangent map v0 (cf. Definition 4.31) is a sequence
of asymptotically harmonic maps.

Proof We check properties (i)-(iv) of Definition 4.7 for vi = vσi and gi = gσi .
Property (i) regarding the metric gi follows immediately from the definition
of gσi . From the monotonicity property (4.42) and the energy bound (4.45),
we obtain (ii). Property (iii) is about the convergence of vσi to a tangent map
v0 (cf. (4.48)). Finally, Property (iv) follows from Lemma 4.29 with c0 = C
and ci = Cσ 2i . ��

This yields the following corollary.

Corollary 4.33 If x0 ∈ B σ�
2
(x�) ∩ S j (u), then

Ordv(x0) ≥ 1+ ε0.
Proof Since vσi of Lemma 4.32 is a sequence of asymptotically har-
monic maps, the assertion follows from Lemma 4.10, Proposition 4.12 and
Lemma 4.30. ��

The above discussion yields a slight variation of Lemma 3.10 on the upper
semicontinuity of the order for v.

Lemma 4.34 Let x0 ∈ S j (u) ∩ B σ�
2
(x�) and vσi be the sequence of blow-up

maps of v at x0 converging locally uniformly in the pullback sense to a tangent
map v0. After identifying x0 = 0 via normal coordinates, let

σ−1i (S j (u) ∩ B σ�
2
(x�)) := {σ−1i x : x ∈ S j (u) ∩ B σ�

2
(x�)}.

If xi ∈ σ−1i (S j (u) ∩ B σ�
2
(x�)) ∩ B 1

2
(0) and xi → x∗, then

lim inf
σi→0

Ordvσi (xi ) ≤ Ordv0(x∗).

Proof Since σi xi ∈ S j (u), we can apply Proposition 4.24 to assert that

αi := lim
r→0

r E
vσi
xi (r)

I
vσi
xi (r)

exists. The proof follows as in Lemma 3.10 with uσi replaced with vσi and
u∗ replaced with v0. The only difference is that the equality (3.7) in the proof
of Lemma 3.10 uses the uniform local Lipschitz continuity of the sequence
uσi . Although we know that, for each i , vσi is Lipschitz continuous by the
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Lipschitz continuity of u, we have not proven any uniform local Lipschitz
estimates (i.e. independent of i) of the sequence vσi . (See again Remark 4.26.)
On the other hand, the sequence of approximating harmonic maps wσi for
vσi (cf. Definition 4.27) is uniformly locally Lipschitz continuous. Indeed,
according to Proposition 4.24 there exist constants c1 > 0, c2 > 0 and R0 > 0
such that for 0 < σi < ρ < R0

E
wσi
xi (

3

4
) ≤ E

vσi
xi (

3

4
) ≤ E

vσi
xi (1) =

σi Evσi x (σi )

I vσi x (σi )
≤ c1

ρEvσi x (ρ)

I vσi x (ρ)
≤ c2.

(4.50)

Here, the last inequality follows from the continuity of

x �→ ρEvx (ρ)

I vx (ρ)

and the second to the last inequality follows from (4.41). Thus (4.50) and
Theorem 3.2 imply that wσi is uniformly Lipschitz.

Therefore, repeating the proof of (3.7), we obtain

lim
σi→0
|Ewσi

x∗ (r)− E
wσi
xi (r)| = 0.

Combining (4.49) with the estimate

|Evσi
x∗ (r)− E

vσi
xi (r)| ≤ |E

vσi
x∗ (r)− E

wσi
xi (r)| + |E

wσi
x∗ (r)− E

wσi
xi (r)|

+ |Ewσi
x∗ (r)− E

vσi
xi (r)|,

we obtain

lim
σi→0
|Evσi

x∗ (r)− E
vσi
xi (r)| = 0

which is (3.7) with vσi replacing with uσi . The rest of the proof is exactly as
in Lemma 3.10. ��

4.6 Inductive step

Throughout this subsection, we assume that the Inductive Hypothesis [j+1]
holds for a harmonic map u : (�, g)→ (T , dT ). Let x� ∈ S j (u) and

u = (V, v) : (Bσ�(x�), g)→ (U × V, dG)
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be a local representation (cf. Definition (4.1)) of u at x�. The goal is to show
that both Statement 1[ j] holds and Statement 2[ j] holds.
Proposition 4.35 The set S j (u) is of Hausdorff codimension 2 in B σ�

2
(x�);

i.e.

dimH(S j (u) ∩ B σ�
2
(x�)) ≤ n − 2.

Proof The assertion holds trivially if v is identically equal to P0 (in this case
u maps into a single stratum of T ), so assume that v is a non-constant map.
Assume on the contrary that dimH(S j (u) ∩ B σ�

2
(x�)) > n − 2; thus, there

exists s > n − 2 such that Hs(S j (u) ∩ B σ�
2
(x�)) > 0. By [18, 2.10.19] (also

see the proof of [21, Lemma 6.5]), there exists x0 ∈ S j (u) ∩ B σ�
2
(x�) such

that

2−s ≤ lim inf
σ→0

Hs(S j (u) ∩ B σ�
2
(x�)) ∩ B σ

2
(x0)

(σ/2)s
.

With σ−1i (S j (u) ∩ B σ�
2
(x�)) defined as in Lemma 4.34 and after identifying

x0 = 0 via normal coordinates, we conclude

n − 2 < s ≤ lim sup
σi→0

dimH(σ
−1
i (S j (u) ∩ B σ�

2
(x�)) ∩ B 1

2
(0). (4.51)

We claim

lim sup
σi→0

dimH(σ
−1
i (S j (u) ∩ B σ�

2
(x�)) ∩ B 1

2
(0)) ≤ dimH(S>1(v0)). (4.52)

Combining (4.51) and (4.52), we arrive at a contradiction (cf. Lemma 4.10
(4.18)) which finishes the proof.

We are left to prove (4.52). Indeed, taking a subsequence if necessary, we
can assume that the sequence of blow up maps vσi of v at x0 converges to a
tangent map v0. Let R ∈ (0, 12 ), xi ∈ σi (S j (u)∩B σ�

2
(x�))∩BR(0) and assume

xi → x∗. Corollary 4.33 implies Ordvσi (xi ) ≥ 1 + ε0 which in turn implies
Ordv0(x∗) ≥ 1+ ε0 by the upper semicontinuity of order (cf. Lemma 4.34).
Thus, we conclude that if xi → x∗ for xi ∈ S j (u) ∩ B σ�

2
(x�) ∩ BR(0), then

x∗ ∈ S>1(v0) ∩ BR(0). Thus, (4.52) follows from Lemma 3.11. ��
Lemma 4.36 If Statement 1[ j] holds, then Statement 2[ j] also holds.

Proof Throughout this proof, we will use C (which may change line by line)
to denote an arbitrary constant that depends only on the dimension n of the
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domain, the Lipschitz constant of u in B σ�
2
(x�) and the modulus of continuity

of V in B σ�
2
(x�) (cf. (4.2)).

Let ε0 > 0 be smaller than either of the ε0 that appears in Proposition 4.5
and Corollary 4.33. Choose q < 2, p > 2, δ ∈ (0, 1) and D ∈ (0, 1) such that
Proposition 4.13 holds for q and

1

p
+ 1

q
= 1, D < δ < ε0, D < ε0 − δ

− 2+ D < −q − qδ, −2+ D < −p − pδ + ε0. (4.53)

To prove Statement 2[ j], we show that, for a fixed subdomain � ⊂⊂
B σ�

2
(x�) and ε > 0, there exists an open setN contained in an ε-neighborhood

of S(u) ∩ � and a smooth function ψ such that 0 ≤ ψ ≤ 1, ψ ≡ 0 in a
neighborhood of S(u) ∩�, ψ ≡ 1 on �\N that satisfies

∫

B σ�
2
(x�)
|∇u||∇ψ | dμ < Cε, (4.54)

∫

B σ�
2
(x�)
|∇u||∇ψ |q dμ < Cε (4.55)

∫

B σ�
2
(x�)
|∇∇u||∇ψ | dμ < Cε

1
p . (4.56)

Note that |∇u|(x) �= 0 for x ∈ S j (u) since u is of order 1 at any point in
S j (u) (cf. (4.15)). Thus, by Proposition 4.21, |∇V |(x) �= 0 for x ∈ S j (u) ∩
B σ�

2
(x�). Since ∇V is continuous (cf. Remark 4.2), there exists an open set

N ⊂⊂ B σ�
2
(x�) contained in an ε-neighborhood of S j (u) ∩� and a constant

λ0 such that
|∇V | ≥ λ0 > 0 on N . (4.57)

Statement 1[ j] implies that we can choose a finite covering {BrJ (xJ ) :
J = 1, . . . , l} of the compact set S j (u) ∩� satisfying

∑

J

rn−2+D
J < ε and B3rJ (xJ ) ⊂ N . (4.58)

Let ϕJ be a smooth function such that ϕJ ≡ 0 on BrJ (xJ ), ϕJ ≡ 1 on
�\B2rJ (xJ ), |∇ϕJ | ≤ Cr−1J , |∇∇ϕJ | ≤ Cr−2J , |∇(ϕ|∇ϕ|δ)| ≤ Cr−1−δJ and
|∇∇(ϕ|∇ϕ|δ)| ≤ Cr−2−δJ . Define ϕ by setting

ϕ =
∏

J

ϕJ .
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Let ρ be a Lipschitz function such that ρ ≡ 1 on
⋃

J B2rJ (xJ ), ρ ≡ 0 outside⋃
J B3rJ (xJ ) and |∇ρ| ≤ 1

rJ
in B2rJ (xJ ) (cf. [21, before (6.3)]).

With ϕ and ρ now fixed, Proposition 4.6 implies that we can choose a finite
covering {BsJ (ξJ ) : J = 1, . . . , l ′} of S>1(u) ∩�0 with

max

{
sup
�

|∇ϕ|, sup
�

|∇∇ϕ|, sup
�

|∇ρ|)
}∑

J

sn−2+D
J < ε (4.59)

and

B2sJ (xJ ) ⊂ N .

Let φJ be a smooth function such that φJ ≡ 0 on BsJ (ξJ ), φJ ≡ 1 on
�0\B2sJ (ξJ ), |∇φJ | ≤ Cs−1J and |∇∇φJ | ≤ Cs−2J . Define φ by setting

φ =
∏

J

φJ .

Since S(u) ∩ v−1(P0) ⊂ S j (u) ∪ S>1(u), the set

�1 := �\
⎛

⎝
l⋃

J=1
B3rJ (xJ ) ∪

l ′⋃

J=1
B3sJ (ξJ )

⎞

⎠

is compactly contained in B x�
2
(x�)\(S(u) ∩ v−1(P0)). With ϕ, ρ and φ now

fixed, we apply Proposition 4.13 to obtain a smooth function ψ̂ such that
0 ≤ ψ̂ ≤ 1, ψ̂ ≡ 0 in a neighborhood of S(u) ∩�1, ψ̂ ≡ 1 outside N ,

∫

�1

|∇u||∇ψ̂ |dμ < ε,
∫

�1

|∇u||∇ψ̂ |qdμ < εq ,

sup
�1

{|∇(ϕρφ|∇ϕ|δ)|p, |∇(ϕρφ|∇ϕ|δ)|}
∫

�1

|∇∇u||∇ψ̂ |dμ < ε.(4.60)

Let

ψ := ϕ2φ2ψ̂2.

By construction, 0 ≤ ψ ≤ 1, ψ ≡ 0 in a neighborhood of S(u) ∩ �, ψ = 1
for all x ∈ �\N . By (4.58),

∫

�

|∇u||∇ϕ| dμ ≤ C
∫

�

∣∣∣∣∣∣

∑

J0

∇ϕJ0

∏

J �=J0

ϕJ

∣∣∣∣∣∣
dμ ≤ C

∑

J0

rn−1
J0

< Cε.
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By (4.59), a similar estimate applies to the integral involving φ and using the
inequality n − 2 + D < n − q implied by the fourth inequality of (4.53).
Combined with (4.60), we thus conclude

∫

�

|∇u||∇ψ | dμ ≤
∫

�

|∇u||∇ϕ| dμ+
∫

�

|∇u||∇φ| dμ+
∫

�

|∇u||∇ψ̂ | dμ < Cε

which proves inequality (4.54). Similar computation proves (4.55).
We are left to prove (4.56). We first write

∫

�

|∇∇u||∇ψ |dμ =2
∫

�

ϕ2φ2ψ̂ |∇∇u||∇ψ̂ |dμ+ 2
∫

�

φϕ2ψ̂2|∇∇u||∇φ|dμ

+ 2
∫

�

ϕφ2ψ̂2|∇∇u||∇ϕ|dμ
=:(A)+ (B)+ (C). (4.61)

Applying (4.60), we can estimate

(A) := 2
∫

�

ϕ2φ2ψ̂ |∇∇u||∇ψ̂ |dμ ≤ 2
∫

�1

|∇∇u||∇ψ̂ |dμ < Cε.

We next estimate (C). Noting that the support of the function ϕφ2ψ̂2|∇ϕ|
is contained in R(u) ∩⋃l

J=1 B2rJ (xJ ),

(C) :=2
∫

�

ϕφ2ψ̂2|∇∇u||∇ϕ| dμ

≤2
(∫

⋃l
J=1 B2rJ (xJ )

ϕφψ̂ |∇ϕ|δ |∇∇u|2|∇u|−1 dμ

)1/2 (∫

∪l
J=1B2rJ (xJ )

|∇u||∇ϕ|2−δ dμ

)1/2

≤2
(∫

⋃l
J=1 B2rJ (xJ )

ϕφψ̂ |∇ϕ|δ |∇∇u|2|∇u|−1 dμ

)1/2 (
C

l∑

J=1
rn−2+δ

J

)1/2

≤Cε
1
2

(∫
⋃l

J=1 B2rJ (xJ )

ϕφψ̂ |∇ϕ|δ |∇∇u|2|∇u|−1 dμ

)1/2

where the last inequality uses (4.53) and (4.58). Combining the Eells-Sampson
and Schoen-Yau formulae (cf. [21, proof of Theorem 6.4]), we have

|∇∇u|2|∇u|−1 ≤ C (|∇u| + �|∇u|) on R(u).
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We multiply ϕφψ̂ρ|∇ϕ|δ to both sides of the above inequality to obtain
∫

⋃l
J=1 B2rJ (xJ )

ϕφψ̂ |∇ϕ|δ|∇∇u|2|∇u|−1 dμ

≤ C
∫

∪l
J=1B3rJ (xJ )

ϕφψ̂ρ|∇ϕ|δ|∇u|dμ

+C
∫

∪l
J=1B3rJ (xJ )

�(ϕφψ̂ρ|∇ϕ|δ)|∇u|dμ
=: (C1)+ (C2).

By (4.58) and since δ < 1,

(C1) ≤ C
∫

∪l
J=1B3rJ (xJ )

|∇ϕ|δdμ ≤ C
∑

J

rn−δ
J < Cε.

To estimate (C2), we write

(C2) =
∫

∪l
J=1B3rJ (xJ )

�(ϕρφψ̂ |∇ϕ|δ)|∇u|dμ

=
∫

∪l
J=1B3rJ (xJ )

�(ϕρφψ̂ |∇ϕ|δ) (|∇V | + |∇u| − |∇V |) dμ

=
∫

∪l
J=1B3rJ (xJ )

�(ϕρφψ̂ |∇ϕ|δ)|∇V |dμ

+
∫

∪l
J=1B3rJ (xJ )

�(ϕρφψ̂ |∇ϕ|δ) (|∇u| − |∇V |) dμ

=−
∫

�

∇(ϕρφψ̂ |∇ϕ|δ) · ∇|∇V |dμ

+
∫

�

ψ̂�(ϕρφ|∇ϕ|δ) (|∇u| − |∇V |) dμ

+
∫

�

ϕρφ|∇ϕ|δ�ψ̂ (|∇u| − |∇V |) dμ

+ 2
∫

�

∇(ϕρφ|∇ϕ|δ) · ∇ψ̂ (|∇u| − |∇V |) dμ

=:(C21)+ (C22)+ (C23)+ (C24).

Using the fact that |∇∇V | ∈ L p(�) (cf. Remark 4.2) and the fact that deriva-
tives of ϕ and ρ are supported in ∪l

J=1B3rJ (xJ ) and the derivatives of φ are
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supported in ∪l ′
J=1B3sJ (ξJ ), we have

(C21) ≤ C

(∫

�

|∇(ϕρφψ̂ |∇ϕ|δ)|qdμ

) 1
q ·

(∫

�

|∇∇V |pdμ

) 1
p

≤ C

(∫

�

|∇(ϕρφ|∇ϕ|δ)|qdμ

) 1
q

≤ C

⎛

⎝
l∑

J=1
rn−q−qδ

J + sup
�

|∇ϕ|δq
l ′∑

J=1
sn−q

J

⎞

⎠

1
q

≤ Cε
1
q

by (4.53), (4.58) and (4.59). Furthermore, by the order gap of v (cf. Proposi-
tion 4.10),

sup
B3rJ (xJ )

|∇v| ≤ Cr ε0J . (4.62)

Next, note that by the lower bound (4.57) of |∇V | and the Lipschitz estimate
of u, we have in N the estimates

||∇u| − |∇V || ≤
∣∣|∇u|2 − |∇V |2∣∣
|∇u| + |∇V | ≤

∣∣|∇v|2 + 2 < ∇V,∇v >∣∣
|∇u| + |∇V | ≤ C |∇v|.

and

|∇ (|∇u| − |∇V |)| ≤ C |∇∇u| .

Thus, by (4.53), (4.58), (4.59) and (4.60),

(C22) ≤ C
∫

�

|�(ϕρφ|∇ϕ|δ)||∇v|dμ ≤ C
∑

J

rn−2−δ+ε0
J
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and

(C23) =
∫

�

ϕρφ|∇ϕ|δ�ψ̂ (|∇u| − |∇V |) dμ

= −
∫

�

(|∇u| − |∇V |)∇(ϕρφ|∇ϕ|δ) · ∇ψ̂dμ

−
∫

�

ϕρφ|∇ϕ|δ∇ψ̂ · ∇ (|∇u| − |∇V |) dμ

≤ C

(∫

�

|∇(ϕρφ|∇ϕ|δ)|p|∇v|dμ
) 1

p
(∫

�

|∇ψ̂ |q |∇v|dμ
) 1

q

+C
∫

�

|∇ϕ|δ|∇ψ̂ ||∇∇u|dμ
< Cε.

Finally, (4.60) also yields

(C24) ≤ 2 sup
�1

|∇(ϕρφ|∇ϕ|δ)|
∫

�

|∇ψ̂ ||∇u|dμ < Cε

Combining the estimates for (C1), (C21), (C22), (C23) and (C24), we obtain

(C) ≤ Cε
1
p .

The estimate for (B) is similar to the estimate for (C), sowe omit the details.
Indeed, to prove (B) we can repeat the argument for (C) with δ = 0 while
keeping in mind that

sup
B2sJ (ξJ )

|∇u| ≤ Csε0J (4.63)

by the order gap of u of Proposition 4.10 along with the monotonicity property
of u (cf. proof of [21, Theorem 2.4]). Note that the argument for (B) is simpler
than that for (C); indeed,we can use the decay of |∇u| in B2sJ (ζJ ) by (4.63) for
(B)whereas |∇u| is only bounded in B2rJ (xJ ) for (C). Applying the estimates
for (A), (B), (C) into (4.61) proves (4.56). ��
Proof of Theorem 1.5 and Theorem 1.6. Proposition 4.35 implies that S j (u)
has codimension at least 2. Combined with Proposition 4.6, this implies that

dimH(Ŝ j (u)) ≤ n − 2.

Now Statement 1[ j] follows immediately. Additionally, Statement 2[ j]
follows fromLemma4.36. Thus, induction completes the proof ofTheorem1.5
and Theorem 1.6. ��
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5 Proof of the key technical lemma

In this section, we will provide a proof of the key technical Lemma 4.11
by deducing it from the iterative Lemma 5.7. We will take advantage of the
fact that a harmonic map (resp. approximate harmonic map) at an order one
point is closely approximated by homogeneous degree 1 maps as indicated
in Lemma 3.20 (resp. proof of Proposition 4.12, formula (4.24)). We employ
an iterative argument which has its origin in [21], but with serious additional
complications due to the non-local compactness and degenerating geometry
of the Teichmüller space near its boundary. In Sect. 5.1, we motivate our proof
of the iterative Lemma 5.7 by explaining its origin in the Gromov–Schoen
regularity theorem. We do so by providing a short proof of the Lemma for the
simple case of maps into a k-pod considered in Example 1 of the introduction.
The preparation of the proof of the key technical Lemma is given in Sects. 5.2
and 5.3 where we summarize our results from [12] needed in the proof. The
main step in the proof of the iterative Lemma is presented in Sect. 5.4. Finally,
the proof of the key technical Lemma 4.11 is given in Sect. 5.5.

5.1 Simple Gromov–Schoen

In order to motivate the proof of the iterative Lemmas 5.5 and 5.7 we will now
sketch an argument due to Gromov–Schoen for harmonic maps in the simple
case where the target is a finite tree as in Example 1 of the introduction. As
we will see later, iterative Lemma 5.7 is a more complex version of the above
argument.

Let X be a k-pod formed by k distinct copies E1, . . . , Ek of the half-
line [0,∞) identified at 0 as in Example 1 of the introduction and X0 =
E1∪E2 be a totally geodesic subspace isometric toR. For a harmonicmap
u : B1(0) ⊂ R

n → X and a homogeneous degree 1 map l : B1(0)→ X
as in (1.5) effectively contained in the essentially regular totally geodesic
subspace X0 � R, assume that u(0) = l(0) and

sup
x∈B1(0)

d(u(x), l(x)) < D. (5.1)

Given the above set up, the idea is to show that there exists θ ∈ (0, 12 ] such
that if an affine map

i l : Bθ i (0)→ X0
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is “close” to u in a small ball in the sense that,

⎧
⎪⎨

⎪⎩

sup
x∈B

θ i (0)
d(u(x), l(x)) < θ iδ0

sup
x∈B

θ i (0)
d(u(x), i l(x)) < θ i d0,

(5.2)

then then there exists a new affine map

i+1l : Bθ i+1(0)→ X0

such that

⎧
⎪⎪⎨

⎪⎪⎩

sup
x∈B

θ i+1 (0)
d(u(x), l(x)) < θ i+1 (

δ0 + 2θ−1d0
)

sup
x∈B

θ i+1 (0)
d(u(x), i+1l(x)) < θ i+1 d0

2
.

(5.3)

Proof that (5.2) implies (5.3). Since l is effectively contained in X0, for ε > 0
to be chosen later, there exists δ > 0 such that (cf. (1.6))

Vol
({x ∈ Bθ i (0) : Bδθ i (l(x)) ∩ (X\X0) �= ∅}

)
< εθ in,

thus, there exists R ∈ [34 , 1] such that

Vol
({x ∈ ∂BRθ i (0) : Bδθ i (l(x)) ∩ (X\X0) �= ∅}

)
< 4εθ i(n−1).

(Note that B denotes the ball in the target). For x ∈ ∂BRθ i (0), the first inequal-
ity of assumption (5.2), implies

Bθ i δ0
(l(x)) ∩ (X\X0) = ∅ ⇒ u(x) ∈ X0 ⇒ π ◦ u(x) = u(x).

Thus,

Vol
({x ∈ ∂BRθ i (0) : π ◦ u(x) �= u(x)}) < 4εθ i(n−1).

Consider the harmonic function v : BRθ i (0)→ X0 ≈ R with boundary con-
dition π ◦u on ∂BRθ i (0). Using the fact that the image of i l is contained in X0,
π is the closest point projection and the second inequality of assumption (5.2),

d(u, v) ≤ d(u, i l) < θ
i d0 on ∂BRθ i (0).
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Thus,

∫

∂BRθ i (0)
d(u, v)d	 < 4εθ i(n−1)θ i d0.

Since v is minimizing and π is distance non-increasing, Ev ≤ Eπ◦u ≤ Eu .
Since X0 is essentially regular, there exists i+1l such that (cf. (1.7))

sup
x∈B

θ i+1 (0)
d(v(x), i+1l(x)) ≤ Cθ2 sup

x∈B
θ i
2
(0)

d(v(x), i l(x)) (5.4)

where C > 1 depends only on Eu . Since u and v are harmoninc maps, d(u, v)
is subharmonic. Thus, for a constant cn > 0 depending only on the domain
dimension n,

sup
x∈B

θ i
2
(0)

d(u(x), v(x)) < cnεθ
i d0.

The triangle inequality then implies

sup
x∈B

θ i+1 (0)
d(u(x), i+1l(x))

≤ sup
x∈B

θ i+1 (0)
d(u(x), v(x))+ sup

x∈B
θ i+1 (0)

d(v(x), i+1l(x)))

< cnεθ
i d0 + Cθ2 sup

x∈B
θ i
2
(0)

d(v(x), i l(x))

< cnεθ
i d0 + Cθ2 sup

x∈B
θ i
2
(0)

(
d(v(x), u(x))+ d(u(x), i l(x))

)

< cnεθ
i d0 + Cθ2(cnεθ

i d0 + θ i d0).

Thus, by choosing θ = 1
4C , ε = θ

4cn
, we obtain

sup
x∈B

θ i+1 (0)
d(u(x), i+1l(x)) < θ i+1 d0

2
.

This proves the second inequality of (5.3).
By assumption (5.2) and the triangle inequality

sup
x∈B

θ i (0)
d(l(x), i l(x)) ≤ sup

x∈B
θ i (0)
(d(l(x), u(x))+ d(u(x), i l(x))) < θ

i (δ0 + d0)
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Furthermore, the assumption that l(0) = u(0) implies

d(l(0), i l(0)) = d(l(0), u(0))+ d(u(0), i l(0)) < θ
i d0

By the linearity of l and i l, we thus conclude

sup
x∈B

θ i+1 (0)
d(l(x), i l(x)) = sup

x∈B
θ i (0)

d(l(θx), i l(θx))

≤ θ sup
x∈B

θ i (0)
d(l(x), i l(x))+ (1− θ)d(l(0), i l(0))

< θ i+1(δ0 + d0)+ (1− θ)θ i d0
= θ i+1(δ0 + θ−1d0).

Combining this with assumption (5.2), we obtain

sup
x∈B

θ i+1 (0)
d(u(x), l(x)) < θ i+1 (

δ0 + 2θ−1d0
)
.

��

5.2 Effectively contained

In preparation of the proof of the key technical Lemma, we recall the results
from [12]. First,we introduce a global coordinate systemonH using symmetric
geodesics (cf. Sect. 3.4.1).

These new coordinates, denoted (�, ϕ), will depend on a given symmetric
homogeneous degree 1 map

l : B1(0)→ H, l(x) = γ (Ax1)

where A > 0 is the stretch of l and γ is a symmetric geodesic (cf. Defi-
nition 3.19 and Sect. 3.4.1). We construct the coordinates (�, ϕ) so that if
we write γ (t) = (γ�(t), γϕ(t)) with respect to (�, ϕ), then γ�(t) = t and
γϕ(t) = 0; i.e.

γ (t) = (t, 0).
Thus, l(x) with respect to coordinates (�, ϕ) is given by

l(x) = (Ax1, 0). (5.5)

There is an advantage in using the coordinates (�, ϕ). Indeed, since harmonic
maps into H and the singular components of maps of harmonic maps into T
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at order 1 points are well approximated by symmetric homogeneous degree
1 maps, the coordinates (�, ϕ) are the most convenient when analyzing the
behavior of such maps.

In the sequel, we will need to consider several symmetric homogeneous
degree 1 maps at once. Thus, we first introduce new coordinates (s, t) such
that we can associate a constant t∗ to any symmetric homogeneous degree 1
map l(x) such that with respect to coordinates (s, t)

l(x) = (Ax1, t∗). (5.6)

We refer to the number t∗ as theaddress of l.Oncewefix aparticular symmetric
homogeneous degree 1 map l(x), then we apply a simple translation in the t-
coordinate which results in new coordinates (�, ϕ) with respect to which l is
expressed by (5.5).

To construct the coordinates (s, t), we foliate H by an one parameter family
of symmetric geodesics. Indeed, consider

c = (cρ, cφ) : (−∞,∞)× (−∞, 3
2
)→ H (5.7)

satisfying the following:

• � �→ ct (�) = c(�, ϕ) is a unit speed symmetric geodesic. (5.8)

• t �→ cρ(0, t) satisfies the equation
∂cρ
∂t
(0, t) = c3ρ(0, t), (5.9)

• cρ(0, 1) = 1 and cφ(0, t) = 0 for all t ∈ (−∞, 3
2
), (5.10)

The parameters s and t define coordinates of H via the map

(s, t) �→ c(s, t).

Given a symmetric homogeneous degree 1 map l(x) with address t∗
(cf. (5.6)), we apply a translation by t∗ to construct (�, ϕ) (see Fig. 2). More
precisely, since

l(0) = (0, t∗) in the coordinates (s, t), (5.11)

we define coordinates (�, ϕ) by setting

(�, ϕ) = (s, t − t∗). (5.12)

This results in

l(0) = (0, 0) in coordinates (�, ϕ).
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Thus, the construction of the coordinates (�, ϕ) depends on t∗, and we will
say that the coordinates (�, ϕ) are anchored at t∗. Using the new coordinates
(�, ϕ), we introduce a family of totally geodesic subspaces of H which will
play a central role in the proof of the key technical Lemma.

Definition 5.1 Let (�, ϕ) be the coordinates anchored at t∗. For ϕ0 > 0, define
the subset

H[ϕ0, t∗] := {(�, ϕ) ∈ H : |ϕ| ≤ ϕ0}.

Furthermore, let

a[ϕ0, t∗] := cρ(0, ϕ0 + t∗) = max{ϕ:|ϕ|≤ϕ0}
cρ(0, ϕ + t∗). (5.13)

In other words, H[ϕ0, t∗] is the union of the level sets ϕ = k where −ϕ0 ≤
k ≤ ϕ0, and the level set ϕ = k is the image of symmetric geodesic

� �→ c(�, k + t∗).

The boundary ofH[ϕ0, t∗] consists of a pair of level sets ϕ = ϕ0 and ϕ = −ϕ0,
and the set H[ϕ0, t∗] is totally geodesic. Moreover, a[ϕ0, t∗] is the distance
from P0 of the symmetric geodesic in H[ϕ0, t∗] furthest away from P0. See
Fig. 2. Define the function J (�, ϕ) by writing the metric gH with respect to
coordinates (�, ϕ) as

gH = d�2 + J (�, ϕ)dϕ2 (5.14)

As observed in [12], this local expression of gH with respect to (�, ϕ) is close to
the local expression gH = dρ2+ρ6dφ2 with respect to (ρ, φ). More precisely,
there exists a constant C > 0 such that

�3 ≤ J (�, ϕ) ≤ C(� + cρ(0, ϕ + t∗))3. (5.15)

In particular,

�3 ≤ J (�, ϕ) ≤ C(� + a[ϕ0, t∗])3 for (�, ϕ) ∈ H[ϕ0, t∗].

The following lemma plays the role for a homogeneous map to be effec-
tively contained in a totally geodesic subspace. The proof is contained in [12]
but since it is simple geometric argument we include it here for the sake of
completeness.
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Lemma 5.2 Fix θ ∈ (0, 1
24). Given A > 0, ε0 > 0 D0 ∈ (0, ε02 ) and i ∈

{0, 1, 2, . . . }, if

i l : Bθ i (0)→ H[
(
θ iε0

2

)−3
θ i D0

2i
, t∗]

and

v : Bθ i (0)→ H

satisfies
sup

B
θ i (0)
|v� − Ax1| < θ iε0 (5.16)

and

sup
B
θ i (0)

dH(v, i l) <
θ i D0

2i
, (5.17)

then

1

2vn−1
V ol

{
x ∈ Bθ i (0) : v(x) /∈ H[2

(
θ iε0

2

)−3
θ i D0

2i
, t∗]

}
< θ in 2ε0

A

where V ol is the volume with respect to Euclidean metric and vn−1 denotes
the Euclidean volume of the unit (n − 1)-dimensional ball.

Proof We start with the following claim.
Claim. For δ0 < ε

2 ,

dH((�, ϕ),H[ε−3δ0, t∗]) ≤ δ0 ⇒ |�| ≤ 2ε or (�, ϕ) ∈ H[2ε−3δ0, t∗].

To prove the claim, assume on the contrary that there exists (�, ϕ) with

dH((�, ϕ),H[ε−3δ0, t∗]) ≤ δ0, |�| ≥ 2ε and (�, ϕ) /∈ H[ 2ε−3δ0, t∗].

Let γ = (γ�, γϕ) : [0, 1] → H be a geodesic with

γ (0) = (γ�(0), γϕ(0)) = (�, ϕ) and γ (1) ∈ ∂H[ε−3δ0, t∗]

where γ (1) is the point in H[ε−3δ0, t∗] closest to (�, ϕ). We claim

min
t∈[0,1] |γ�(t)| ≥ ε. (5.18)
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Indeed, assume on the contrary that γ�(t0) < ε for some t0 ∈ (0, 1]. Then
since γ�(0) ≥ 2ε, we obtain

ε < |γ�(t0)− γ�(0)|
≤

∫ t0

0

∣∣∣∣
dγ�
dt

∣∣∣∣ dt ≤
∫ t0

0

∣∣∣∣
dγ

dt

∣∣∣∣ dt

≤ dH((�, ϕ),H[ε−3δ0], t∗) ≤ δ0.
This contradicts the assumption that δ0 < ε

2 and proves (5.18). Combined with
(5.15), we conclude

ε3 ≤ J (γ (t)).

Therefore

ε3
∣∣|ϕ| − ε−3δ0

∣∣ ≤ ε3
∫ 1

0

∣∣∣∣
dγϕ
dt
(t)

∣∣∣∣ dt

≤
∫ 1

0

√

J (γ (t))
∣∣∣∣
dγϕ
dt
(t)

∣∣∣∣
2

dt

≤
∫ 1

0

√∣∣∣∣
dγ�
dt
(t)

∣∣∣∣
2

+ J (γ (t))
∣∣∣∣
dγϕ
dt
(t)

∣∣∣∣
2

dt

= length(γ )

= dH((�, ϕ), γ (1))

≤ δ0
which in turn implies

|ϕ| ≤ 2ε−3δ0,

In other words,

(�, ϕ) ∈ H[ 2ε−3δ0, t∗].
This contradiction proves the Claim.

Since i l(x) ∈ H[
(
θ i ε0
2

)−3
θ i D0
2i , t∗], assumption (5.17) implies that we have

for x ∈ Bθ i (0)

dH(v(x),H[
(
θ iε0

2

)−3
θ i D0

2i
, t∗]) ≤ sup

B
θ i (0)

dH(v, i l) <
θ i D0

2i
.
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Thus, applying the Claim with

ε = θ
iε0

2
and δ0 = θ

i D0

2i

implies that

{
x ∈ Bθ i (0) : v(x) /∈ H[2

(
θ iε0

2

)−3
θ i D0

2i
, t∗]

}

⊂ {x ∈ Bθ i (0) : |v�(x)| ≤ θ iε0}.

Furthermore, assumption (5.16) implies

|v�(x)| ≤ θ iε0 ⇒ |Ax1| ≤ |Ax1 − v�(x)| + |v�(x)| < 2θ iε0

in Bθ i (0). Hence

{x ∈ Bθ i (0) : |v�(x)| ≤ θ iε0} ⊂ {x ∈ Bθ i (0) : |Ax1| < 2θ iε0}.

The assertion now follows from the fact that

1

2vn−1
V ol{x ∈ Bθ i (0) : |Ax1| < 2θ iε0} ≤ θ in 2ε0

A
.

��

5.3 Essentially regular subspaces

Now we turn to the notion of essentially regular. We assert that the totally
geodesic subspace H[ϕ0, t∗] of H is essentially regular in the sense that a
harmonic map into H[ϕ0, t∗] is approximated by an almost affine map. We
first need the following

Definition 5.3 Let (�, ϕ) be the coordinates anchored at t∗ defined in the
previous section. A map l = (l�, lϕ) : B1(0) → H written with respect to
coordinates (�, ϕ), is said to be an almost affine map if the first coordinate
function l� is an affine function; i.e.

l�(x) = a · x + b

for a ∈ R
n and b ∈ R.
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We have so far been unable to prove that these subspaces are essentially
regular in the strict sense of Gromov–Schoen [21]. (We remark that, as far
as we know, Euclidean spaces and buildings are the only known examples of
essentially regular sets in the strict sense of [21].) On the other hand, H[ϕ0, t∗]
satisfies a weaker notion of essentially regular that is sufficient for obtaining
good estimates for harmonic maps. For convenience, we will also call this
weaker notion essentially regular. Given that the the local geometry of H is
very singular near P0, it is surprising that essentially regular subspaces near
the point P0 exist at all.

The key is the introduction of different set of new coordinates in H that are
motived by Example 2. Specifically, we let

ϒ := � − 3

2
�5ϕ2 and � := �3ϕ. (5.19)

To explain the relationship of the new coordinates (ϒ,�) to the Euclidean
coordinates (x, y) in Example 2, we first consider (�, �2ϕ) as the analogue of
the polar coordinates (r, θ) of R2. Then the coordinates

(�, ϕ) �→ (� cos
√
3�2ϕ, � sin

√
3�2ϕ)

are the analogues of the standard Euclidean coordinates (1.12). The coordi-
natesϒ and

√
3� agree up to the first orderwith� cos

√
3�2ϕ and� sin

√
3�2ϕ

respectively.We then write the harmonic map equations in terms of the coordi-
nates (ϒ,�) to obtain the regularity results needed. An important observation
about Example 2 is the implicit use of the assumption 0 ≤ hθ < 2π . (We need
this assumption in order to show that the change of variables defines a dif-
feomorphism away from the origin). In fact, without assuming this bound,
it is unclear whether the solutions to (1.11) are regular. For a harmonic
u : � → H[ϕ0, t∗], we are also assuming an apriori bound on the “angu-
lar” component function. For a harmonic u : � → H[ϕ0, t∗], we are also
assuming an apriori bound on the “angular” component function by virtue of
the definition of the target set. This bound is precisely why we are able to use
H[ϕ0, t∗] as the analog of essentially regular sets (cf. [21, page 210]) when
we generalize the Gromov–Schoen argument in Sect. 5.4 below. Indeed, the
following (1 + α)-Taylor approximation of a harmonic map into H[ϕ0, t∗] is
proved in [12], Theorem 28.

Theorem 5.4 Let R ∈ [12 , 1), E0 > 0, A0 > 0 and a metric g (in normal
coordinates) on BR(0) be given. Then there exist C ≥ 1 and α > 0 depending
only on E0, A0 and g with the following property:
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For ϕ0 > 0, s ∈ (0, 1] and ϑ ∈ (0, 1], if BA0ϑ(P0) is a geodesic ball of
radius A0ϑ centered at P0 in H, if

w : (BϑR(0), gs)→ H[ϕ0
ϑ2
, t∗] ∩ BA0ϑ(P0)

is a harmonic map with

a[ϕ0
ϑ2
, t∗] ≤ ϑ

2
(5.20)

and

Ew ≤ ϑn E0,

then

sup
Brϑ (0)

dH(w, l̂) ≤ Cr1+α sup
BRϑ (0)

dH(w, L)+ Crϑϕ20 , ∀r ∈ (0,
R

2
]

where l̂ = (l̂�, l̂ϕ) : B1(0)→ H is the almost affine map given by

l̂�(x) = w�(0)+ ∇w�(0) · x, l̂ϕ(x) = wϕ(x)

and L : B1(0)→ H is any almost affine map.

5.4 The statement and proof of the iterative Lemma

In this subsection, we prove the iterative Lemma which allows us to go from
an approximation of a harmonic map (resp. approximate harmonic map) by an
almost affine map on one scale to an approximation on a smaller scale. This
lemma plays a central role in the proof of the key technical Lemma 4.11.

Let g be a metric on B1(0) sufficiently close to the Euclidean metric g0 in
the sense that if we denote by V ol and V olg to be the volume with respect to
g0 and g respectively, then for any smooth submanifold S of B1(0)

15

16
V ol(S) ≤ V olg(S) ≤ 17

16
V ol(S). (5.21)

Additionally, we assume g is sufficiently close to g0 (in C2) so that the error
term ecσ 2 that appears in the monotonicity formula of Theorem 3.5 is ≤ 2 for
all σ ∈ (0, 1].
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Next, let c0 ≥ 1 be a constant such that for any subharmonic function
f : B1(0)→ R with respect to the metric g, we have

sup
B 15ϑR

16
(0)

f ≤ c0
(ϑR)n−1

∫

∂BϑR(0)
f d	. (5.22)

Iterative Lemma 5.5 Given E0, A > 0 and a metric g (in normal coordi-
nates) on BR(0), there exist θ ∈ (0, 1

24), ε0 > 0 and D0 ∈ (0, 1√
8
) that satisfy

the following statement.
Assume the following:

• The map

l : Bθ i (0)→ H, l(x) = (Ax1, 0)

is defined in the coordinates (�, ϕ) anchored at t∗ ∈ (−∞, 32 ).
• The subset H[2

(
θ i ε0
2

)−3
θ i D0
2i , t∗] satisfies

a[2
(
θ iε0

2

)−3
θ i D0

2i
, t∗] = a[ 16D0

ε30θ
2i2i
, t∗] < θ

i

2
. (5.23)

• The map

u : (B1(0), g)→ H is harmonic with u(0) = P0, Eu(1) ≤ E0

2n+1 .
(5.24)

• The map

i l : Bθ i (0)→ H[
(
θ iε0

2

)−3
θ i D0

2i
, t∗] is an almost affine map.

• The constant iδ > 0 is such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sup
B
θ i (0)

dH(u, i l) < θ
i D0

2i

sup
B
θ i (0)
|u� − Ax1| < θ i

iδ < θ
i

i∑

k=0

θ−1D0

2k−2 .
(5.25)

Then there exists an almost affine map

i+1l : Bθ i+1(0)→ H[
(
θ i+1ε0

2

)−3
θ i+1D0

2i+1 , t∗]
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such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
B
θ i+1 (0)

dH(u, i+1l) < θ i+1 D0

2i+1

sup
B
θ i+1 (0)

|u�(x)− Ax1| < i+1δθ i+1 :=
(

i δ + 2D0θ
−1

2i

)
θ i+1 < θ i+1

i+1∑

k=0

θ−1D0

2k−2

sup
B
θ i+1 (0)

dH(u, l) < θ
i+1

(
23 (A + 9D0)

3

ε30
+ 10

)
θ−1D0.

(5.26)

Remark 5.6 The harmonicity of the map u implies by the last part of Theo-
rem 3.5, the assumption on the metric g, the comment after (5.21) and the
assumption (5.24) the following energy decay estimate

Eu(ϑ)

ϑn
≤ ec Eu(1) ≤ E0

2n
. (5.27)

Furthermore, by [27] Lemma 2.4.2, for R ∈ (0, 78 ] and a harmonic map w :
(Bθ i R(0), g)→ H with Ew(θ i R) ≤ Eu(θ i R), we have for c0 as in (5.22)

sup
B 15θ i R

16
(0)

d2
H
(u, w) ≤ c0

(θ i R)n−1

∫

∂B
θ i R(0)

d2
H
(u, w)d	 (5.28)

Proof For the sake of simplicity, we denote d = dH throughout the proof. For
R = 1

2 , E0 > 0 as in (5.24) and the metric g as above, let

C ≥ 1 and α > 0 be as in Theorem 5.4. (5.29)

Let θ ∈ (0,min{ 124 , 1√
A
}) sufficiently small such that

Cθ < 1, (5.30)

Cθα <
1

26
, (5.31)

and

Cθ3 <
1

23
. (5.32)

Define

ε0 :=
(

A

22n+11c0

)
θ2 < 1. (5.33)
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Choose D0 ∈ (0, 1√
8
) such that

D0 < min

{
ε60

213C
,

A

4
,
θε0

8

}
. (5.34)

Furthermore, inequality (5.34) implies 8θ−1D0 < ε0. Combining this with
(5.25) and (5.33), we obtain

sup
B
θ i (0)
|u� − Ax1| < θ i8θ−1D0 < θ

iε0 < θ
i A. (5.35)

Thus, the assumption (5.16) of Lemma 5.2 is satisfied. Additionally, the
assumption (5.17) of Lemma 5.2 is implied by (5.25). Thus, Lemma 5.2 and
(5.21) imply

V olg

{
x ∈ Bθ i (0) : u(x) /∈ H[2

(
θ iε0

2

)−3
θ i D0

2i
, t∗]

}
<

17vn−1
8
· θ in 2ε0

A
(5.36)

which in turn implies that there exists R0 ∈ [58 , 78 ] with the property that

V olg

{
x ∈ ∂Bθ i R(0) : u(x) /∈ H[2

(
θ iε0

2

)−3
θ i D0

2i
, t∗]

}
< (θ i R0)

n−1 22n+3ε0
A

. (5.37)

To see this, denote by f (R) the volume appearing on the left side of (5.37)
and let R0 be such that

f (R0) = inf
R∈[ 58 , 78 ]

f (R).

Then by (5.36)

θ i

4
f (R0) ≤

∫ 7θ i
8

5θ i
8

f (R)d R <
17vn−1

8
· θ in 2ε0

A

hence

f (R0) < θ
i(n−1) 17vn−1ε0

A
≤ (θ i R0)

(n−1)(8
5
)(n−1) 17vn−1ε0

A
.

Since the Euclidean volume vn−1 of the unit (n − 1)-dimensional ball is
bounded by 6 for all n and v1 = 2, (5.37) follows.
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Let

π : H→ H[2
(
θ iε0

2

)−3
θ i D0

2i
, t∗]

be the closest point projection map and

w : Bθ i R0
(0)→ H[2

(
θ iε0

2

)−3
θ i D0

2i
, t∗]

be the harmonic map with boundary value equal to π ◦ u. By the definition of

π , the fact that i l(x) ∈ H[
(
θ i ε0
2

)−3
θ i D0
2i , t∗], we conclude

d(u(x), w(x)) ≤ d(u(x), i l(x)), ∀x ∈ ∂Bθ i R(0). (5.38)

We thus obtain

sup
B 15θ i R0

16

(0)
d2(u, w) ≤ c0

(θ i R0)n−1

∫

∂B
θ i R0

(0)
d2(u, w)d	 (by (5.28))

<
22n+2ε0c0

A
sup

∂B
θ i R0

(0)
d2(u, w) (by (5.37))

≤ 22n+3ε0c0
A

sup
∂B
θ i R0

(0)
d2(u, i l) (by (5.38))

<
22n+3ε0c0

A
· θ2i D2

0

22i
(by (5.25))

< θ2i+2 D2
0

22i+8 (by (5.33)), (5.39)

or more simply

sup
B 15θ i R0

16

(0)
d(u, w) < θ i+1 D0

2i+4 . (5.40)

Combining (5.25) and (5.40), we obtain

sup
B
θ i
2
(0)

d(w, i l) ≤ sup
B
θ i
2
(0)

d(u, w)+ sup
B
θ i
2
(0)

d(u, i l) ≤ θ i D0

2i−1 . (5.41)
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We will now check that we can apply Theorem 5.4. We fix R = 1
2 , E0 as in

(5.27), A0 = 6A. Set

ϕ0 = 2
(ε0
2

)−3 D0

2i
and ϑ = θ

i

2
.

First, since w
∣∣
2ϑR0

= π ◦ u
∣∣
2ϑR0

and the projection into a convex set in an
NPC space is distance non-increasing, we obtain

Ew(2ϑR0) ≤ Eu(2ϑR0).

Furthermore, (5.27) implies

Eu(2ϑR0)

(2ϑR0)n
≤ ec Eu(1) ≤ E0

2n
.

Since R0 ∈ [58 , 78 ], we therefore conclude
Ew(ϑ) ≤ ϑn E0.

Next, Lemma 2.2, (5.40), (5.34) and (5.35) imply that in B 15θ i R
16
(0), we have

|w�| ≤ |w� − u�| + |u� − Ax1| + |Ax1|
< θ i+1 D0

2i+4 + θ i A + θ i A

≤ 3θ i A = A0ϑ. (5.42)

Thus, w maps into H[ ϕ0
ϑ2
, t∗] ∩ BA0ϑ(P0). Finally, (5.23) implies

a[ϕ0
ϑ2
, t∗] = a[2

(
θ iε0

2

)−3
θ i D0

2i
, t∗] = a[ 16D0

ε30θ
2i2i
, t∗] < θ

i

2
= ϑ

2
(5.43)

which is assumption (5.20) of Theorem 5.4. In other words, we have verified
all the assumptions of Theorem 5.4. Thus, with

i l = L , i+1l = l̂, ϑ = θ i , R = 1

2
and r = θ,

Theorem 5.4 implies with the choice of the constants in (5.29) that

sup
B
θ i+1 (0)

d(w, i+1l) ≤ Cθ1+α sup
B
θ i
2
(0)

d(w, i l)+ Cθ i+1
(
2

(ε0
2

)−3 D0

2i

)2

.
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Hence

sup
B
θ i+1 (0)

d(w, i+1l) ≤ Cθ i+1θα D0

2i−1 + Cθ i+1 D2
0

ε602
2i−8 (by (5.41))

< θ i+1 D0

2i+4 (by (5.31) and (5.34)).

Combined with (5.40), we obtain

sup
B
θ i+1 (0)

d(u, i+1l) ≤ sup
B
θ i+1 (0)

d(u, w)+ sup
B
θ i+1 (0)

d(w, i+1l)

< θ i+1 D0

2i+3 . (5.44)

This implies the first inequality of (5.26). Furthermore, note that i+1lϕ = wϕ
by definition (cf. Theorem 5.4). Since θ ∈ (0, 1

24),

|i+1lϕ(x)| = |wϕ(x)| ≤ 2

(
θ iε0

2

)−3
θ i D0

2i
≤

(
θ i+1ε0

2

)−3
θ i+1D0

2i+1 .

(5.45)

Thus, we conclude i+1l maps into H[
(
θ i+1ε0

2

)−3
θ i+1D0
2i+1 , t∗].

We now proceed with the proof of the second inequality of (5.26). Since i l�
and Ax1 are both affine functions and u(0) = P0,we have for every x ∈ Bθ i (0)

|i l�(θx)− Aθx1| = |(1− θ)i l�(0)+ θ(i l�(x)− Ax1)|
≤ (1− θ)i l�(0)+ θ |i l�(x)− Ax1|.

By the definition of the coordinates (�, ϕ), i l�(0) is the distance between the
point i l(0) and the geodesic ray L = {φ = 0}∪ P0. Since u(0) = P0, we have
that

i l�(0) = d(i l(0),L) ≤ d(i l(0), u(0)).

Thus,

|i l�(θx)− Aθx1| ≤ (1− θ)d(i l(0), u(0))+ θ |i l�(x)− Ax1|
≤ (1− θ)d(i l(0), u(0))+ θ |i l�(x)− u�(x)| + |u�(x)− Ax1|

Since

|i l�(x)− u�(x)| ≤ d(i l(x), u(x)).
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Thus,

|i l�(θx)− Aθx1| ≤ (1− θ)d(i l(0), u(0))+ θd(i l(x), u(x))+ θ |u�(x)− Ax1|
< θ i D0

2i
+ θ i+1

i δ (by (5.25))

= θ i+1
(

i δ + D0θ
−1

2i

)

which implies

sup
B
θ i+1 (0)

|i l�(x)− Ax1| ≤ θ i+1
(

iδ + D0θ
−1

2i

)
. (5.46)

Thus, for x ∈ Bθ i+1(0)

|u�(x)− Ax1|
≤ |u�(x)− i l�(x)| + |i l�(x)− Ax1|
≤ d(u(x), i l(x))+ |i l�(x)− Ax1| (by Lemma 2.2)

< θ i D0

2i
+ θ i+1

(
iδ + D0θ

−1

2i

)
(by (5.25) and (5.46))

< θ i+1
(

iδ + 2D0θ
−1

2i

)

< θ i+1
i+1∑

k=0

θ−1D0

2k−2 (by (5.25)). (5.47)

This is the second inequality of (5.26).
Finally, we will prove the third inequality of (5.26). Since l(x) = (Ax1, 0)

and since by (5.25)

iδ <

i∑

k=0

θ−1D0

2k−2 ≤ 8θ−1D0,

we conclude from (5.46) that

sup
B
θ i+1 (0)

d((i l�(x), 0), l(x)) = sup
B
θ i+1 (0)

|i l�(x)− Ax1| < 9θ i D0.
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Thus, for x ∈ Bθ i+1(0),

d(i l(x), (i l�(x), 0))

≤ (i l�(x))3|i lϕ(x)|

< θ3i (A + 9D0)
3 · 2

(
θ iε0

2

)−3
θ i D0

2i
(by (5.25))

≤ θ i 2
3 (A + 9D0)

3

ε30
D0. (5.48)

Combining the above two inequalities, we obtain

d(i l(x), l(x)) < θ
i

(
23 (A + 9D0)

3

ε30
+ 9

)
D0. (5.49)

Combined with (5.25),

sup
B
θ i+1 (0)

d(u, l) ≤ sup
B
θ i+1 (0)

d(u, i l)+ sup
B
θ i+1 (0)

d(i l, l)

< θ i

(
23 (A + 9D0)

3

ε30
+ 10

)
D0.

��
We now present the general case of the above theorem. This generalization

is needed in order to handle the case of approximate harmonic maps. The
assumptionsmade on v in Theorem5.7 should be comparedwith the properties
of the harmonic map observed in Remark 5.6.

Iterative Lemma 5.7 Given c0 ≥ 1, E0, A1, . . . , Am > 0, there exist θ ∈
(0, 1

24), ε0 > 0 and D0 ∈ (0, 1√
8
) that satisfy the following statement.

Assume the following:

• The map

l = (l1 ◦ (R1)−1, . . . , lm ◦ (Rm)−1, lm+1, . . . , lk− j ) : Bθ i (0)→ H
k− j

is such that Rμ is a rotation,

lμ(x) = (Aμx1, 0) in coordinates (�, ϕ) anchored at tμ∗ ∈ (−∞, 32 ) (cf. (5.12))

for μ = 1, . . . ,m and

lμ is identically equal to P0
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for μ = m + 1, . . . , k − j .

• The subset H[2
(
θ i ε0
2

)−3
θ i D0
2i , t

μ∗ ] satisfies

a[2
(
θ iε0

2

)−3
θ i D0

2i
, tμ∗ ] = a[ 16D0

ε30θ
2i2i
, tμ∗ ] < θ

i

2
(cf. (5.13)) (5.50)

for μ = 1, . . . ,m.
• The map

v = (v1, . . . , vk− j ) : (B1(0), g)→ H
k− j

is such that
v(0) = P0, Ev(ϑ) ≤ ϑn E0 (5.51)

and

for R ∈ (0, 78 ], a harmonic map w : (Bθ i R(0), g) → H
k− j

with
Ew(θ i R) ≤ Ev(θ i R) and a constant

c = θ
2D2

0

28
, (5.52)

we have

sup
B 15θ i R

16
(0)

d2
h (v,w) ≤

c0
(θ i R)n−1

∫

∂B
θ i R(0)

d2
h (v,w)d	 + cθ3i . (5.53)

• The metric g is a metric satisfying (5.21) for any smooth submanifold S of
B1(0).
• The map

i l = (i l1 ◦ (R1)−1, . . . , i l
m ◦ (R1)−1, i l

m+1, . . . , i l
k− j ) : Bθ i (0)→ H

k− j
,

is such that

i l
μ : Bθ i (0)→ H[

(
θ iε0

2

)−3
θ i D0

2i
, tμ∗ ] is an almost affine map

for μ = 1, . . . ,m (cf. Definition 5.3) and

i l
μ is identically equal to P0

for μ = m + 1, . . . , k − j .
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• The constant iδ > 0 is such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sup
B
θ i (0)

dh(v, i l) < θ
i D0

2i

sup
B
θ i (0)
|vμ� ◦ Rμ(x)− Aμx1| < θ i

iδ < θ
i

i∑

k=0

θ−1D0

2k−2 .
(5.54)

Then there exists a map

i+1l = (i+1l1 ◦ (R1)−1, . . . , i+1lm ◦ (Rm)−1, i+1lm+1, . . . , i+1lk− j ) : Bθ i+1 (0)→ H
k− j

such that

i+1lμ : Bθ i+1(0)→ H[
(
θ i+1ε0

2

)−3
θ i+1D0

2i+1 , tμ∗ ] is an almost affine map

for μ = 1, . . . ,m,

i+1lμ is identically equal to P0

for μ = m + 1, . . . , k − j and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
B
θ i+1 (0)

dh(v, i+1l) < θ i+1 D0

2i+1

sup
B
θ i+1 (0)

|vμ� ◦ Rμ(x)− Aμx1| < i+1δθ i+1 :=
(

i δ + 2D0θ
−1

2i

)
θ i+1 < θ i+1

i+1∑

k=0

θ−1D0

2k−2

sup
B
θ i+1 (0)

dh(v, l) < mθ i+1
(
23 (A + 9D0)

3

ε30
+ 10

)
θ−1D0.

(5.55)

Proof Let

Amin := min{A1, . . . , Am} and Amax := max{A1, . . . , Am}. (5.56)

For R = 1
2 , E0 > 0 as in (5.51) and the metric g given as in the statement

of the theorem, let

C ≥ 1 and α > 0 be as in Theorem 5.4. (5.57)

Let θ ∈ (0,min{ 124 , 1√
A
}) sufficiently small such that (5.30), (5.31) and (5.32)

are satisfied. Define

ε0 :=
(

Amin

22n+11c0

)
θ2 < 1. (5.58)
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Choose D0 ∈ (0, 1√
8
) such that

D0 < min

{
ε60

213mC
,

Amin

4
,
θε0

8

}
. (5.59)

As in (5.35), we obtain

sup
B
θ i (0)
|vμ� ◦ Rμ(x)− Aμx1| < θ iε0 < θ

i Aμ. (5.60)

Thus, assumption (5.16) of Lemma 5.2 is satisfied. As in (5.37)

V olg

{
x ∈ ∂Bθ i R(0) : vμ ◦ Rμ(x) /∈ H[2

(
θ iε0

2

)−3
θ i D0

2i
, tμ∗ ]

}

< (θ i R)n−1 2
2n+2ε0

Aμ
. (5.61)

Let

w = (w1, . . . , wk− j ) : Bθ i R(0)→ H
k− j

be the harmonic map defined as follows:

• Let

πμ : H→ H[2
(
θ iε0

2

)−3
θ i D0

2i
, tμ∗ ], μ = 1, . . . ,m

be the closest point projection map and

wμ : Bθ i R(0)→ H[2
(
θ iε0

2

)−3
θ i D0

2i
, tμ∗ ], μ = 1, . . . ,m

be the harmonic map with boundary value equal to πμ ◦ vμ.
• For μ = m + 1, . . . , k − j , let wμ be identically equal to P0.

By definition of πμ, the fact that i lμ(x) ∈ H[
(
θ i ε0
2

)−3
θ i D0
2i , t

μ∗ ] for μ =
1, . . . ,m and that i lμ(x) ≡ P0 for μ = m + 1, . . . , k − j , we conclude

d(v(x), w(x)) ≤ d(v(x), i l(x)), ∀x ∈ ∂Bθ i R(0). (5.62)
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Since θ < 1
24 , we have θ

i < 1
22i+1 , and thus (5.52) implies

cθ3i = cθ−2θ3i+2 < θ2i+2 D2
0

22i+9 . (5.63)

We thus obtain

sup
B 15θ i R

16
(0)

d2(v,w) ≤ c0
(θ i R)n−1

∫

∂B
θ i R(0)

d2(v,w)d	 + cθ3i (by (5.53))

<
22n+2ε0c0

Amin
sup

∂B
θ i R(0)

d2(v,w)+ cθ3i (by (5.61))

≤ 22n+2ε0c0
Amin

sup
∂B
θ i R(0)

d2(v, i l)+ cθ3i (by (5.62))

<
22n+2ε0c0

Amin
· θ2i D2

0

22i
+ cθ3i (by (5.54))

< θ2i+2 D2
0

22i+8 (by (5.58) and (5.63)), (5.64)

or more simply

sup
B 15θ i R

16
(0)

d(v,w) < θ i+1 D0

2i+4 . (5.65)

Combining (5.54) and (5.65), we obtain

sup
B
θ i
2
(0)

d(w, i l) ≤ sup
B
θ i
2
(0)

d(v,w)+ sup
B
θ i
2
(0)

d(v, i l) ≤ θ i D0

2i−1 . (5.66)

We will now check that we can apply Theorem 5.4. We fix R = 1
2 , E0 as in

(5.51), A0 = 3Amax, ϕ0 = 2
(
ε0
2

)−3 D0
2i and ϑ = θ i , First, note that since

projection into a convex set in an NPC space is distance non-increasing, we
obtain Ew

μ
(θ i ) ≤ Ev

μ
(θ i ) ≤ θ in E0 by (5.51). In analogy with (5.42) we

obtain

|wμ� ◦ Rμ| ≤ A0ϑ.

Thus, wμ maps into H[ ϕ0
ϑ2
, t∗] ∩ BA0ϑ(P0). Finally, in analogy with (5.43)

a[ϕ0
ϑ2
, tμ∗ ] < θ

i

2
= ϑ

2

123



G. Daskalopoulos, C. Mese

which is assumption (5.20) of Theorem 5.4. Thus, with

i l
μ = L , i+1lμ = l̂, ϑ = θ i , R = 1

2
and r = θ

in Theorem 5.4, we have by the choice of the constants in (5.57) that

sup
B
θ i+1 (0)

dH(w
μ, i+1lμ) ≤ Cθ1+α sup

B
θ i
2
(0)

dH(w
μ, i l

μ)+ Cθ i+1
(
2

( ε0
2

)−3 D0

2i

)2

.

This immediately implies

sup
B
θ i+1 (0)

d(w, i+1l) ≤ Cθ1+α sup
B
θ i
2
(0)

d(w, i l)+ mCθ i+1
(
2

(ε0
2

)−3 D0

2i

)2

hence

sup
B
θ i+1 (0)

d(w, i+1l) ≤ Cθ i+1θα D0

2i−1 + mCθ i+1 D2
0

ε602
2i−8 (by (5.66))

< θ i+1 D0

2i+4 (by (5.31) and (5.59)).

Combined with (5.65), we obtain as in (5.44)

sup
B
θ i+1 (0)

d(v, i+1l) < θ i+1 D0

2i+3 . (5.67)

This implies the first inequality of (5.55). Furthermore, since i+1lμϕ = wμϕ by
definition (cf. Theorem 5.4), we conclude via the analogous equation to (5.45)

that i+1lμ maps into H[
(
θ i+1ε0

2

)−3
θ i+1D0
2i+1 , t

μ∗ ].
We now proceed with the proof of the second inequality of (5.55). Seting

Aμ = 0 for μ = m + 1, . . . , k − j for simplicity, we deduce in a maner
identical to (5.46)

sup
B
θ i+1 (0)

|i lμ� ◦ Rμ(x)− Aμx1| ≤ θ i+1
(

iδ + D0θ
−1

2i

)
. (5.68)

Thus, for x ∈ Bθ i+1(0) we obtain as in (5.47)

|vμ� ◦ Rμ(x)− Aμx1| < θ i+1
i+1∑

k=0

θ−1D0

2k−2
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which is the second inequality of (5.55).
Finally, we will prove the third inequality of (5.55). Since lμ(x) =

(Aμx1, 0) and since by (5.54)

iδ <

i∑

k=0

θ−1D0

2k−2 ≤ 8θ−1D0,

we conclude from (5.68) that

sup
B
θ i+1 (0)

d((i l
μ
� ◦ Rμ(x), 0), lμ(x)) = sup

B
θ i+1 (0)

|i lμ� ◦ Rμ(x)− Aμx1| < 9θ i D0.

Thus, for x ∈ Bθ i+1(0) as in (5.48)

d(i l
μ ◦ Rμ(x), (i l

μ
� ◦ Rμ(x), 0)) ≤ θ i 2

3 (Aμ + 9D0)
3

ε30
D0.

Combining the above two inequalities, we obtain

d(i l
μ ◦ Rμ(x), lμ(x)) < θ i

(
23 (Aμ + 9D0)

3

ε30
+ 9

)
D0.

Combined with (5.54)

sup
B
θ i+1 (0)

d(vμ, lμ) ≤ sup
B
θ i+1 (0)

d(vμ, i l
μ ◦ Rμ)+ sup

B
θ i+1 (0)

d(i l
μ ◦ Rμ, lμ)

< θ i

(
23 (A + 9D0)

3

ε30
+ 10

)
D0.

Hence,

sup
B
θ i+1 (0)

d(v, l) ≤ sup
B
θ i+1 (0)

m∑

μ=1
d(i l

μ ◦ Rμ(x), lμ(x))

< mθ i

(
23 (A + 9D0)

3

ε30
+ 10

)
D0.

��
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5.5 Proof of the key technical Lemma 4.11

Proof The assumption (i) that g is sufficiently close to the Euclidean metric is
the condition given by (5.21). Let θ , ε0 and D0 be as in the iterative Lemma 5.7

and let c = θ2D2
0

28
. By assumption,

sup
B 1
2
(0)

dh(v, l) < D0. (5.69)

We will also assume v(0) = P0. In order to arrive at a contradiction, we
will apply iterative Lemma 5.7 starting with l = 0l and 0δ = D0 (cf.
assumption (5.54) of the iterative Lemma 5.7). To do so, we need to verify
assumption (5.50) of iterative Lemma 5.7; in other words, we need to show

a[2
(
θ iε0

2

)−3
θ i D0

2i
, tμ∗ ] = a[ 16D0

ε30θ
2i2i
, tμ∗ ] < θ

i

2
.

For this purpose, we note the constants θ and ε0 are chosen before the constant
D0 in the proof of iterative Lemma 5.7; hence, there is no loss of generality in
assuming that D0 is chosen sufficiently small (cf. (5.59)) such that

8D0

ε30
< 1 (5.70)

and

m

(
23 (A + 9D0)

3

ε30
+ 10

)
θ−1D0 <

1√
8
. (5.71)

For μ = 1, . . . ,m, recall that tμ∗ is the address of lμ (cf. (5.6)). Reordering if
necessary, we can assume

t1∗ = max{t1∗ , . . . , tm∗ }. (5.72)

Let i0 be the non-negative integer such that

θ i0+1
√
8
≤ cρ(0, t

1∗ ) <
θ i0
√
8
. (5.73)

Recall by (5.9) and (5.10) that t �→ cρ(0, t) =: f (t) satisfies

f ′(t) = f 3(t) with f (1) = 1.
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Solving this differential equation, we obtain

f (t) = 1√
3− 2t

and

t = 3

2
− 1

2 f 2(t)
.

In particular, since f (t1∗ ) = cρ(0, t1∗ ) < θ i0√
8
, we have

− t1∗ = −
3

2
+ 1

2 f 2(t∗)
> −3

2
+ 4

θ2i0
. (5.74)

Therefore, if

i ∈ {1, 2, . . . , i0} and |t1∗ − t | ≤ 16D0

ε30θ
2i2i
,

then by (5.70) and (5.74)

3− 2t > 3− 2t1∗ −
32D0

ε30θ
2i2i

>
8

θ2i0
− 4

θ2i2i
≥ 8

θ2i
− 4

θ2i
= 4

θ2i
.

In turn, this implies

cρ(0, t) = f (t) = 1√
3− 2t

<
θ i

2
.

In summary, we have shown

i ∈ {1, 2, . . . , i0} ⇒ a[ 16D0

ε30θ
2i2i
, t1∗ ] = max

{ϕ:|ϕ|≤ 16D0
ε30θ

2i 2i }
cρ(0, t

1∗ + ϕ) <
θ i

2
.

By (5.9), t �→ cρ(0, t) is an increasing function. Since t1∗ ≥ tμ∗ for μ =
2, . . . ,m, this implies that

i ∈ {1, 2, . . . , i0} ⇒ a[ 16D0

ε30θ
2i2i
, tμ∗ ] = max

{ϕ:|ϕ|≤ 16D0
ε30θ

2i 2i }
cρ(0, t

μ∗ + ϕ) < θ
i

2
.
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In other words, the assumption (5.50) of iterative Lemma 5.7 is satisfied for
i = 0, 1, 2, . . . , i0. We can now complete the proof by applying the iterative
Lemma 5.7 as follows:

Let 0l = l and 0δ = D0 (cf. assumption (5.54) of the iterative Lemma 5.7).
By (5.69) and Lemma 2.2,

⎧
⎪⎨

⎪⎩

sup
Bθ (0)

dh(v, 0l) < D0

sup
Bθ (0)
|vμ� ◦ Rμ − Aμx1| < 0δ < 4θ−1D0.

We apply the iterative Lemma 5.7 for i = 1, 2, . . . , i0 to obtain

sup
B
θ i0+1 (0)

dh(v, l) < mθ i0+1
(
23 (A + 9D0)

3

ε30
+ 10

)
θ−1D0. (5.75)

Thus,

θ i0+1
√
8
≤ cρ(0, t

1∗ ) (by (5.72) and (5.73))

= dH(P0, l
1 ◦ (R1)−1(0)) (by (5.11))

= dH(v
1(0), l1 ◦ (R1)−1(0)) (by the assumption that v(0) = P0)

≤ dh(v(0), l(0))

≤ mθ i0+1
(
23 (A + 9D0)

3

ε30
+ 10

)
θ−1D0 (by (5.75))

<
θ i0+1
√
8

(by (5.71)).

This contradicts our assumption that v(0) = P0. ��

6 Two dimensional domains

In this section, we prove Theorem 1.7, the regularity of harmonic maps from
two dimensional domains. We first need the following preliminary lemma.

Lemma 6.1 Let u : (�, g) → (T , dT ) be a harmonic map from an n-
dimensional Lipschitz Riemannian domain, 	 a connected submanifold of �
(possibly	 = �) and T ′ a stratum of T (possibly T ′ = T ). If u(	)∩T ′ �= ∅
and 	 ⊂ R(u), then u(	) ⊂ T ′. Moreover, there exists a stratum T ′ of T
such that u(R(u)) ⊂ T ′.
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Proof Since u(	) ∩ T ′ �= ∅, we have that W := u−1(T ′) ∩	 is a nonempty
subset of	. Assume on the contrary that u(	) �⊂ T ′, and let x be a boundary
point of W in 	. Since 	 ⊂ R(u), there exists r > 0 such that u(Br (x))
is contained in a single stratum. Since Br (x) ∩ W �= ∅, we conclude that
u(Br (x)) ⊂ T ′ contradicting the fact that x is a boundary point of W in 	.
This proves the first assertion. Since S(u) is of Hausdorff codimension 2 the
set R(u) is connected. (This follows easily from [44] Corollary 4.) Thus, the
second assertion follows from the first. ��
Proof of Theorem 1.7. We first prove that if u : 	 → (T , dT ) is a harmonic
map from a Riemann surface, then the set S>1(u) of its singular points of
order > 1 is discrete. Assume on the contrary that there exists xi ∈ S>1(u)
such that xi → x0. By Lemma 4.5, Ordu(xi ) ≥ 1 + ε0 for some ε0 > 0.
By Theorem 3.5, the order is a decreasing limit of continous functions and
hence upper semicontinuous. Thus, x0 ∈ S>1(u). Identify a neighborhood of
x0 = 0 to a disk D via normal coordinates. By letting σi = 2|xi | and taking
a subsequence, if necessary, we can assume ζi = xi

σi
→ ζ∗ and the blow up

maps uσi = (Vσi , vσi )with blow-up factor
√

I u(σi )
σi

converge locally uniformly
in the pullback sense (cf. Lemma 4.4) to

u∗ = (V∗, v∗) = (V∗, v1∗, . . . , vk− j∗ ) : B1(0)→ C
j × Y1∗ × · · · × Yk− j∗.

By Lemma 3.10, Ordu∗(ζ∗) ≥ 1+ε0, and thus the homogeneity of u∗ implies
that Ordu∗(x) ≥ 1 + ε0 for every point on the ray starting at 0 and going
through ζ∗. By rotating if necessary, we assume that this ray is the positive
x-axis and ζ∗ = (12 , 0). Thus, V∗ must be identically constant since otherwise
V∗ is a harmonic map into C

j with order ≥ 1 + ε0 along the x-axis which is
impossible. Since u∗ is a non-constant map, it follows that v∗ must be non-
constant.

We will now do a similar argument with v∗ in order to get a contradiction.
From the proof of Lemma 4.5, we observe that there exists a sequence of

harmonic maps wi : D→ H
k− j

converging locally uniformly to v∗. For sim-
plicity, wewill assume that k− j = 1. (Otherwise, pick one of the non-constant
components of v∗ and the corresponding component of wi .) By homogeneity,
v−1∗ (v∗(0)) is a union of rays emanating from the origin inD and the connected
components of D\v−1∗ (v∗(0)) are sectors of D. Furthermore, Claim 1 in the
proof of Lemma 3.13 says that v∗ must map every connected component of
D\v−1∗ (v∗(0)) into a geodesic ray starting at v∗(0). Since Ordv∗ ≥ 1 + ε0
along the positive x-axis, the postive x-axis is one of the rays in v−1∗ (v∗(0)).
We choose a sufficiently small neighborhood N of ζ∗ = (12 , 0) such that N
intersects exactly two sectors of D\v−1∗ (v∗(0)). Thus, v∗(N ) is contained in a
union of two geodesic rays. Harmonicity of v∗ implies that v∗(N ) is a geodesic
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segment. After identifying the geodesic segment with an interval [a, b] in the
real line, v∗ is a harmonic function inN with order ≥ 1+ ε along the x-axis,
a contradiction. Thus, we have shown that S>1(u) is a discrete set.

Next we prove that the set S j (u) (cf. (4.15)) is discrete. Indeed, on the
contrary, suppose that there exists a sequence xi ∈ S j (u) → x� ∈ S j (v).
Let u = (V, v) be a local representation at x�. By Corollary 4.33, there exists
ε0 > 0 such that Ordv(xi ) ≥ 1+ε0. Identify a neighborhood of x0 = 0withD
and take as beforeσi = 2|xi | and ζi = xi

σi
→ ζ∗ such that the sequence of blow-

up maps vσi of v at x� with blow-up factor
√

I v(σi )
σi

is a sequence of asymptotic
harmonic maps and converges locally uniformly in the pullback sense to a
homogeneous harmonic map v0. Lemma 4.34 on the upper semicontinuity of
order implies Ordv0(ζ�) ≥ 1+ ε0. As before, the homogeneity of v0 implies
Ordv0 ≥ 1+ ε0 along a the ray. This contradicts Lemma 4.10 (cf. (4.18)).
We have thus shown that the singular set of u is discrete and hence given

x ∈ S(u), there is r > 0 such that Br (x)∩S(u) = {x}. Thus ∂Br (x) ⊂ R(u).
Applying Lemma 6.1 for	 = ∂Br (x), we have that u(∂Br (x)) ⊂ T ′ for some
stratum T ′ of T . Now recall the existence of a convex exhaustion function
f : T ′ → [0,∞) (cf. [55]). Since u(∂Br (x)) is closed, there exists c > 0
such that u(∂Br (x)) ⊂ {p ∈ T ′ : f (p) ≤ c}. Since sublevel sets of a convex
function are convex, we conclude u(Br (x)) ⊂ {p ∈ T ′ : f (p) ≤ c}, and
hence x ∈ R(u). This contradicts the assumption that x ∈ S(u) and proves
S(u) = ∅. ��

7 Proof of Theorem 1.2 and Corollary 1.3

Let u : M̃ → (T , dT ) be a �-equivariant harmonic map as in the state-
ment of Theorem 1.2. By Lemma 6.1, there exists a stratum T ′ of T such that
u(R(u)) ⊂ T ′ and therefore u(M̃) ⊂ T ′whereT ′ denotes theWeil–Petersson
completion of T ′. Since T ′ is isometric to a product of lower dimensional
Teichmüller spaces with the Weil–Petersson metric, the strong negative cur-
vature of T ′ together with Theorem 1.5 and Theorem 1.6 imply, as in [21]
or [14], that u is pluriharmonic on the regular set R(u) (also cf. [48]). More
precisely, on R(u), we have that

D′′d ′u ≡ 0 ≡ D′d ′′u and
∑

i, j,k,l

Ri jkld
′′ui ∧ d ′u j ∧ d ′uk ∧ d ′′ul ≡ 0.(7.1)

Next, applying [44] Lemma 2, there exists a holomorphic disc D through
any x ∈ S(u) such that

H1(S(u) ∩ D) = 0 (7.2)
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where H1 denotes 1-dimensional Hausdorff measure. We next need the fol-
lowing

Claim 7.1 The restriction of u to D is a harmonic map.

Proof Let w : D → (T ′, dT ′) be a harmonic map with w
∣∣
∂D
= u

∣∣
∂D

. We
will show u = w, thereby proving the claim. Fix ϕ ∈ C∞c (D) with 0 ≤
ϕ ≤ 1. For ε > 0, (7.2) implies that there exists a covering {Bri (xi )}Ni=1 of
sup(ϕ) ∩ S(u) ⊂ D such that

∑N
i=1 ri < ε. Let φi be a smooth function such

0 ≤ φi ≤ 1, φi ≡ 0 in Bri (xi ), φi ≡ 1 outside B2ri (xi ) and |∇φi | < 1
ri
.

Define φε =  N
i=1φi and φi

ε =  j �=iφ j . Since u is pluriharmonic in R(u),
its restriction u

∣∣
D\⋃N

i=1 Bri (xi )
is a harmonic map. Thus, d2(u, w) is weakly

subharmonic in D\⋃N
i=1 Bri (xi ) (cf. [27] Lemma 2.4.2 and Remark 2.4.3).

Thus,

∫

D

φε∇ϕ · ∇d2(u, w)dxdy +
N∑

i=1

∫

B2ri (xi )

ϕφi
ε∇φi · ∇d2(u, w)dxdy

=
∫

D

∇(ϕφε) · ∇d2(u, w)dxdy ≥ 0.

Since d2(u, w) is a Lipschitz function in supp(ϕ), we can estimate

N∑

i=1

∫

B2ri (xi )

∣∣∣ϕφi
ε∇φi · ∇d2(u, w)

∣∣∣ dxdy ≤ C
N∑

i=1
r−1i

∫

B2ri (xi )

dxdy

≤ C
N∑

i=1
ri < Cε.

Letting ε → 0, we obtain

∫

D

∇ϕ · ∇d2(u, w)dxdy ≥ 0.

In other words, d2(u, w) is a weakly subharmonic function on D. Since u and
w agree on the boundary ∂D, we conclude that u = w on D. ��

Now Theorem 1.7 implies that the image of u lies in the stratum T ′. From
here the proof of Theorem 1.2 follows from the strong negativity of the cur-
vature of T ′ as in [48].

We now proceed with the proof of the Corollary 1.3. Notice that by the
assumption that ρ is sufficiently large, [15] Corollary 1.3 implies that there
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exists a finite energy ρ-equivariant harmonic map

u : M̃ → T .

By Theorem 1.2, there exists a stratum T ′ of T such that u is a plurihar-
monic map into T ′. Since the image of u is invariant under all pseudo-Anosov
transformations,

T ′ = T and u(M̃) ⊂ T .

This completes the proof of the Corollary.

8 Proof of Theorem 1.1 and Corollary 1.4

Proof of Theorem 1.1. At this point, we argue more or less as in Jost-Yau [26].
We include the details here for the sake of completeness. Let q : M̂ → M̄
be a smooth resolution of singularities with exceptional divisor 	 and let
M = M̂\	. We label the connected components of	 by	 j , j = 1, . . . J and
the irreducible components of 	 j by 	l

j , l = 1, . . . , L j . We can also assume
that 	 j consists only of normal crossings. We endow M with a Poincare type
metric (originally due to Cornabla and Griffiths [9]) defined as follows: Let
σ j,l be a canonical section of the line bundleO(	l

j ) vanishing along	
l
j . For ω̄

a Kähler a form on M induced from a projective embedding of M̄ we consider
the metric associated to the Kähler form

ω =
∑

j,l

i

2
∂∂̄ log log |σ j,l |−2h j,l

+ Cq∗(ω̄) (8.1)

where h j,l is a Hermitian metric on O(	l
j ) and C > 0 is chosen sufficiently

large such that ω is positive. Let g be the Kähler metric associated to ω. By
[26, Section 1], g has bounded diameter and bounded Ricci curvature.

For each connected component	 j of M̂\M , the end E j of M corresponding
to 	 j can be written topologically (not metrically) as

E j � ∂E j × R
+. (8.2)

To see this, consider the holomorphic section σ j vanishing on 	 j and Hermi-
tion metric h j defined by

σ j = σ j,1 ⊗ · · · ⊗ σ j,L j , h j = h j,1 ⊗ · · · ⊗ h j,L j

and use the gradient flow of |σ j |2h j
to decompose into level sets.
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Retraction of each end E j to its boundary ∂E j via (8.2) induces a deforma-
tion retraction of M into its core

rc : M → Mc := M\
⋃

j

E j . (8.3)

The same is true forM′, by taking a resolution of singularities of a compact-
ification ofM′ and arguing as for M .

Since M andM′ are homotopy equivalent, we can induce via (8.3) a smooth
homotopy equivalence

kc : Mc\∂Mc →M′.

Under the codimension assumption of M̄\M given in the statement of Theo-
rem 1.1, the energy of the map rc is bounded with respect to the metric g on
M by [26, p.487]. Hence, by the smoothness of kc and the compactness of Mc,
we conclude that

f := kc ◦ rc : M →M′

defines a smooth homotopy equivalence of finite energy. Since � contains
pseudo-Anosov elements associated to different measured foliations, � is suf-
ficiently large. We thus obtain from Corollary 1.3 that there is a pluriharmonic
map of finite energy

u′ : M →M′

which is also a homotopy equivalence.
Next, consider the embedding of the moduli space of Riemann surfaces

M = T /� in D/� where D is the Siegel upper half space of degree g, �

is the Siegel modular group and let D/�
SB B

denote the Satake-Baily-Borel

compactification of D/� (cf. [5]). Let MSB B
denote the closure of M in

D/�
SB B

. Since MSB B\M has more than one connected components (cf.
[24] Proposition 4.1), it follows that M has more than one ends. Since the
quotient mapM′ →M is a proper surjective map,M′ must have more than
one ends as well. ��
Lemma 8.1 The map u′ is holomorphic or conjugate holomorphic, and its
rank is equal to 2 dimCM.

Proof Let m = dimCM. We claim that H2m−1(M,R) �= 0. Assume on the
contrary that H2m−1(M,R) = 0. Since u′ is a homotopy equivalence, it also
implies that H2m−1(M′,R) = 0 and, since M′

c is homotopy equivalent to
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M′, H2m−1(M′
c,R) = 0. This contradicts the fact that M′ has more than

one ends. Indeed, since H2m(M′
c,R) � H0((M′

c, ∂M′
c),R) = 0, the exact

sequence

H2m(M′
c,R)→ H2m((M′

c, ∂M′
c),R)→ H2m−1(∂M′

c,R)→ H2m−1(M′
c,R)

implies

H2m((M′
c, ∂M′

c),R) � H2m−1(∂M′
c,R)

and by Poincare Lefschetz duality

H0(M′
c,R) � H0(∂M′

c,R).

This is a contradiction since M′
c is connected and ∂M′

c is not. Hence
H2m−1(M,R) �= 0. Since u′ is a homotopy equivalence it must carry a non-
trivial 2m − 1 homology class to a non-trivial 2m − 1 homology class and
hence it must have rank ≥ 2m − 1 somewhere. Since u′ is holomorphic or
conjugate holomorphic by Theorem 1.2, it must have maximal rank = 2m. ��

By changing orientations if necessary we can assume u′ is holomorphic.
Let

u : M →M

denote the composition of the quotient map to M and u′, which is also holo-
morphic. By embeddingM in D/�, we obtain a holomorphic map

u : M → D/�

which by [6] extends to a holomorphic map

û : M̂ → D/�
SB B

where M̂ is a smooth compactification of M as before.

Lemma 8.2 The map û as given above takes M̂\M into MSB B\M. In par-
ticular, u and hence also u′ is proper.

Proof Let p ∈ M̂\M and

v : D = {z ∈ C : |z| < 1} → M̂, v(0) = p
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be such that

γt := v({|z| = t}) homotopically nontrivial in M, length(γt )→ 0.

Since u : M → M is a homotopy equivalence, u(γt ) is homotopically
nontrivial on M and since the domain metric has bounded Ricci curvature,
we obtain by the Schwartz Lemma [42] length(u(γt )) → 0. It follows that

û(p) ∈ D/�
SB B\D/�, hence û(p) ∈MSB B\M which proves the lemma.

��
Since u′ is proper and has maximal rank, it is onto. Given y ∈M, u′−1(y)

is a compact subvariety of M and hence, if of positive dimension, it is homo-
logically nontrivial. Since u′ is a homotopy equivalence and maps u′−1(y) to
{y}which is homologically trivial, this is a contradiction. It follows that u′ is a
covering map and since it is also a homotopy equivalence it must have degree
1. The fact that u′ is a biholomorphism follows as in [48, proof of Theorem 8,
p.110].

Proof of Corollary 1.4. Assume on the contrary that there exists a sufficiently
large homomorphism ρ : �→ �. As in [21, Lemma 8.1], we first construct
a finite energy equivariant Lipschitz map f : M̃ = G/K → T . Corollary 1.3
implies that there exists a �-equivariant harmonic map

u : M̃ → (T , dT ).

By Lemma 6.1, there exists T ′ ⊂ T such that u(R(u)) ⊂ T ′. We are going
to show that u is constant, so with an intent of arriving at a contradiction, let’s
assume that u is non-constant. As in [14] Corollary 14 and Lemma 15, our
regularity Theorem 1.5 and Theorem 1.6 imply that u is totally geodesic on
the regular setR(u). In other words, u satisfies on R(u)

∇du = 0. (8.4)

As in [14] proof of Theorem 1, (8.4) combined with Theorem 1.5 implies that
u is totally geodesic on the entire M̃ in the sense that u maps geodesics to
geodesics.

Since the domain is an irreducible symmetric space, u must be a totally
geodesic immersion into a stratum T ′. This is clearly a contradiction if the
symmetric space has rank ≥ 2. In the rank 1 case, the contradiction follows
from [57] Theorem 1.2. We thus conclude that u is constant, hence ρ(�) fixes
a point in Teichmüller space. Since the action of the mapping class group is
properly discontinuous, this implies that ρ(�) is finite contradicting the fact
that ρ is sufficiently large. ��
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