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Abstract We prove the holomorphic rigidity conjecture of Teichmiiller space
which loosely speaking states that the action of the mapping class group
uniquely determines the Teichmiiller space as a complex manifold. The method
of proofis through harmonic maps. We prove that the singular set of a harmonic
map from a smooth n-dimensional Riemannian domain to the Weil-Petersson
completion 7 of Teichmiiller space has Hausdorff dimension at most n — 2,
and moreover, u has certain decay near the singular set. Combining this with
the earlier work of Schumacher, Siu and Jost-Yau, we provide a proof of the
holomorphic rigidity of Teichmiiller space. In addition, our results provide as a
byproduct a harmonic maps proof of both the high rank and the rank one super-
rigidity of the mapping class group proved via other methods by Farb—-Masur
and Yeung.

1 Introduction
1.1 Statement of results and brief history

The main result of the paper is the following statement.
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Theorem 1.1 (Holomorphic Rigidity of Teichmiiller Space). Let I" denote the
mapping class group of an oriented surface S of genus g > 2. Assume that
I acts (as a discrete automorphism group) on a contractible Kdhler manifold
M such that there is a finite index subgroup T of T satisfying the properties:

(i) M:=M /T is a smooth quasiprojective variety.
(i) M admits a compactification M as an algebraic variety such that the
codimension of M\M is > 3.

Then M is equivariantly biholomorphic or conjugate biholomorphic to the
Teichmiiller space T of S where T" acts on T as the mapping class group.

We will derive Theorem 1.1 as a consequence of the following more general
holomorphic rigidity Theorem and its Corollary.

Theorem 1.2 Let M be a complete, finite volume Kdhler manifold with uni-
versal cover M and (M) finitely generated. Let I" be the mapping class
group of an oriented surface S of genus g and p marked points such that
k =3¢ —34p >0, T the Weil-Petersson completion of the Teichmiiller
space T of S and p : m (M) — T a homomorphism. If there exists a finite
energy p-equivariant harmonic map u : M — T, then there exists a stratum
T’ of T such that u defines a pluriharmonic map into T'. Furthermore,

Z R,'jkld”u,' A d/uj AdugAnd'up=0
i,j.k,l

where R;ji; denotes the Weil—Petersson curvature tensor. In particular, if addi-
tionally the (real) rank of u is > 3 at some point, then u is holomorphic or
conjugate holomorphic.

The assumption about the existence of a finite energy p-equivariant har-
monic map to the Weil—Petersson completion 7 of Teichmiiller space holds
in many important cases. For example, if M is compact and p is sufficiently
large (see definition below), then harmonic maps exist. More generally, this is
also true if we replace the assumption that M is compact by the assumption
M is complete, satisfies the assumptions of Theorem 1.2 and admits a finite
energy map to T.

Recall from [36, p.142] or [15, Definition 2.1] that two pseudo-Anosov
elements of the mapping class group are called independent if their fixed point
sets in the space of projective measured foliations do not coincide. A subgroup
of the mapping class group I is called sufficiently large if it contains two
independent pseudo-Anosov elements. A homomorphism p into the mapping
class group is called sufficiently large if its image is sufficiently large.

By combining Theorem 1.2 above with [15, Corollary 1.3] we obtain the
following.
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Corollary 1.3 Let M be a complete, finite volume Kdhler manifold with uni-
versal cover M and w1 (M) finitely generated. Let T be the mapping class
group of an oriented surface S of genus g and p marked points such that
k=3g—3+4+p>0andp: mi (M) — I' a homomorphism that is sufficiently
large. If there exists a finite energy p-equivariant map M — T, then there
exists a p-equivariant pluriharmonic map u : M — T. Furthermore,

Z R,‘jkld”u[ AN d/u_,- AN a'/uk AN d”ul =0
i,j.k,1

where R;ji; denotes the Weil—Petersson curvature tensor. In particular, if addi-
tionally the (real) rank of u is > 3 at some point, then u is holomorphic or
conjugate holomorphic.

The rank condition also holds in many important applications, for example
in Theorem 1.1. This is usually verified by showing that certain nontrivial
homology classes in M of degree > 3 are mapped nontrivially under u (see
for example [48]).

The following theorem, due to Farb—Masur and Yeung, also follows as a
byproduct of our methods.

Corollary 1.4 (Superrigidity of the MCG, cf. [17,59]). Let M = G/K be
an irreducible symmetric space of noncompact type other than SOo(p, 1)/
SO(p) x SOQ), SUp(p, 1)/S(U(p) x U(1)). Let A be a discrete subgroup
of G with finite volume quotient and let I" denote the mapping class group of an
oriented surface of genus g and p marked points such thatk = 3g—3+p > 0.
If the rank of M is > 2, we assume additionally that A is cocompact. Then
there exists no sufficiently large homomorphism p : A — T.

The phenomenon of strong rigidity was discovered by Mostow for a large
class of locally symmetric spaces of nonpositive curvature. The famous
Mostow rigidity theorem of 1968 [39] states that if two compact hyperbolic
manifolds of dimension greater than two have the same fundamental group,
then they are isometric. In particular, Mostow’s result says that for compact
hyperbolic manifolds, the metric structure is rigidly determined by the topol-
ogy. This statement was later extended to other locally symmetric spaces of
nonpositive curvature, not necessarily compact but satisfying a finite volume
assumption (cf. [40,41]).

A natural question is whether structures other than metric structures are
also rigidly determined by the topology. One such case is holomorphic rigid-
ity within the class of Kihler manifolds. In fact, a weak form of holomorphic
rigidity was discovered earlier in the 1960 work of Calabi-Vesentini. [7]. They
showed that compact quotients of bounded complex symmetric domains of
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complex dimension at least two do not admit any nontrivial infinitesimal holo-
morphic deformations. In the late 1970’s, Yau conjectured that strong rigidity
holds for compact Kéhler manifolds of complex dimension at least two and
negative sectional curvature. This was subsequently proved in 1980 using har-
monic maps by Siu [48] in the case when one of the manifolds has strong
negative curvature.

Siu’s work inspired an outburst of important results in geometric superrigid-
ity including the work of Corlette [8], Mok-Siu-Yeung [37], Jost-Yau (cf. [23]
and the references therein) and Gromov—Schoen[21] among others. The proofs
of all the aforementioned results use harmonic maps. Indeed, one starts with
the work of Eells-Sampson [16] which asserts that if two Riemannian man-
ifolds are homotopy equivalent and if one of them is non-positively curved,
then there there exists a harmonic map from the manifold without the curvature
condition to the other manifold which is also a homotopy equivalence. Then
a Bochner-type formula leads to the conclusion that the harmonic map must
preserve either the metric or the holomorphic structure. The passage through
harmonic maps is necessary because the system of equations which deter-
mines that a map is either totally geodesic or holomorphic are overdetermined
whereas the system of harmonic map equations is not.

Siu [49] and Jost-Yau [25] extended Siu’s result to a class of non-compact
symmetric domains with appropriate metric properties at infinity. Given that
Teichmiiller space resembles a complex symmetric domain and admits a metric
of strong negative curvature (as we will see in the next paragraph), Jost and
Yau also attempted to prove holomorphic rigidity of Teichmiiller space [26].
Their proof was incorrect.

Before we continue, we briefly review some important properties of the
Teichmiiller space 7 (of an oriented surface S of genus g and p marked points
such that k = 3¢ — 3 4+ p > 0) that are relevant to this article. First recall
that 7 endowed with the Weil-Petersson metric G, is a Kihler manifold [2]
whose sectional curvature is negative [50] and [52]. Moreover, the curvature
tensor of Gy, is strongly negative in the sense of Siu [45], which makes it
plausible that 7 is holomorphicaly rigid. However, the Weil-Petersson metric
is incomplete [54] and [10], and this causes major difficulties in pursuing Siu’s
approach.

Let (7, d=) denote the metric completion of (7, G ). The metric space
(7, d=) is a complete NPC space; i.e. a geodesic space with non-positive
curvature in the sense of Alexandrov [15,53] and [58]. Set theoretically, T
is nothing but the augmented Teichmiiller space [1,35]. Its boundary 97 can
be stratified by smooth open strata corresponding to deformations of nodal
surfaces formed by pinching a finite set of nontrivial, nonperipheral, simple
closed curves [35] and [53]. In other words, 7 is a stratified space (with the
original Teichmiiller space 7 being the top dimensional open stratum).
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Given the incompleteness of Teichmiiller space, one is tempted to replace
7 by T and study harmonic maps to the NPC metric space 7. Harmonic maps
to metric spaces was initiated in the seminal paper of Gromov and Schoen
[21] where they study harmonic maps to Euclidean buildings (a special type
of Riemannian polyhedra with non-positive curvature in the sense of Alexan-
drov). Their work was subsequently extended for harmonic maps into general
NPC spaces by Korevaar-Schoen and Jost [27,28] and [23]. For other work on
harmonic maps to singular spaces relevant to this paper, we refer to [11] and
[14].

In [21] (as well as in [11] and [14]), the main technical point is how to
handle the singularities of the harmonic map. To do this, one gains control of
the map near the set of points that do not map to smooth points in the target.
We do the same in this paper, but there are additional difficulties stemming
from the non-local compactness of 7. By contrast, the spaces studied by [21]
were locally compact. The most important technical challenge tackled in this
paper is to overcome the difficulty presented by the non-local compactness of
7.

Before attempting to study harmonic maps, one needs to get a good
understanding of the geometry of 7 near its boundary. In [35], Masur ini-
tiated the study of the Weil-Petersson metric near the boundary of 7. In
recent years, many authors have extended Masur’s work to establish stronger
asymptotic properties of the Weil-Petersson geometry. See for example,
[15,32,33,45,53,56,58] and [22] among many others. In [13], we proved
stronger C'-estimates which will be used in this paper. These estimates dif-
fer from the previously known derivative estimates because they estimate the
asymptotic difference of the Weil-Petersson metric and a product metric given
on the product of the boundary strata and its normal space (which will be
described in more detail below, cf. Sect. 1.2).

We end this summary by stating the two main technical theorems that allow
us to control the harmonic map near its singular set. Below we denote by R (1)
to be the set of points in the domain that possess a neighborhood mapping into
a single stratum in T and S(u) to be its complement.

Theorem 1.5 Let (T, Gy)) denote the Teichmiiller space of an oriented sur-
face of genus g and p marked points such that k = 3g — 3 4+ p > 0 with the
Weil—Petersson metric and let (T, d=) be its metric completion. If (2, g) is
an n-dimensional Lipschitz Riemannian domain andu : (2, g) — (7, dF) is
a harmonic map, then

dimy, (S(u)) <n-2.
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Theorem 1.6 Let u : (2,g) — (7T, d7) be as in Theorem 1.5. For any
compact subdomain 21 of 2, there exists a sequence of smooth functions V;
with ¥; = 0 in a neighborhood of S(u) NQ, 0 <y <1land yi(x) — 1 for
all x € 1\S(u) such that

lim / IVVu||Vy;| du = 0.
i—o0 Jo

Theorem 1.6 should be viewed as an estimate on the growth of the norm of
the gradient Vu of u near its singular set. The existence of the sequence ;
allows us to justify Stoke’s Theorem, a crucial step in applying the Bochner
technique to rigidity.

1.2 Description of the main technical points

As mentioned before, all the above theorems are proved by using the theory of
harmonic maps to metric spaces. The proof takes advantage of the important
special feature of the metric space 7 near a boundary point—it is asymptoti-
cally isometric to the product of a smooth open stratum 7’ C 97 (which has
the structure of a smooth Kihler manifold) and a simpler metric space H or
its product H x - - - x H (cf. [15,32,33,53,56,58] and [13]). The metric space
H is called the model space. Thus, for a harmonic map u :  — 7 near a
singular point x € §(u), we can write u = (V, v) where V is the regular com-
ponent that maps into the smooth manifold 7" and v is the singular component
mapping into Hor H x - - - x H.

The difficulty in analyzing u = (V, v) is that the component maps V and v
are not necessary harmonic. This situation is further complicated by the fact
that the singular component v may be the non-dominant component (i.e. the
higher order term) of u. Moreover, one cannot use tools from elliptic PDE’s (as
one would for maps into Riemannian manifolds) because the harmonic maps
may a priori have a large singular set. Nonetheless, in this paper we will push
forward the harmonic map theory by overcoming two major obstacles. The
first obstacle is that the Weil-Petersson metric near the boundary of 7 is not
a product, but only asymptotically a product. The second obstacle is the non-
local compactness and degenerating geometry of 7. The techniques that we
will introduce to handle these issues are the main accomplishments of this
paper and the crux of the proofs of the Regularity Theorems 1.5 and 1.6.

OVERCOMING OBSTACLE 1: MONOTONICITY FORMULA AND THE
ORDER FUNCTION. A key technical tool in analyzing the structure of a har-
monicmapu : (2, g) — (X, d) fromaRiemannian domain into an NPC space
is the order function Ord" of u. If u is a harmonic function, then Ord" (xg)
is the order with which u attains its value u(xg) at x¢. In its simplest form, the
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order is the limit as » — 0 of the scale invariant ratio

r |Vul? dp
rE(r) _ ‘Lr (x0)

I(r) / d%(u. Po)d®
9By (x0)

where the numerator is » times the energy E(r) of u in a geodesic ball B, (x¢)
of radius r centered at xg € Q and the denominator I (r) is the L>-distance
between Py € X and u on the boundary 9 B, (xg). A ratio of this type had been
previously used in the study of various elliptic PDE problems (e.g. [3,4,20,29—
31,38]), but Gromov and Schoen [21] were the first to introduce this idea in
the context of harmonic maps to NPC metric spaces.

The existence of the order function is due to the monotonicity (in the param-
eter r) of the ratio (1.1) which in turn follows from the domain and target
variations of harmonic maps. The idea for the domain variation is as fol-
lows. Let B, (xp) be a geodesic neighborhood of xp with normal coordinates
x = (x!, ..., x") centered at xo = 0 and consider a diffeomorphism of the
form F;(x) = (1 + tn(x))x where n has compact support in B, (xo) (hence F;
is the identity outside B, (xp)). A domain variation of u is the one-parameter
family u; = u o Fy with ug = u. Since the total energy function

(1.1)

t > EY :/Q|wt|2du (1.2)

has a minimum at t = 0, we can differentiate the above equation in ¢ and
obtain the domain variation formula

- an 2 0n . 0u  Ou
0= VulPQ—mn—|Vul* Y x'— 42 gt —x— . —dp.
/Br(xo)l ule mn =Vl ; * ox! + ijkg axlx dxJ dxk H

(1.3)
For harmonic maps between smooth Riemannian manifolds, the domain vari-
ation formula yields the well known monotonicity of the scale-invariant (with
respect to dilation of the domain) energy,

rz_”E(r) = rz_”/ |Vu|2d,u.
By (x0)

This has played an important role in the regularity theory of harmonic maps
between smooth Riemannian manifolds (notably in the Schoen-Uhlenbeck e-
regularity theorem [SU]J). Using a generalization of the notion of energy, for
harmonic maps to NPC spaces (cf. [21] and [27]), the domain variation formula
readily generalizes to the case of NPC targets.
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Gromov and Schoen’s innovation in [21] was to improve the classical mono-
tonicity formula to obtain a more sophisticated tool for studying harmonic
maps into NPC spaces. The idea is to combine the domain variation formula
with the convexity of the distance function d on the target NPC space X . Indeed,
they consider target variations of u by pulling it back along a geodesic to a fixed
point. More precisely, fix xo € 2, Py € X and a non-negative function ¢ with
compact support in a neighborhood B, (xg) of xg. Consider an one-parameter
family of maps u,, for t > 0 sufficiently small, by setting u; (x) to be the point
on a geodesic between Py and u(x) at a distance (1 — ¢ (x))d (Py, u(x)) from
Pp. The minimizing property of the energy of u yields the subharmonicity of
the function d(u, Py); more precisely, d(u, Py) satisfies in the weak sense the
differential inequality (cf. [21, Proposition 2.2])

Ad?(u(x), Py) > 2|Vul?. (1.4)

Combining the domain variation formula (1.3) with the target variation formula
(1.4), they obtain the monotonicity formula (cf. [21, proof of (2.5)])

E'w) 1'0) _
E(r) I1(r) —

o(r)

where O(r) measures how far away the domain metric g is from being
Euclidean. The monotonicity of the ratio (1.1) follows immediately from this
differential inequality if O (r) is identically equal to 0. If O (r) not equal to 0,
one simply adjusts the ratio (1.1) by multiplying it by e” ? for an appropriate
choice of ¢ > 0. The limit of (1.1) at each point on the domain defines the
order function Ord" : Q — [1, 00).

In [11] and in the present paper, we extend the notion of order to a wider
class of maps. To movivate this generalization, recall that a harmonic map
u = w,...,u™ : Q@ — R™ into the Euclidean space can be viewed
as n-independent harmonic functions. Assuming continuity, a harmonic map
between Riemannian manifolds can also be expressed as a set of component
functions u = (u', ..., u™) by using local coordinates; but if the target metric
is non-Euclidean, the component functions are not independent of each other.
Indeed, the harmonic map equations

a f'a k
A+ Y Y g o S =0, =1, m
o,B j.k

show that the behavior of each component function is influenced by the behav-
ior of the other component functions via the Christoffel symbols I" ; i of the
target metric. On the other hand, Riemannian manifolds are locally asymptotic
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to Euclidean space. Namely, normal coordinates centered at a point show that
a smooth Riemannian manifold is Euclidean up to second order at that point.
We can interpret this to mean that Riemannian manifolds are asymptotically
a product of m-copies of R.

Analogously to harmonic maps into R”, a harmonic map « into a Euclidean
building can be expressed by component maps which are themselves harmonic.
Indeed, we can locally write u = (V, v) where V is a harmonic map into a
Euclidean space and v is a harmonic map into a lower dimensional Euclidean
building. It is a serious technical issue that many of the techniques developed
by Gromov and Schoen cannot be directly applied to NPC spaces that don’t
decompose locally as a product.

In this paper, building upon earlier work in [11], we develop a technique
to study harmonic maps into spaces that are only asymptotically a product of
NPC spaces. In many ways, the step from harmonic maps into a product of
NPC spaces to harmonic maps into a space that is asymptotically a product
is analogous to the passage from harmonic functions to harmonic maps into
Riemannian manifolds. As indicated above, a harmonic map into 7 is given
by u = (V, v) where V maps into a smooth Riemannian manifold and v maps
into an NPC space. Since v is not a harmonic map, we will have to modify
(1.2). In fact, we will derive analogues of the domain and target variation
formulas (1.3) and (1.4) with correction terms. Combining these formulas, we
will obtain the monotonicity formula

LE® 10
r E(r) I(r) —

where C is a constant that not only depends on how far away the domain
metric g is from the Euclidean metric but also on how far the target metric is
from being a product metric. The conclusion is that we can associate an order
function Ord" : 2 — [1, 00) to the singular component map v of u and use
it to analyze its behavior.

OVERCOMING OBSTACLE 2: INDUCTIVE ARGUMENT AND REGULARITY.
The second obstacle is the non-local compactness and degenerating geometry
of (T, d7) near the boundary. In order to explain how we deal with this issue,
we will first introduce two fundamental concepts from the work of Gromov
and Schoen [21]. Let X be an NPC space, let’s say a Euclidean building
for the sake of concreteness, and X a totally geodesic subspace of X, for
example an apartment of X. The first fundamental concept is the notion of a
homogeneous degree 1 map [ : R” — Xo C X being effectively contained in
Xo. This loosely means that a sufficiently small neighborhood of the image of
[ is contained in X except for a set of small measure. The second is the notion
of X being essentially regular. Loosely, this means that a harmonic map into
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X0 has an approximation by a homogeneous map that is better than first order.
To illuminate these notions, we give the following example.

Example I Let X be a k-pod formed by k distinct copies Eq, ..., E of the
half-line [0, co) identified at O (called the juncture of the k-pod). The distance
dx(p, q) between two points p € E; and g € E; is defined to be [p — ¢| if
i =jand p+qifi # j. Then (X, dy) is an NPC space.

We identify Xo = E| U E3 as a totally geodesic subspace of X isometric
to R and let / be an affine function (a special case of a homogeneous degree 1
discussed in [21, Proposition 3.1]), i.e.

['R" s R~XoCX, [(x) =A-x+b, (1.5)

for some A € R" and b € R. In the above, we can assume b = 0; otherwise,
[ maps a neighborhood of 0 € R” into a subset of Xy ~ R, away from the
Juncture. Also by rotating our coordinates if necessary we may assume that
A = (a,0,...,0). Note that in this case /(x) = ax! and

Bss ({(x)NX\Xo#0 < |lx)| <do < |x1|<|2—|0.

Hence, given € > 0, there exists § (for example, we can take § = % where
v,,_1 denotes the Euclidean volume of the unit (n — 1)-dimensional ball) such
that

Vol{x € B;(0) : Bs, (I(x)) N (X\Xp) # ¥} < ea”. (1.6)

See Fig. 1. This defines the notion of a linear map effectively contained in a
totally geodesic subspace in the sense of [21, page 211].

We now come to the notion of essentially regular. In this example, the totally
geodesic subspace Xo = EjUE> ~ Risessentially regular in the sense of [21,
page 210]. More precisely, for a harmonic function f : (B1(0), g) = Xo =~ R,
the Taylor approximation implies

d(f(x),1(x)) < Clx?
where [(x) = Vf(0) - x + f(0) and the constant C depends only on the
geometry of the domain and the total energy of f. Thus, Xo >~ R is essentially

regular; namely there exists ¢ > 0 (we can take @ = 1 in this example) and
C > 0 such that

sup d(f(x),l(x)) < Colte sup d(f(x), L(x)), Vo € (0, l] (L.7)
x€By (0) x€B1(0) 2
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I T2y ooy Ty,
B,(0) T

/\ I(z) 8 Biso(l(z))

o
LRAANNRLRRNRANN
)

Xo

Fig. 1 The non-shaded area shows the set of points whose image admits a o neighborhood
that does not intersect X\ X

for any affine function L(x) = A-x+b. The important feature of essential
regularity is that the parameters o and C are independent of the subspace X
and depend only the geometry of the domain and the total energy E/ of f. The
case of Euclidean buildings is a higher dimensional generalization of the above
example with its apartments playing the role of essentially regular subspaces.

For the sake of this introduction and in order to illustrate the main ideas,
we will briefly discuss the Gromov—Schoen argument adapted to the simple
case where X is a k-pod as in Example 1. A more technical discussion will
be presented at the beginning of Sect. 5. We start with a harmonic map u :
B1(0) — X, where B;(0) C R” is the unit ball, and a homogeneous degree
I map !/ : B;(0) — X asin (1.5) is effectively contained in an essentially
regular totally geodesic subspace Xo >~ R. We also assume that u(0) = /(0)
and that u and [ are D-close, i.e

sup d(u(x),l(x)) < D. (1.8)
x€B1(0)

From the initial data, u and /, the goal is to produce a linear scale approxima-
tion; 1.e.
sup d(u(x),l(x)) <co, c¢>0. (1.9)
x€Bs(0)

The idea of proving regularity by the use of a linear scale approximation is
well known. Examples include the e-regularity theorem of Schoen-Uhlenbeck
[43] and other work concerning the uniqueness of tangent maps [47, Chapter
3]. Estimate (1.9) is usually achieved by an inductive process, where at each
stage one improves the estimate by a fixed amount. In the example above, the
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idea is to show that there exists 6 € (0, %] such that if an affine map
il 1 Bgi (0) = X

at the i'" stage is “close” to u in a ball of radius #’, then one can find a new
affine map

i+10 1 Byi+1(0) = X

that is “closer” to u in a smaller ball radius 81! for the (i + 1)" stage.

To find ; 41/, consider the harmonic function v : By (0) — Xo ~ R with
boundary condition 7w o u where w : X — Xj is the closest point projection
map. Since X is essentially regular, v has a “good” linear approximation ; /.
Since [ is effectively contained in X and approximates u, then maps u and v
are “close.” One can show that indeed ;1 / is the desired linear map for the
i+ D stage. For the convenience of the reader, we will sketch this simpler
version of the inductive argument in Sect. 5.1 before our main regularity results.

In this paper, we will apply a variation of the Gromov—Schoen argument
with the completion of Teichmiiller space 7 playing the role of a Euclidean
building. Since all the degenerating geometry of 7 comes from the model
space H, we will limit our discussion to H in this introduction. This case was
treated in our previous paper [12], and what is outlined below can also serve
as its summary. In this paper, we will further extend these ideas to handle the
case of 7.

We first define H precisely. Consider the Riemannian surface (H, gg) con-
sisting of the upper half plane

H={(p.¢)eR*:p>0,¢cR}
endowed with the Riemannian metric
gu = dp* + p°de’.

The NPC space H is the metric completion of H constructed by adding the
boundary line {p = 0} and identifying this line as a single point Py. We
call Py the singular point of H. The difficulty in analyzing the behavior of a
harmonic map into H is caused by the degenerating geometry and the non-local
compactness of H.

The first step is to find essentially regular totally geodesic subspaces of
H. The difficulty is that, because of the degenerating geometry of H near Py
(the Gaussian curvature approaches —oo near Pp), the only totally geodesic
subspaces of H that resemble Euclidean spaces and contain P are the point P
itself and geodesics emanating from Py. (These geodesics are given by curves
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p = (p, ¢o) for a fixed ¢o.) The degenerating geometry of H is highlighted
by the harmonic map equations in H,

Uupu, = 3u2|Vu¢|2 and uiAu¢ = —6Vu, - uf)Vu(b. (1.10)

Notice that the right hand side of each equation is bounded since u is Lipschitz.
The left hand side of each equation, though, involves u,. Thus, the harmonic
map equations are degenerate since u,(x) — 0 as x — S(u). The following
example provides a hint on how to proceed.

Example 2 Consider the 2-dimensional space (H ™", go) where
HY ={(r,0) e R?: r > 0} and go(r,0) = dr’> + r’d6>.

The Christoffel symbols with respect to the polar coordinates (r, 6) are

r, =0 T4,=0
1

0
F:GZO Fr9=;
Ip,=-r % =0

For a map A into (H™, go), write h = (h,, hg) with respect to the polar
coordinates (r, 6). Then the harmonic map equations are

hyAh, = h?|Vhg|* and h*Ahg = —2Vh, - h,Vh. (1.11)

This set of equations looks very similar to the harmonic map equations (1.10)
in the sense that they are both degenerate. Now assume that the value of hg
is contained in [0, 27r) which allows us to apply the change of variables to
Euclidean coordinates

(r,0) — (x =rcosf,y =rsinb). (1.12)

This change of variables converts equation (1.11) to the standard harmonic map
equations with respect to the Eucledian metric, i.e. Ah, =0 and Ahy, = 0.
In this form, the smoothness of 4, and 4, can be immediately deduced from
the theory of elliptic partial differential equations.

Example 2 illustrates the following key points:

(i) The polar coordinates (r, 8) in R? are ill-suited for the regularity theory
of harmonic maps.

(i) A bound on the angular component of a harmonic map implies regularity
results.
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By the same token as (i), the standard coordinates (p, ¢) of (H, gg) are ill-
suited to study harmonic maps (although they are convenient when studying
the behavior of the degenerating Riemann surfaces corresponding to points of
T approaching its boundary). Furthermore, (ii) hints that one should look to
bound the “angular” coordinates in order to find essentially regular subspaces.

The idea of choosing the right coordinates and finding essentially regu-
lar subspaces to study the harmonic maps led to our paper [12]. There, we
introduced a change of variables which takes the coordinates (p, ¢) to new
coordinates analogous to the change of variables (1.12) from polar coordi-
nates (r, 0) to Euclidean coordinates (x, y). In essence, we introduced a new
coordinate system for (H, gg) that can be used to study harmonic maps.

Before we describe the new coordinates of H, we will first discuss the
difficulty caused by the degenerating geometry and non-compactness of H in
relation to the key point (ii) above. For a harmonic map u : @ — H and
Xxo € 2, a consequence of having a well-defined order Ord"(xo) is that there
exists a sequence of blow-up maps of u at xo. (Loosely speaking, these are
maps constructed by concentrating in on the point xo and scaling up u restricted
to small geodesic balls centered at x(.) Because of the non-local compactness
of H near Py, if u(xg) = Py, then this sequence of blow up maps does not
converge as a map into H since there exists no uniform bound on the angular
component for the sequence. In short, we cannot expect to approximate u by a
homogeneous degree 1 map/ with a good bound on the angular component map
ly. This poses a problem in setting up the Gromov—Schoen inductive argument
since the heart of this argument is to use an essentially regular subspace that
effectively contains a homogeneous degree 1 map approximating u (cf. (5.1)).

The problem described in the paragraph above led us to consider the NPC
space

ﬁz:ﬁ+Uﬁ_/N.

Here, ﬁ+ and H denote two distinct copies of H and ~ indicates that the
singular point Py from each copy is identified as a single point. The induced
distance function dg, on Hj is given by

da((lp1l, ¢1), (1021, ¢2)) if p1p2 >0

di, ((p1, ¢1), (02, 2)) = { 1p1] + 102l if p1p2 < 0.

By using the identification (p, ¢) > (—p, ¢) in H , we obtain “coordinates”
on H, where
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T={(p.) eR*: p >0},
H ={(p,¢) eR*:p <0},
Py={(p,¢) e R*: p =0}

(Calling (p, ¢) coordinates is a slight misnomer as they are not coordinates
in the traditional sense near Pp.) The importance of Hy can be explained
by the observation that harmonic maps into H; exhibit a completely different
behavior than the one described in the previous paragraph. Indeed, at an order 1
singular point, a harmonic map into Hj can locally be approximated by a single
homogeneous degree 1 map/ : B1(0) — H, givenby I(x) = ([,(x), ly(x)) =
(Ax!, 0) for some constant A > 0 (after a rotation of the domain B; (0) and a
translation (p, ¢) — (p, ¢ — c) of the target H, for an appropriate constant
¢ € R). Here, the key point is that the angular component map of / is identically
constant.

The map [ is effectively contained in the subspace Ha[¢g] for ¢g > 0.
(This assertion follows from essentially the same argument as the proof of
Lemma 5.2 below.) Since s + (s, ¢o) and s — (s, —¢p) are geodesics,
H2[¢0 is geodesically convex in Hy. A harmonic map whose image lies in
H>[¢o] has the property that its angular component function vy 1s bounded.
The change of coordinates

(p, ) > (pcosv/3p*p, psin/3p’¢) (1.13)

in H, is analogous to the change of coordinates in R? from polar coordinates
(r, 0) to the standard coordinates (x, y). By applying elliptic theory after the
change of variables, we prove Hy[¢o] is essentially regular.

The key to showing regularity of harmonic maps into H is the close rela-
tionship between the geometrles of H and H, near Py which we now describe.
First, observe that the curve y (t) = (1, ¢), with ¢, fixed, in Hyisa geodesic
line. In H, there are no geodesic lines through Py, only geodesic rays with Py
as an endpoint. On the other hand, since H; is a union of two copies of H,
resembles the curve o constructed by joining two geodesic rays in H. More
specifically, let

(t, ¢o) for t € (0, 00)

G¢()(T) =1 P fort =0
(=1, —¢p) for T € (—00,0).

Moreover, let y¢0 be the geodesic segment in H from (1, ¢p) to (1, —¢). Then
since

lim d((1, —¢0), (1, $0)) = 2 = length(@™[,_, ).
¢0—)OO ’
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the geodesic y? resembles the broken geodesic o 0 for oo > 0
large. (Details of this phenomenon are given in Sect. 3. 4{ 1; spe01ﬁcally, see
Lemma 3.17.) Therefore, the geodesic  of H, resembles the geodesic y® of
H for ¢p > 0 large. We use this property of geodesics to identify H, with H
as follows.

Observe that Hj is foliated by an one-parameter family of geodesic lines
{p — (p, @)} (Whose images are the horizontal lines in the left diagram of
Fig. 2). Motivated by this, we also foliate H by a family of geodesics (see in
the right diagram of Fig. 2). We define a map which associates the family of
geodesics in Hy to the family of geodesics in H. Indeed, let

¢ = (cp, cy) : (—00,00) X (—00, %) — H (1.14)

satisfying the following:

(1) s = c(s,1) = (cp(s, 1), cy(s, 1)) is a unit speed geodesic such that

Cp(s,1) =cp(=s,1), cp(s, 1) = —cp(s,1).

(i) t = ¢, (0, 1) satisfies the equation
dcp 3
E(O, 1) = cp(O, 1).
(iii) ¢,(0, 1) = 1 and c4(0, 1) = O forall # € (—o0, 3).
The parameters s and ¢ define coordinates of H via the map
(s,1) — c(s,1).

Given a homogeneous degree 1 map /(x) of the form /(x) = c(AxY, 1), we
apply a translation by ¢, to construct coordinates (o, ¢). More precisely, since

1(0) = (0, ty) in the coordinates (s, 1), (1.15)
we define coordinates (o, ¢) by setting
(0. 9) = (5,1 —1y). (1.16)
This results in
[(0) = (0, 0) in coordinates (o, ¢).
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AC

A
v
<
A
\
v

v
Fig. 2 H, on the left and H on the right

Using the new coordinates (o, ¢) anchored at t,, we introduce a family of
totally geodesic subspaces of H which will play a central role in the proof of
the key technical Lemma.

Here, we emphasize that the coordinates (o, ¢) not only depend on the family
of geodesics {s > c(s, 1)} but also on the parameter z,. We are interested in
the asymptotics as ¢, — —o0.

The expression of the metric gy in the coordinates (o, ¢) is

gn(o <p)=( |55 e, ‘/’+’*)| < X, ¢+t*) (o, ¢+t*)>>
X o+1), F0 p+t)> 2 (o, (p+t*)|

(1 0
oo+ )

The top diagonal entry is equal to 1 because s —> u(s, t) is unit speed (cf. (1)).
The off-diagonal terms are equal to O because of the following reason: First,
note that the curve ¢t — ¢(0, t) parametrizes the line ¢ = 0 by (ii) and (iii).
Next, since the geodesic s > ¢, (s, ) is symmetric in the variable s by (i),
its minimum value is achieved at s = 0. In particular, 832 (0, t) = 0 which in
turn implies ac (0, t) is parallel to the line p = 0. Therefore we conclude that
the Jacobi field 5> dC is perpendicular to the velocity vector < of the geodesic at
s = 0, and they must be perpendicular for all s by a standard property of Jacobi
fields. This justifies that the off-diagonal entries are equal to 0. The bottom
diagonal term ‘% quantifies how the family of geodesics {c;(s)} = {c(s, 1)}
are spread apart. The differential equation %” 0,1 = cz (0, t) of (ii) gives the
initial spread (i.e. the spread ats = O) In [12, Section 4], we have shown that
this is enough to prove ‘ (s, t)‘ —c, 3(s, 1) — 0 uniformly for s in a compact
set away from s = 0 as t* — —00. In summary, in the coordinates (o, ¢), g
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has the property that

0 10
gn(g,<p)=< 0|2, (p+t*)‘ )w <0Q6> as ty — —oo. (1.17)

In analogy with Hy, we showed in [12] that the totally geodesic subspaces

Hlpo] = {(0, 9) € H: |p| < 9o}

(pictured in the right diagram of Fig. 2) are essentially regular, and we can set-
up the Gromov—Schoen inductive argument with ﬁ[goo] as the totally geodesic
set effectlvely containing the homogeneous degree 1 map [ (x) = ([, (x), l,) =
(Ax',0). With this, we can prove the regularity of harmonic maps into H
(cf. [12, Theorem 35]).

As explained above, T near a boundary point is asymptotically isometric to
the product of a smooth Kéhler manifold and the product of a finite number of
copies of the model space. In this paper, we use the strategy described above
but also incorporating this almost product structure, to prove the regularity of
harmonic maps into T (cf. Theorem 1.5).

1.3 Summary of the paper

In the following paragraphs, we outline the organization of the paper and
explain the main ideas:

In Sect. 2, we discuss the asymptotic geometry of the Weil-Petersson
completion T of Teichmiiller space. According to [15,53,58] and [13], the
Weil-Petersson completion of a Teichmiiller space near a boundary point is
asymptotlcally isometric to the product of a boundary stratum 7" and a normal

space H = H x - - - x H. We refer to Sect. 2.1 for a precise definition of the
metric space (H, dﬁ) given as a metric completion of the incomplete Riemann
surface (H, gg). Since each open boundary stratum 7" can be identified with
a product of lower dimensional Teichmiiller spaces hence a smooth Hermitian
manifold, the singular behavior of the Weil-Petersson geometry is completely
captured by the model space H. For one, the Gauss curvature of gy approaches
—o0 near its boundary reflecting the sectional curvature blow-up of G, near
3T . Moreover, the non-local compactness of 7 is also captured by H. Indeed,
a geodesic ball in (H, di) centered at a boundary point is not compact. The
degenerating geometry and the lack of compactness imposes severe challenges
in the theory of harmonic maps and the core of this paper is to deal with these
phenomena. In Sect. 2.2, we define a stratification preserving homeomorphism
between a neighborhood A C 7 of a point on a boundary stratum and a neigh-
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borhood in C/ x ﬁk_j. In Sect. 2.3, we detail the precise way in which the
Weil-Petersson metric in V' is asymptotically a product metric.

In Sect. 3, we prove the Regularity Theorem 3.1 for harmonic maps into the
model space (H, dyp). The importance of this section is that, by considering
(H, dyp) as the target space, we isolate the main difficulties (namely, the non-
compactness and degenerating geometry) that we will need to deal with when
the target space is 7. Central to the proof is the notion of order of a harmonic
map into an NPC space introduced in [21]. The order and other relevant notions
from the theory of harmonic maps are summarized in Sect. 3.1. We remark
that the order of a harmonic function is the order with which it attains its value;
equivalently, it is the degree of the monomial that best approximates it.

The strategy of the proof of the Regularity Theorem 3.1 is to first prove
that the set of higher order points (i.e. the set of points of order > 1) is of
Hausdorff codimension at least 2. We then complete the proof by showing that
no order 1 singular points exist. We do this in Sect. 3.4 by applying the key
technical Lemma for the Model Space (cf. Lemma 3.21), a special case of the
key technical Lemma 4.11. This lemma gives sufficient conditions for a map
into (H, dg) not to hit the boundary point Py. The ideas surrounding the key
technical Lemma is the lynchpin of the proof of the regularity theorem as we
address the degeneration and non-compactness of the model space at Py. We
note that the most technically difficult part, the proof the of the key technical
Lemma 4.11 is postponed until Sect. 5.

In Sect. 4, we prove the Regularity Theorems 1.5 and 1.6 for harmonic maps
into 7. The proof follows the similar strategy as for the proof of Regularity
Theorem 3.1 for the model space. The first step of showing that the set of
higher order points is of Hausdorff codimension at least 2 is done in much
the same way as in Sect. 3. On the other hand, the second step of dealing
with the order 1 singular points is more difficult because of the complicated
structure of the stratification for 7. Nonetheless, the main issue is the same for
both 7 and H, namely, the non-compactness and the degenerating geometry
near the boundary. We will again invoke the key technical Lemma 4.11. The
idea is to use the asymptotic product structure of (7, d7) near its boundary
to decompose the given harmonic map into two maps, one of which maps
into a boundary stratum (which is a smooth Kéhler manifold) and the other

into the normal space H' /. These two maps are not harmonic because of the
lack of product structure, but the latter map is asymptotically harmonic in an
appropriate sense. We thus adjust the arguments of Sect. 3 so that they work
for asymptotically harmonic maps. For the reader’s convenience, we will give
a detailed outline of this argument at the beginning of Sect. 4.

In Sect. 5, we prove the key technical Lemma. This can be thought of as the
core of the paper and the most technically challenging part of this work.
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In Sect. 6, we specialize to the case when the domain dimension is 2. In
fact, we prove that there are no singular points in this case (cf. Theorem 1.7
below).

In Sect. 7, we prove our Theorem 1.2 and Corollary 1.3. This follows fairly
easily from Theorem 1.5 and Theorem 1.6 by applying the result of [48].

In Sect. 8, we deduce Theorem 1.1 from our main Theorem 1.2 and Corol-
lary 1.3. Additionally, as a by-product, we provide a harmonic maps proof of
Corollary 1.4.

We would like to point out that for a harmonic map u defined on a general
Riemannian domain Theorem 1.5 only asserts that the singular set S (u) of u is
of codimension at least 2 (or more precisely that # maps a connected domain
into a single stratum up to codimension at 2) and does not necessarily imply
that # maps into of 7 (or even a single stratum). Our main theorem asserts that
the stronger statement is true only when the harmonic map u is holomorphic.
However, we show that for two dimensional domains, this assertion is always
true. Namely,

Theorem 1.7 Ifu : (2, g) — (7, d7) is a harmonic map from a connected
Lipschitz domain 2 in a Riemann surface, then there exists a single stratum
T of T such thatu(2) C T'.

Itis reasonable to conjecture that this assertion holds for higher dimensions;
however, this is not needed for the applications discussed in this article.

As a final comment, we would like to point out that due to the length of this
paper, we have omitted several important topics that will be presented else-
where. First is the connection with symplectic Lefschetz fibrations which, by
Theorem 1.7, induce harmonic maps and in some cases even minimal surfaces
into the Teichmiiller space. More generally, our results imply a classification
theorem for surface fibrations over quasi projective varieties. Indeed, Theo-
rem 1.2 and Corollary 1.3 imply that, under mild non degeneracy conditions
on the rank of the harmonic map (which can be checked by topological consid-
erations), any smooth fibration on a quasiprojective variety with quasiperiodic
monodromy at infinity is isomorphic to a holomorphic fibration. (We would
like to thank J. Jost for originally pointing this out to us.) In another direction,
we would like to remove Assumption (ii) on the codimension of the singular
set of M from Theorem 1.1. This Assumption was added by Jost and Yau in
[26], in order to guarantee the existence of a finite energy map from M to 7.
The existence of a finite energy map is also one of our Assumptions in The-
orem 1.2 and Corollary 1.3. It is possible that a more careful analysis would
yield a finite energy map in general. However, in an upcoming article, we will
circumvent this issue by considering infinite energy maps.
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2 The Weil-Petersson completion of Teichmiiller space

In this section, we discuss the asymptotic geometry of the Weil-Petersson
completion 7 of Teichmiiller space. Near its boundary, 7 is asymptotically
isometric to the product of the Weil-Petersson metric on a stratum 7" which is

aproduct of lower dimensional Teichmiiller spaces and the normal space "
which is a product of the model space H. Moreover, the singular behavior of
the Weil-Petersson geometry is completely captured by the model space H.
In Sect. 2.1, we collect several properties of the model space H that we will
need later. In Sect. 2.2, we define a stratification preserving homeomorphism
between a nelghborhood N C T of a point on the boundary stratum and a

neighborhood in C/ x H ~/ This homeomorphism will be used to define local
coordinates in 7. In Sect. 2.3, we give a precise description of the asymptotic
product structure of the Teichmiiller space near its boundary. Indeed, The-
orem 2.10 states the C'-estimates of the Weil-Petersson metric proved in
[13]. These estimates improve other C'-estimates existing in the literature,
for example [32] and [33]; more precisely, we show that the C!-error term of
the Weil—Petersson metric is the derivative of the error appearing in the well
known CO-estimates of [15,58] and [53]. In Theorem 2.12, the C'-estimates
reformulated in the precise way needed to apply the techniques developed in
[11]. (The other well-known estimates in the literature, for example [56], are
to our knowledge insufficient for this purpose.)

2.1 The model space

Consider the smooth Riemannian manifold (H, gg) consisting of the upper
half plane

H={(p.¢) eR*:p>0,¢ R}

endowed with the Riemannian metric
g = dp” + p°dg’.

(Note that in most literature on Weil-Petersson geometry, one considers the
slightly different metric 4dr> + r%d6? which is clearly isometric to gy via
the change of coordinates p = 2r, ¢ = %.) We call (p, ¢) the standard model
space coordinates and gy the model space metric. The Christoffel symbols of
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gH are given by

¢
Iy = Tgy =0
re. = re =2 2.1)
pp P 0 :
¢
Thy=—3p" Tpp=0
The Gauss curvature is
K- 6
p*

The geodesic equations for y = (y,, yy) are given by the equations

2. %0 P\ 2 2.,%0 do 7.,%0
ylbo dyp — 3(y¢0)6 (dj/¢> and (y¢0)4di — _6(),%)3%%
P ds? N ds N ds? 4 ds ds

(2.2)

Let dg be the distance function of H induced by the metric gg; i.e. for
P=(p,¢),P=(0,¢") eH,let

du(P, P = ginf length(y)

PP

where Gp p: is the set of all piecewise C! curves y : la,b] — H with
y(0) = P and y (1) = P’. The metric space (H, gg) is incomplete since for
any fixed ¢ € R, the geodesic

Yy =Wpve) 1[0, 1) = (H, gn), v, (1) =1—1,y5(t) = o
leaves every compact subset of H and is of length 1. On the other hand

Lemma 2.1 (H, dy) is geodesic; i.e. for any P, P' € H, there exists a curve
y € Gp_pr such that dy(P, P') = length(y).

Proof Suppose not. Then, there exist a sequence y; € Gp pr and t; € [0, 1]
such that length(y;) — dg(P, P’) and p; — 0 for (p;, b)) = y; (t;). Since
length(y;) = length(y; ’[0’,1_]) + length(y; ’[t,-,ll) > (p1 — pi) + (p2 — py), this
impliesdg (P, P') > po-+ p1. Thisis a contradiction; indeed, if we let y, be the
join of the straight line from P = (p, ¢) to (¢, ¢), followed by the straight line
from (¢, @) to (€, ¢’) followed by the straight line from (¢, ¢') to P’ = (o', ¢'),
then length(y,) = p —€e + €3lp — |+ p' —€ < p + p’ < du(P, P’) for
€ > 0 sufficiently small. m|
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The metric completion of (H, dg) is denoted by (H, dyp). Here,
H=HU {Po}

where we can think of the entire axis p = 0 is identified to a single point Pp.
The distance function dig : H x H — [0, 00) is given by

du(P,Q)if P,QecH

dH(P,Q)={ p ifP=Pyand Q0 = (p,¢) € H.

Since every neighborhood of Py contains points with arbitrary large ¢-
coordinate, it follows that the space (H, dg) is not locally compact. This is

the source of many technical hurdles in this paper. However, (H, dy) 1s an
NPC space since it is a metric completion of a geodesically convex negatively
curved surface. We also record the following two simple lemmas.

Lemma 2.2 If P;, P, € H are given as Pi = (p1, ¢1) and P, = (p2, 2),
then

lo1 — p2| < dg(P1, P2).

Proof Let y be the geodesic from P; to P». Let 7 be the projection map onto
the geodesic {¢p = ¢} U{Pp}. Then 7 is distance decreasing and d(Py, P») =
length(y) > length(w o y1) > |p1 — p2l. O

Lemma 2.3 The tangent cone TP()ﬁ is isometric to [0, 00).

Proof First, note that any unit speed geodesic emanating from Py is of the
form

o PO fort =0
Yoo : [0, 00) = H, vy, (1) = { (t, ¢po) fort > 0

for some fixed ¢9 € (—o0, 00). Comparing the length of the geodesic from

(€, ¢0) to (€, ¢y) to the length of the vertical line from (e, ¢o) to (€, ¢y), we
obtain

d (Vg (€), Vg1 (€)) < €0 — hy-

Thus, the angle between the two geodesics yy, and Yy at Py is given by

| 267 = d*(v4y (). vy ()

£ py (Vo V¢(’)) = Glg% cos™

2¢2
. 2% — €%l — oy
< lim cos™! 5 0 —0.
e—0 2¢
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It follows that the space of directions at Py (i.e. the space of equivalence
classes of geodesics emanating from Pp) contains exactly one element. Since
the tangent cone is the metric cone over the space of directions, it is isometric
to [0, 00). O

Another important feature of the space (H, gg) is that it possesses a homo-
geneous structure. More precisely, we can define new coordinates (p, ®) of
H where the first coordinate function p is the same as that of the original
coordinates, but the second coordinate function ® defined by setting

o = ,03¢.

We call (p, ) the homogeneous coordinates and in these coordinates the
metric is given by

14+90%2p~2 —3p7 1@

8H (2.3)

—3p~ 1
For A > 0 consider the dilation map
r:H—>H
given in homogeneous coordinates by
P=(,®)—~> AP = (Ap,A®) and Py — Py.
It follows immediately from (2.3) that the local expression of gy is invariant

under dilations. This implies that if we extend the dilation map A to H by

AP P £ Py
AP = { Py IEP = P, 2.4)

then the distance function dg is homogeneous of degree 1; i.e.

dg(LP,»Q) = Adg(P, Q), VP,Q e H. (2.5)

The stratification of H = H U { Py} induces a stratification on the product
—I ce . . .
space H for any positive integer /. The metric gg defines a metric & on the

. == —l . ..
stratified space H so that (H', &) becomes a stratified Hermitian space. The
distance function d;, induced by / coincides with the completion of the distance
function on H' induced from the metric gg.

@ Springer



Rigidity of Teichmiiller space

Definition 2.4 For a positive integer /, we refer to the stratified Hermitian

space (ﬁl, h) and the NPC metric space (ﬁl, dy) as the normal space (to the
boundary of Techmiiller space). This terminology will be justified in Theo-
rem 2.12 below.

In the following, we summarize the properties of the normal space.

Proposition 2.5 (Homogeneous structure of the Model Space). The metric
w=k—Jj . . .
space (H ! dy) is an NPC space with a homogeneous structure with respect
—k—7
tolPy=(Py,..., Ph)) €H ! In other words, there is a continuous map

RoxH S H ', (AP AP

such that APy = Py for every A > 0 and the distance function dj, is homoge-
neous of degree 1 with respect to this map, i.e.

dyO.P, 10) = Ady(P, Q). ¥YP,0Q cH 7. 1 € (0, 00).

Proof Indeed, using the homogeneous structure on H defined by (2.4), we can
define a continuous map R- o X H - a by setting

O, (PY, ..., Py = Py, . A PR,

2.2 Local coordinates of 7 near 07

Let 7 denote the Teichmiiller space of an oriented surface of genus g with
p marked points such that k = 3g — 3 + p > 0. Endowed with the Weil—-
Petersson metric Gyp, (7, Gy)p) is a smooth Kihler manifold of complex
dimension k = 3g—3— p (cf. [2]) and has negative sectional curvature (cf. [50]
and [52]). However, (T, Gy) is incomplete (cf. [10] and [54]). Let (T, d=)
denote its metric completion. The metric space (7, d) is no longer a smooth
manifold, but it is an NPC metric space (cf. [15,53] and [58]). Furthermore,
T is a stratified space (cf. [35]), sometimes called the augmented Teichmiiller
space; more precisely, we can write

T=7 (2.6)
where 7' = T or 7' is the space parametrizing nodal surfaces obtained from

the original surface with a number of (mutually disjoint) simple closed curves
pinched. (One can show that 7" is a product of lower dimensional Teichmiiller

@ Springer



G. Daskalopoulos, C. Mese

spaces.) We call 7" an open stratum of T . Recall that all the strata are totally
geodesic with respect to the Weil-Petersson distance (cf. [15,53] and [58]).
Define # : 7 — {0, ..., k} by setting

4P = j 2.7)

if P € T’ where 7" is a j-dimensional open stratum. Consider P € 7 with

#P = j corresponding to anodal surface Ry. Lets = (s1,...,s;) € C/ +— Ry
be a parameterization of the neighborhood of Ry in 7. We can regularize each
node of R; by the plumbing construction, and let t = (¢1,...,#%—;) € Ck—J

denote the plumbing coordinates. Thus, provided that all the /s are nonzero,
we can construct an analytic family of Riemann surfaces R; ; of genus g with
p marked points degenerating as (f1,...,%—j) — (0,...,0) to the nodal
surface Ry. The parameters s and ¢ together define a set of coordinates on 7°
near P (see [1,15,35,58] and [53] for further details).

The parameter ¢ gives rise to the normal space H*~/. Indeed, we define

t=(t1,. . ti—j) € CK s (o1, 01), - -+, (Ph—js i) € HFT(2.8)

by setting
_1 1
pi = 2(—log|t;|)"2 and ¢; = 3 gl

The stratification of the space C/ x H' ™/ induced from the stratification of
H = H U { Py} is compatible with the stratification on 7 given in (2.6). More
precisely, given P € T with #P = j (cf. (2.7)), there exists a neighborhood
N C T of P, aneighborhood Y ¢ C/ of © = (0, ..., 0), a neighborhood

VcH Y of Py = (Py, ..., Py) such that the map
VN >UxVCC xH ! 2.9)
given in terms of the parameters described above as

0= V() =(1,---55, (p1, 1), - oy (Pk—js P—j))

has the following properties:

(i) ¥(P) = (0,Py) =(0,...,0, Py, ..., Py) € C/ x H.
(ii) W is a stratification preserving homeomorphism and when restricted to
each open stratum is a biholomorphism, hence:
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(iii) If G denotes the pullback of the Weil-Petersson metric Gw p under
W~ then G is a Hermitian metric along each stratum of I/ x V such
that

v (N,Gwp) — UXV,G)

is a Hermitian isometry between stratified spaces. In particular W
induces an isometry ¥ : (N, dg,,,) — (U x V, dg), where dg,,, and
dg denote the distance functions defined by Gw p and G respectively.

Throughout the rest of the paper, we will use the map W as local coordinates
near a j-dimensional stratum and express the Weil-Petersson metric in terms
of W. Using the natural identification i/ = U x { Py}, let H denote any smooth

extension of G V(o) fromU to C/. Let V. = (V!, ..., V/) be normal coor-
x{Po
dinates of H near 0 and assume without loss of generality that they are the

restriction of thekstandard coordinates on C/. Let & denote the metric on the
statified space H "~/ as in Definition 2.4.

It is a straightforward computation to show that in terms of the complex
parameter t = (t1, ..., ;) of Hf T given by (2.8), the Hermitian metric A
has the expression

3p—2 -3 .
ot —log |t for i =

The co-metric is

_ - 3,12 3 .
il ij _ Jm " (=loglg|)” for i = j

h = (h')) where h _{ 0 for i # j.

Definition 2.6 The metric G above will again be called the Weil-Petersson

metric. Additionally, with H and & as above, metric H & h will be called the

product metric.

2.3 C" and C!-estimates of Weil-Petersson metric
The C%-asymptotic behavior of the Weil—Petersson metric near the boundary
of Teichmiiller space is given by the well-known estimates below. Notice that

we use the upper case 1, J to index the s-coordinates and lower case i, j, k
for the t-coordinates.
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Theorem 2.7 ([15,35,53,58]). The Weil-Petersson co-metric G;VIP = (G*)
satisfies the following estimates (assuming i, j, k are all distinct):

xy xS k_j
(@) G'=h"{1+0|) (~loglu})?
=1
@i G7* = ol llnl)
@iy G =0qr)
N ke
(i) G =6"0)+0|) (~loglul)~
=1

The Weil—Petersson metric Gwp = (Gu) satisfies the following estimates
(assuming i, j, k are all distinct):

k—j
() Gy=hgz|1+0[> (—loglu)?
=1

(i) Gjp=0 ((=loglt;N7>(=loglu) ;1" el ™)
(i) G5=0 Ity (—loglt;) ™)
k—j

(iv) G7=G;00+0 Y (~logluh~?
=1

The C?-estimates above are not strong enough for the proof of Theorem 1.2.
Indeed, in [11], we developed a general harmonic map theory in the setting
where the target space has a C'-asymptotic product structure. Subsequently,
in [13] we proved the asymptotic C!-estimates for the Weil-Petersson met-
ric suited for the techniques of [11]. These estimates (cf. Theorem 2.8 and
Theorem 2.10 below) give a more precise description of the asymptotic prod-
uct structure than the ones given in [22,32,33,45] and [34]. In particular, our
results estimate the derivatives of the difference between the Weil-Petersson
metric Gw p and the model metric 4 and can be summarized as follows:

The C'-error terms of the co-metric is of the same order as the derivative
of CO-error terms.

Our results in [13] also differ from the ones in [56] in the sense that they are
expressed in terms of local coordinates on 7. Notice that Wolpert expresses
his asymptotic estimates in terms of a certain frame given by gradients of
geodesic length functions, but unfortunately this frame does not come from a
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set of local coordinates on Teichmiiller space. It is not clear to the authors how
to use Wolpert’s estimates in conjunction with harmonic maps. In the estimates
below, we again use the upper case I, J, K to index the s-coordinates and lower
case i, j, k for the t-coordinates.

Theorem 2.8 ([13] Theorem 2). The Weil—Petersson co-metric Ga,lp = (G™)
satisfies the following estimates (assuming i, j, k are all distinct):

@) G = L hit 4 0 (1= log 1))
ot ot ! '
0

(ii) ;fo = 0O (It:17 (= log |t:) 73 1¢;1*(— log |1, )?)

1

g
(i) 5-G" =0 (1)

(iv) %G]’k = 0 (1t (~ log [6) 2111 1x])
(v) %G” = O (Iti|" (= log|t:) )

(i) B%Gf’ = 0 (ju " (= og Iy >11;1)

(vi) % 17 = 0 (ju 1 (~og 1) I1;1)

0 Ii
(viii) ;G = 0(1).

1

We also record the following estimates of Liu, Sun and Yau, to get the
complete picture of the C'-asymptotic behavior of the Weil-Petersson co-
metric.

Theorem 2.9 ([34], formula (3.16)). The Weil-Petersson co-metric satisfies
the following estimates (assuming i, j are distinct):

8 s
(i) EG” = 0 (11 (—log |1:)?)

0 T
i) EGZ] =0 (|li||tj|)
el Ji
(@iii) EG = 0 (|ti])
. o 7
(vi) EG = O (|t

W L6F = oq).
sy
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By inverting the matrix G/ and combining the above three theorems, we
obtain the C!-estimates of the Weil-Petersson metric.

Theorem 2.10 ([13], Theorem 3). The Weil-Petersson metric satisfies the fol-
lowing t-derivative estimates (assuming i, j, k, are all distinct):

M) B%G,-; = a%h,-;-i- 0 (11— tog ;) ~%)

(if) %Gﬁ = 0 (Il (—log ;) 1tj1 7> (—log|1;) ™)

(i) %Gi; = 0 (|61 (=log ) (111~ (= log |t;) )

(iv) 3%6,; = 0 (I~ (= log ;) (I1;1 ™" (= og |t 7 (|1l = (= Tog ) ™)

) %Gﬁ = 0 (|l (~log ) )

i) 3Gy = O (1™ (= log i) I ™!~ tog 1))

(vii) %Gﬁ = 0 (|l (= log|t:) It~ (— log 1;) )
(viii) %G,; = 0 (I (= log|u)™)

Theorem 2.11 The Weil-Petersson metric satisfies the following s-derivative
estimates (we are not assuming i, j are distinct):

ad
(i) 3,-Gij=0 ((z1 = (= Tog I (It~ (—Tog |;1) )

.0
(i1) EGJ? =0()

... 0 _ _
>iii) EGH:O('U' 1(—log|tj|) 3)

D - -
(iv) 5-G,5=0 (Il '(—loglr;)~7)

In the next corollary, we reformulate the estimates in Theorem 2.7, Theo-
rem 2.8, Theorem 2.10 and Theorem 2.11 in terms of the metrics G, H and
h. Again, we use the upper case 1, J, K to index the V = (Vl, V)
coordinates of c/ qnd lower case 1,1, m to index the v = (vl, R vk_j)

. wk—
coordinates of H /)

Proposition 2.12 (C'-Asymptotic Product structure of the WP-Metric). The
Weil—Petersson metric G is asymptotically the product metric H @ h of Defi-
nition 2.6 in the following sense:
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LetV = (VY ..., VJ) be coordinates for Clandv = W', ..., v57)) be
coordinates for H*=J . There exists a constant C > 0 such that if we write

H(V) = (H7(V)), H (V)= H (V)),
h(v) = (h;(v)), h~'() = (' (v)),

G7(V.v) G (v, v)) G-V, v) (G”(v, v) GV, v))

G, v) = (Gly(V, v) G;7(V,v) G (v, v) GV, v)

with respect to coordinates (V, v) of C/ x H*=J | then the following estimates
hold near (0, Py) with I, J, K =1,...,jandi,l,m=j+1,... k:
CO-estimates:

G, 7(V,v) — H7(V)| < CH,T(V)%Hﬁ(\I/)%dZ(v, 129)
|G ;7(V,v)| < CH7(V)Zh;(v)2 d*(v, Py) (2.10)
|GiZ(V’ v) — hlz(v)l = Chl;(v)%hlz(v)% dz(v, Po)

CY-estimates of the inverse:

G (v, v) — HY (V)| < CHT (V)2 H'7 (V)3 d (v, o)
16T < CHT(V) R ()7 (v, Po) 2.11)
G (V. v) = ()] < Ch ()21 (v)? d(v, o)

Cl-estimates:

1 1 1
557G ;5 (V, v)| < CH3 (V)2 H (V)2 Hyge (V)2
1 1 1
77 G (V. 0 < CH(V)2 Hy(V)2hyi()? d (v, Bo) (2.12)
G (V, 0| < CHz(V)2h; ()21 5(v)2
. 1 1 1
155G 7(V, )l < Chii(v)2 (V)2 H5(V)2d (v, Fo)
135G 7V, 0)| < CH7(V)2hjz(v)2h 5(v)2 (2.13)
1 1 1
50 (G (Vo 0) = hg@) | < Chum() 2 ()25 ()

|L
av!

Proof The estimates we need to prove are coordinate independent. Thus, we
can assume that V are normal coordinates centered at O for the metric H and
v = t. With this, we have

H7(V)=0(), hz()= 0t *(=loglt;) )
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and
k—j
(—loglti)™" <Y (—log|ul)™" < Cd*(v, Py).
=1

As an example, we check the first and the second estimate in (2.13). For the
first, we use Theorem 2.10(iv) and the fact that HIT(V)%Hﬁ(V)% = 0()
to obtain (for |#;| sufficiently small such that (— log |t; N~ <1landa generic
constant C)

< C (Iti17 (= loglu)~?)

‘WGIJ
= C (161! (= tog ) ~2) ((~ log ) ~)
< Chyz(v)2 H7 (V)1 H (V) 2d (v, Py).
For the second estimate with i # j , we use Theorem 2.10(vi) to obtain
d

1Grj

‘av < C (117" (—log ;D117 (= log |£;1) )

3 3
= ¢ (1l = 1og )72 (111~ (~ log Ir;) )
< CH(V)2h;(0)2h 5 (0)?

If i = j we use Theorem 2.10(viii) to obtain

0 _ _
'576” < C (Il (—logluD™)
v
1
<CH7(V)2h;(v).
The other estimates can be justified the same way. O

3 Maps into the model space H

Given a map u into the model space H, a regular point is a point of the domain
of u that maps into H and a singular point is a point of the domain of u that
maps to Py. The regular set R (u) is the set of regular points and the singular
set S(u) is the set of singular points of . The goal of this section is to prove
the following slightly easier version of the main theorem; more specifically,
we prove a regularity theorem for harmonic maps into the model space of the
Weil-Petersson metric.
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Theorem 3.1 (Regularity Theorem for Harmonic Maps into the Model
Space). If u : (2, g) — (H, dg) is a harmonic map from an n-dimensional
Lipschitz Riemannian domain, then

dimy, (S(u)) <n-2.

The strategy is to first show that the set S>! (1) of singular points of order
> 1 (for the definition of the order see (3.1)), is of Hausdorff codimension
at least 2 (cf. Sect. 3.3, Proposition 3.16), then to prove that there exist no
order 1 singular points (cf. Sect. 3.4, Proposition 3.22). Note that the order
is always > 1 by Lipschitz continuity (cf. [21], Theorem 2.3). The proof of
Proposition 3.22 relies heavily on the key technical Lemma for the Model Space
(cf. Sect. 3.4, Lemma 3.21) which gives sufficient conditions when a harmonic
map into (H, dyp) does not hit the boundary point Py. This is a special case of
the key technical Lemma stated in Sect. 4 that is used to address the regularity
theorem for harmonic maps into (7, d7). The key technical Lemma is the most
challenging aspect of this paper as it introduces new techniques to address the
non-local compactness and degenerating geometry of the target space (H, dgp)

or (7, d) near the boundary.

3.1 Harmonic maps into NPC spaces

In this subsection, we recall some basic facts regarding harmonic maps into
general NPC spaces. The standard references are [21,27] and [28]. Addition-
ally, [11] discusses harmonic map theory in a setting most relevant of this
paper.

Let (€2, g) be an n-dimensional Riemannian domain and let (Y, d) an NPC
space. For a finite energy map u : (Q,g) — (¥,d), let |[Vu|> denote the
energy density as defined in [27] (1.10v). A map u is said to be harmonic if it
is energy minimizing amongst all finite energy maps with the same boundary
conditions on every bounded Lipschitz subdomain Q' C  (cf. [27]). We
record the following important result.

Theorem 3.2 (Lipschitz continuity: [21,27,46]). A harmonic map u
(2, 8) — (Y, d) into an NPC space is locally Lipschitz continuous with the
local Lipschitz constant depending on the geometry of (2, g), the total energy
of u and the distance to the boundary. If the boundary of 2 is smooth and the
boundary data are C* (0 < a < 1), the map u extends up to the boundary
with the C* norm depending on the boundary data and on the total energy.
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Next, we recall the notion of order. Let v : (2, g) — (Y, d) be a map (not
necessarily harmonic). For xg € €2, define

E; (o) :=/ |Vv|?’dp and Iy (o) :=/ d*(v, v(x0))dX.
B (x0) 0By (x0)

When the dependence of point xo is understood, we will omit it from the
notation above and write EV(o) and IV (o) instead. The order of the map v at
xo is defined by

v

E
Ord®(xo) = lim 229
(o2

——— provided the limit exists. (3.1
-0 IV(0)

Definition 3.3 The set
S () :={x0 € Q: Ord®(xp) exists and is > 1}

is the higher order points of v.

Remark 3.4 For a harmonic function u : (2, g) — R and xg € @, Ord"(xo)
is the order with which u attains its value u(xg) at xg.

Theorem 3.5 (Existence of the order function: [21,27]). For a harmonic map
u:(2,g) — (Y,d) into an NPC space and a compact subset K of 2, there
exist constants ¢ > 0 and o9 > 0 depending only on the domain metric (with
¢ = 0 when g is a Euclidean metric) such that for any xo € K,

o E'(o
= ewz—() is non-decreasing for o € (0, o).
1"(0)

Thus, Ord"(xg) exists for all xy € K. Furthermore,

e’ E'() and o — & I"(o)

i T are non-decreasing for o € (0, 0p).

Proof The statements above follow from Section 1.2 of [21] combined with
[27,28]. O

We record the following important result of [28] Proposition 3.7 and The-
orem 3.11.

Theorem 3.6 (Compactness Theorem [28]). Assume the following:

(i) The sequence of smooth metrics g; on Br(0) converges in C* to the
Euclidean metric go.
(i1) (Y;, d;) is a sequence of NPC spaces.
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(iii) The sequence v; : (Bg(0), gi) — (Y;, d;) of maps has a uniform Lips-
chitz constant on compact subsets of Br(0).

Then there exists a subsequence v; of v; converging locally uniformly in the
pullback sense (cf. [28] Definition 3.3) to a map vy : (B1(0), go) — (Yo, do)
into an NPC space, and vy has the same local Lipschitz constant as v;. Fur-
thermore, if v; is harmonic, then v is also a harmonic and

E(r) = lim E,"(r), V¥re (0, R).
1—> 00

Remark 3.7 The first assertion of the Compactness Theorem 3.6 statement can
be viewed as a generalized version of the Arzela-Ascoli theorem for maps into
different target spaces. Note that (by an application of the usual Arzela-Ascoli
Theorem to the sequence of pullback distance functions)

d(v;r(+), vy (+)) converges locally uniformly to do(vo(-), vo(+)). (3.2)

This latter property will be important in the application of Theorem 3.6.

We now define the notion of blow-up maps of amap v : (2, g) — (¥, d)
(not necessarily harmonic) at xo € 2. Throughout the paper we will define
different cases of blow-up maps so it is important to deal with the general case
first. Below, go denotes the standard Euclidean metric. We identify xg = 0
via normal coordinates (x!, ..., x") centered at xo and let v : (Bg(0), g) —>
(Y, d) be a Lipschitz map. For op > 0 sufficiently small, a function

v:(0,00) > Rog with Ilim v(o) =0

o—0t

is called a scaling factor. Let g, denote the rescaled metric on B (0) given in
terms of the coordinates (x!, ..., x") as

8oij(x) = gij(ox) (3.3)
and
dy (P, Q) = v(0)~'d(P, Q).
The blow-up map of v at xo = 0 with scaling factor v(o) is the map defined

by
Vo 1 (B1(0) C B,-13(0), go) — (Y, ds), vo(x) =v(0x). (3.4)
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Remark 3.8 For a harmonic map u : Q — (Y, d) and xo € €2, we make a
special choice of the scaling factor. More specifically, we let v(o) be equal to

With this choice, the blow-up map
ug : (B1(0), go) = (¥, dy)
satisfies
1" (1) =1 and E" (1) < 20rd"(xo) for o > 0 sufficiently small.

In particular, the sequence u, has uniformly bounded energy. Again applying
the monotonicity properties of Theorem 3.5, we have

E% () < 0" 2T E, (3.5)

where the constant Eg can be chosen independently of o and o« = Ord" (xg) >
1. Moreover, u, is a harmonic map and Theorem 3.2 and (3.5) imply

u has uniform local Lipschitz bound. (3.6)

Thus, applying the Compactness Theorem 3.6, we can find a sequence o; — 0
such that u,, converges locally uniformly in the pullback sense to a non-
constant harmonic map

Uy : (B](O)’ gO) — (Y*’d*)

from a Euclidean ball into an NPC space. By following the argument of [21]
Proposition 3.3, we conclude that the map u,, is homogeneous degree a; more
precisely, for any £ € dB1(0), the image {u,(t§) : t € (0, 1)} is a geodesic
and

dic(us(18), us(0)) = 1%dx (U (§), u(0)), vt € (0, 1).
Since u, is Lipschitz continuous by Theorem 3.2, it follows that
Ord"(xg) = Ord"*(0) = a > 1.

In the case of a harmonic map u into a smooth Riemannian manifold M,
the target space of a tangent map u, at x is the tangent space 7;,(x)M. On the
other hand, the target space (Y., g.) of a tangent map u, at x may be quite
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different from the tangent cone 7, (y)Y . For example, if u : (€2, g) — (H, dgp)
is a harmonic map with u(x) = Py, then a tangent map u, cannot map to the
tangent cone Tpoﬁ at Py. Indeed, if the image of u, is Tpoﬁ, then we have
a violation of the minimum principle since Tpoﬁ is isometric to [0, co) (cf.
Lemma 2.3). This is one of the technical issues dealt in this paper.

Definition 3.9 The homogeneous harmonic map u, defined in Remark 3.8 is
called a tangent map of u at xy.

We will record three lemmas about the upper semicontinuity of the order
and Hausdorff dimension. Some version of the lemmas are more or less known
to the experts, but we will include their proofs here for completeness since the
exact version stated below is hard to find in literature.

Lemma 3.10 Let u : (2, g) — (Y, d) be a harmonic map. Let xo € 2 and
ug, be a sequence of blow-up maps of u at xo converging locally unifomrly in
the pullback sense to a tangent map u.. If x; — x,, then

lim i%f Ord"ei (x;) < Ord"* (xy).
g —>
Proof Fix r € (0, 1). By Theorem 3.6 and (3.6), we have
E"(r) = lim E,” (r).
* G,'-)O
Furthermore, we claim
. Ug, Uy
lim |E,'(r) — E' (r)| =0. (3.7
o;—0

To prove (3.7), for € > 0 choose i large so that |x; — x| < €. By the uniform
Lipschitz assumption (3.6) there exists C > 0 such that

Ey(r)—Ce < Eyi(r—e) < Ex'(r) < Ey ' (r+€) < Ey.' (r) 4 Ce

which immediately implies the desired equality. Combining the above, we
have

EY(r) = lim E(7 (r).

Furthermore, by the local uniform convergence of the pullback distance func-
tions (3.2)

1) = lim 17 ().
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Combining the above two equalities, we obtain

_FEY(r) rEY(r)
lim =

0;i—0 I)':i”i (r) o I)':: (r) '
Now we apply the monotonicity property of Theorem 3.5, namely

Uy
rEy (r)
Us;

Ord"i(x;) < e .
L' (r)

Taking liminf as i — oo in the above inequality, we obtain

lim inf Ord" (x;) < e~ ().
a;—0 Ixf(l”)

Finally, letting r — 0 yields

lim inf Ord"® (xi) < Ord" (x).
g —>

O

Lemma 3.11 Let E; be a sequence of compact subsets of R and let Ey C R"
be a compact set. Assume that if x; is a sequence such that x; € E; and
X; = Xy, then x4, € Eg. Then

lim sup dimy (E;) < dimy(Eop).

i—00

Proof First, for any subset £ C R” and any real number s € [0, n], recall that
[19]
dimy(E) = inf{s : H*(E) = 0} (3.8)

where

o
ﬂ“(E ) = inf {Z ri + all coverings { B, (x;)}{2; of E by open balls. ¢ .
i=1

Since E( is compact, we may consider finite coverings Ey C U;N: 1 Bri (x).
Fix € > 0. By the assumption, we have that for i sufficiently large

E; C{x:|x — Eo| < €}
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where |x — Eo| = inf{|x — y| : y € Eo}. Thus, if H*(Eq) = 0 for some
s € [0, n], then H*(E;) = 0O for i sufficiently large. The assertion follows
from (3.8). |

Lemma 3.12 Let u : (Q,g) — (Y,d) be a map. For any xo € S”'(u),
assume that there exists a sequence u,, of blow-up maps of u at xo converging
locally uniformly in the pullback sense to a homogeneous harmonic map u,
with the following properties:

(1) If a sequence {x;} C B1(0) is such that x; € S>1(ugl.) With x; — X,
then xx € S (uy).
(i) dimy (8™ (uy)) <n —2.

Then
dimy(S™(w)) <n —2.

Proof Assume on the contrary that dimy (S~ («)) > n — 2; i.e., there exists
s > n—2suchthat H*(S> (1)) > 0.By[18]2.10.19, there exists xg € S ()
such that

H* (87! () N By (x00)) - o

O—S

. seo>1 T
(}1_r)n0H (&7 (o)) = glglo

Thus, dimy (S>! (uo;)) > s foro; sufficiently small. From (i) and Lemma 3.11,
we conclude that

n—2<s < limsupdimy (S~ (uy,)) < dimp(S™ ! (uy)).
O','-)O

This contradicts (ii). |

3.2 The order gap

In this subsection, we prove an order gap theorem for the limit map of a
sequence of harmonic maps into (H, dg). (We note that an important example
of such a limit is a tangent map of harmonic map into (H, dyp) as we shall see in
Sect. 3.3.) For two dimensional domains, many of the ideas in this subsection
first appeared in [51] in a slightly different language.

We will use the following properties of amap u : (2, g) — (H, dg). Given
an open set U C 2 such that u(U) is contained in the smooth Riemannian
manifold (H, gg), we can write

u=(Up,ugp)
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in U with respect to the standard coordinates (o, ¢) of H. If u is Lipschitz
continuous in U, then there exists a constant C > 0 such that

|Vu,| < C and |u) Vuy| < C. (3.9)

Ifu:(Q,g — (H, dy) is a harmonic map, then u, and uy satisfy the
equations in Q\S (u)

UpAuy = 3u2|Vu¢|2 and uiAud, = —6Vu, u%Vu¢. (3.10)

In the above V and A denote the gradient and the Laplacian with respect to
the metric g.

Lemma 3.13 Let Bgr(0) C R". There exists €9 > 0 depending only on the
domain dimension n such that if w; = (wf, w?) : (Br(0), gi) — (H, di) isa
sequence of harmonic maps with uniformly bounded energy converging locally
uniformly in the pullback sense (cf. Theorem 3.6) to a homogeneous harmonic
map vo : (Bg(0), go) = (Yo, do) into an NPC space, lim;_, 5o w; (0) = Py =
H\H and the metric g; converging in C* to the standard Euclidean metric
g0, then

0rd™(0) =1 or Ord™(0) > 1+ «.

If Ord"(0) = 1, then vo maps into a geodesic. Furthermore, the set of higher
order points of vy has Hausdorff codimension at least 2; i.e.

dimy (8™ (vg)) < n — 2.

Remark 3.14 The notion of local uniform convergence in the pullback sense
that appears in Lemma 3.13 was discussed in Theorem 3.6. On the other
hand, in the proof of Lemma 3.13, we only need the fact that the sequence
of pullback distance functions dg(w;(-), w;(-)) converges locally uniformly
to the pullback distance function dy(vo(-), vo(-)). In particular, a sequence of
blow-up maps of a harmonic map has a subsequence satisfying this property
(cf. (3.2) and Remark 3.8).

Proof For the sake of simplicity, we will assume that g; is the standard
Euclidean metric gg. We break up the proof of Lemma 3.13 into four claims.

O

CLAM 1. If Qq is a connected component of the open set {x € Bg(0) :
vo(x) # v9(0)}, then vy maps 2y into a geodesic ray starting at vo(0).
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Proof of Claim 1. Since E™i (R) is uniformly bounded, Theorem 3.2 and (3.9)
imply that, for any r € (0, R), there exists C > 0 such that for all i and

x € B (0)\{x : w;(x) # Po}
IVw?|(x) < C. (w(x)*|Vu?|(x) < C. G.11)

Fix xo, € Qo and let K be a compact set contained in 29 and containing
xg,- The local uniform convergence in the pullback sense of w; to vy and the
fact that lim;_, oo w; (0) = Py, imply

lim wf (x) = lim dgg(w;(x). Po)

= Hm dg(w;(x), wi(0)) = do(vo(x), vo(0)) =: f(x)

for x € Bg(0). Since K is compactly contained in €2y, the convergence
wf (x) = f(x)isuniformin K, and it follows that the function wf is bounded

away from O in K for i sufficiently large. Therefore (3.11) implies that wfp is
uniformly Lipschitz in K, and there exists a subsequence of wl¢ — wl‘.ﬁ (x0)

(which we shall still denote by wfb — w?)(xgo) by an abuse of notation) that
converges uniformly in K. By taking a compact exhaustion of ¢ and apply-

ing a diagonalization procedure, we can assume (by taking a subsequence if
¢
¢

g in Qq. Thus, (wf, w

necessary) that w wfj (xg,) converges locally uniformly to some function

¢

;= w:.p(xgo)) converges locally uniformly in €29 to the

map (f, g) : 20 — H. Since (wf, w? — wf’(xgo)) is a sequence of harmonic

maps into a smooth Riemannian manifold (H, gg), this convergence is actu-

ally locally C*°. The map wj; is harmonic which implies that the functions wf

and wf) satisfy
w’ Aw? = 3w Vw?l|? in Q.
Thus, the functions f and g also satisfy
FAf=37%Vg? in Q. (3.12)

Furthermore, the homogeneity of vy implies the homogeneity of f. Thus,
extend the domain of f is R”, assume 2 is a cone and write

f(r,0) =r*F(9) in Qg
where o = Ord'(0),

F:QyNaB(0)=AcCS" ' >R,
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and@ = (0!, ..., 0" 1) are the coordinates of S*~!. The above two equations
imply that

ale+n—1)F + NgF = r**t2FS9)|vg|*.

Since this inequality holds for any » > 0, we can conclude that [Vg|> = 0.

Hence f is aharmonic function by (3.12). Since w? —w? (xg,) = Oatx = xq,

¢

we see that g (xq,) = 0. Hence g = 0in ¢ and (w;.o, w; —wfb (xq,)) converges

locally uniformly to (f, 0) in 2. This in turn implies (wf’ , w:.b) converges
locally uniformly in the pullback sense to (f, 0) in €2p. Since (f, 0) maps
into the geodesic ray {(p,0) € H} U { Py}, w;(0) — Pp and (wf, wl.d)) also
converges locally uniformly in the pullback sense to vg in €9, vp also maps
Qo into a geodesic ray starting at vo(0).

CLAIM 2. There exists €9 € (0, 1) sufficiently small depending only on
the domain dimension n such that if Ord*(0) < 1 + €q, then there exists a
geodesic y such that vo(B1(0)) C y.

Proof of Claim 2. This argument essentially goes back to [21], but we include
it here for the sake of completeness. Let 2o, f, F, A and 6 = @1, ..., 0"
be as in the proof of Claim 1; i.e. Qg is extended to a cone in R", F(0) is
defined in A = Q¢ N S* ! and

Af=0 and f(r,0) = rYF(0)in Qo witha = Ord™(0).  (3.13)

Combining the above two equations, we conclude that F is a Dirichlet eigen-
function with eigenvalue o + n — 1; i.e. F satisfies

a@+n—1F 4+ 2AgF =0in A
F‘QZO

in the domain A.

Now assume that there exists at least three distinct connected components of
{x € BRr(0) : vo(x) # vp(0)}. Then at least one of the components, which we
will call 2, has the property that Vol(A) < %Vol(S”‘l) for A = Qo NSS!
(after extending $2p as a cone in R” as in the proof of Claim 1). Recall that
the Faber-Krahn theorem implies that the first Dirichlet eigenvalue A (A) of
A is bounded from below by the first eigenvalue A1 (B) of a geodesic ball 5 in
S"~! with volume equal to %VO](SH_I). Since L (B) > n — 1 + §, for some
number &, > 0 depending only on n, it follows that

alc+n—1D=rAN)=1MB)=>=n—-1+4+46,.
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Therefore, there exists g > 0 depending only on n such that @ > 1 + €.
Consequently, if « < 1 4 €g, then {x € Br(0) : vg(x) # vo(0)} has at most
two components. The maximum principle applied to the subharmonic function
f = do(vg, v9(0)) implies that there cannot be only one component. Therefore,
o < 14 €g implies that there exist exactly two connected components €24 and
Q_ of {x € BR(0) : vo(x) # v9(0)}. Let y4+ and y_ be geodesic rays starting
at vo(0) such that vo(24+) C y4+ and vp(24) C y—. Since vy is harmonic,
y = y4 U y_ is a geodesic.

CLAM 3. Either Ord"(0) =1 or Ord™(0) > 1+ e€g.If Ord"(0) =1,
then vy maps into a geodesic.

Proof of Claim 3. Let €g € (0, 1) be as in Claim 2 and assume Ord"(0) <
1+ €o. By Claim 2, the image of vy is contained in a geodesic y. Thus, we can
identify y with R and assume vg is a harmonic function. Since Ord™ (0) <
14 €0 < 2 and the order of a harmonic function is integer valued, we conclude
Ord®"(0) = 1. In this case, vg is a degree 1 harmonic function, hence linear.

CLAM 4. dimy(S™ ' (vg)) <n —2.

Proof of Claim 4. We will apply Federer’s dimension reduction argument.
Assume on the contrary that dim (S~ (vg)) > n—2;i.e. thereexistss > n—2
such that H*(S>'(vg)) > 0. By [18] 2.10.19, there exists xo € S~ ! (vg) such
that xo % 0 and

H(S! N B
lim 7457 (u0,0)) = lim O WO OB X0)) 5
o—0 o—0 o’
where v, is the blow-up map of vy at xo. We claim that
Ord"(xg) > 1+ ¢ (3.14)

for the same ¢y > 0 as CLAIM 2. Indeed, since vy maps into a union of
geodesics, the function f(x) = dg(vo(x), vo(0)) is a homogeneous harmonic
functions in each component 2o of B1(0)\{vo(x) = vo(0)}. In particular, f
in Qg satisfies (3.13). Thus, we can apply the same argument as in Claim 2
to show an order gap for vy with the same €g. Since Ord" (xg) # 1 (because
x0 € 87 !(vp)), the claim follows.

By rotating if necessary, we can assume xg = (0, ..., 0, |xg|). The homo-
geneity of vg implies that Ord™ (0, ...,0,7) > 1 +¢g for0 < ¢t < 1. This in
turn implies that Ord™-o(0,...,0,7) > 1 4+¢€g for —1 < ¢t < 1. By the upper
semicontinuity of order (cf. Lemma 3.10), this implies Ord"**(0, ..., 0, ) >
1 4+ ¢ for =1 < t < 1 where vg 4« is a tangent map of vy at xg. Thus, if
€1, ..., ey are the standard basis vectors of R”, then vy 4 is independent of the
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é,-direction and its restriction to R”~! spanned by ¢, . . ., ,_1 denoted Dy .,
is a homogeneous map of degree op « > 1 4 €. We then have

S (o) = 87 (Do) x R and dimy (S~ (Tp 4)) = s — 1.

Since s > n—2, we can repeat this argument inductively to produce a geodesic
with order not equal to 1 at some point, which is contradiction. (This part of
the argument is essentially the same as in [21] Lemma 6.5 where we refer the
reader for further details). ]

3.3 Higher order points

The goal of this subsection is to prove that the set of higher order points of
a harmonic map into (H, dyp) 1s of Hausdorff codimension 2 (cf. Proposi-
tion 3.16). To do this, we apply Lemma 3.13 to a sequence of blow-up maps
of a harmonic map into (H, dyp). Generally speaking, note that the blow-up
maps of a map into an NPC space do not necessarily map into the same NPC
space as the original map (because the distance function d,; is different from
the original distance function d). On the other hand, for a map into (ﬁ, dyp), we

can use the homogeneous structure of (H, dyp) discussed in Sect. 2.1 to define
its blow-up maps as a map again into (H, dyp). Indeed, given a harmonic map
u = u”,u®) : (Br(0), g) — (H, dg) with u(0) = Py, we can define

Uy : (B1(0), g) — (H,dg), us(x) =v""(o)u(ox). (3.15)

In other words, if we write u = (u,, ue) and uy = (Usp, Usye) in the homo-
geneous coordinates, then

Ugp(x) = v_l(a)up(ax) and uyo(x) = v_l(cr)uq>(ax).

Because of the homogeneity of the distance function under the dilation map,
this is equivalent to the construction of blow-up maps given by (3.4). By
Remark 3.8, there exists a sequence o; — 0 such that u,, = (ugl., uf;’,.) con-
verges locally uniformly in the pullback sense to a tangent map u, of u. The
next is a corollary of Lemma 3.13.

Corollary 3.15 Ifu = (u”, u®) : B;(0) - (H, dg), x0 € B1(0) and uy is a
tangent map of u at xo, then

Ord“(xo) =1 or Ord“(xg) > 1+ €y, and dimp(S™'(uy)) <n —2.

Moreover, if u(xg) = Py and Ord"(xo) = 1, then u, maps into a geodesic.
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Proof First, assume u(x) # Pp. Then u maps a neighborhood of x into a
smooth Riemannian manifold, and u, maps into 7,/ H = R? and the lemma
holds trivially with eg = 1. Next, assume u(x) = Py which then implies
Uy, (0) = Pp. The lemma follows by applying Lemma 3.13 with w; = u,, and
V) = Ux. O

We now arrive at the following.

Proposition 3.16 If u = (u”, u®) : B;(0) > (H, dy) is a harmonic map,
then the set of points such that Ord" > 1 is of Hausdorff codimension at least
2, ie.

dimy (8™ (w)) <n —2.

Proof Given xo € B;(0), there exists a sequence {u,, } of blow-up maps that
converges locally uniformly in the pullback sense to a tangent map u, (cf.
Remark 3.8). It suffices to check assumptions (i) and (ii) of Lemma 3.12.
First, assume x; € S >1(u(,[.) with x; — x,. By the order gap property of
Corollary 3.15, we have Ord"?i (x;) > 1 + €p. The upper semicontinuity of
order (cf. Lemma 3.10) implies Ord"*(xy) > 1 + € which in turn implies
Xy € S(uy). This verifies (i). By Corollary 3.15, we have dimy (S (uy)) <
n — 2. This verifies (ii). O

3.4 Order 1 points

We continue with the proof of Regularity Theorem 3.1. In view of Propo-
sition 3.16, it suffices to show that there exists no order 1 singular points
of a harmonic map. In this subsection, we analyze the order 1 points. An
important tool for this analysis is a global coordinate system of H that are
constructed by foliating H by symmetric geodesics. We introduce symmetric
geodeiscs in Sect. 3.4.1 and study their properties. The important observation
(cf. Lemma 3.20) is that blow-up maps at an order 1 point behave like sym-
metric geodesics. In Sect. 3.4.2, we will complete the proof of Theorem 3.1
by showing that there exists no order 1 singular points.

3.4.1 Symmetric geodesics
A symmetric geodesic is an arclength parameterized geodesic y : (—oo, 0c0) —

(H, gn) such that if we write y = (y,, ¥p) with respect to the original coor-
dinates (p, ¢) of H, then

Yp(s) = ¥p(—s) and yp(s) = —yp(—s).
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Fig. 3 As ¢g — oo the geodesic becomes almost vertical
The behavior of symmetric geodesics is explained by the following lemma.
See also Fig. 3.

Lemma 3.17 Let ¢g > 0 and 0% = (Ug)o, o*g)o) . (=00, 00) — (H, dy) be a
piecewise geodesic defined by

(s, ¢0) fors € (0, 00)
o) =1 Py fors =0
(—s, —¢o) fors € (—o0,0).

Let y? = (y¢0, y(fo) : (—00,00) — (H, dgg) be the unit speed symmetric
geodesic passing through the points

0% = (1, —¢y) and 0% = (1, ¢0).
Then
dﬁ(y¢°, a¢°) — 0 as ¢pg — oo uniformly on the interval [—1, 1].
Proof We break up the proof into three claims. O
$o

CLAIM 1. For any ¢, y,°(0) < yg’o(s) for all s € (—00, 00).

Proof of Claim 1. The first of the geodesic equations (2.2) implies that y,gb 0 is
convex. Combining this with the symmetry of y¢°, CLAIM 1 follows.

CLAIM 2. y;f’o(O) — 0 as ¢g — oo.
Proof of Claim 2. If yg’o (0) > ¢ > 0, then yg’o (s) > c for all s by claim (i)

and hence
2 2 b0\ 2 b0\ 2
— % + )/6(s) di > 0 d)/¢
ds L ds - ds

dy¢0
ds

1=
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Thus,
2 2
1 dy¢0 1 dy¢0
2 < oy 1 2 < / [ d </ ¢ d < —6
¢0_|V¢()|_<0 ds s = s s <c ".

Since this impossible for large ¢p, we have CLAIM 2.
CLAM 3. dgg(Q%, y#0(—1)) = dg (%, y# (1)) — 0 as ¢ — oo.

Proof of Claim 3. This assertion follows immediately from the fact that y¢
is a unit speed geodesic passing through points Qfo and Qﬁo and that
d?, Qﬁo) — 2 as ¢9 — oo. This proves CLAIM 3.

Claims 2 and 3 assert

dg(a?(0), y#(0)) = dg(Po, y?(0)) = y£°(0) - 0
and
dg(@® (1), y? (1)) = dg(Q%, y* (1)) — 0.

Since y¢° and 0% are geodesics on the interval [0, 1], the assertion follows
from the convexity of the function ¢ — d (y¢0 (1), 0% (1)) (which follows from
the NPC condition). |

Definition 3.18 A map | = (I, ly) : B1(0) — (H, gn) is said to be a sym-
metric homogeneous degree 1 map if

[(x) = y(Ax") (3.16)

where A > 0 and y is a symmetric geodesic. We call A the stretch factor or
simply the stretch of .

Definition 3.19 A map

given by
T(Po) =Py and T(p,9) = (p,¢p+c), (p.¢)€H

for some ¢ € R is called a translation isometry. Notice that if T is a translation
isometry, [ is a symmetric homogeneous degree 1 map and R : R” — R” is a
rotation, then

L=ToloR:Bi(0)— (H,gn)
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is a homogeneous degree 1 in the sense of Remark 3.8.

Letu,, be a sequence of blow-up maps of aharmonic map u : (Bg(0), g) —
(H, dy) at xo = 0 € Bg(0) converging locally uniformly in the pullback sense
a tangent map u, : (B1(0), go) = (Yi,dy). If Ord“(0) = 1, then u, maps
into a geodesic by Lemma 3.13. Let A be the norm of the gradient of u.,.
The following lemma gives more precise information of u,. by embedding this
geodesic in (H, gg) as a (translation of) a sequence of symmetric geodesics.
This also explains why symmetric homogeneous degree 1 maps given in Def-
inition 3.19 naturally arise in the study of harmonic maps into (H, dip).

Lemma 3.20 For a harmonic map u : (Br(0), g) — (H, dyp), let ug,, uy
and A be as above. If Ord"(0) = 1, then there exist a sequence of translation
isometries T; : H — H, arotation R : R" — R" and a sequence of symmetric
homogeneous degree I maps l; . B1(0) — (H, gn) with dg(Po, [;(0)) — 0
and stretch A such that

lim sup dg(ug,, Ti ol o R) =0, Vr € (0, 1).
o;—0 B, (0)

Proof By Corollary 3.15, u, maps onto a geodesic. By identifying this
geodesic with R, we can assume for the rest of the of the proof that u, is
a linear function. After rotating the domain B1(0) C R” if necessary, we may
assume

ue: B1(0) > R,  wuu(x) = Ax! (3.17)

for some constant A and
Qi ={x=" ..., x") e B0): +x' > 0}.

Following the proof of Lemma 3.13, Claim 1, we obtain that

dg(ug,, L+ ;) — 0 uniformly on compact sets of 21 (3.18)
where
Lii(x) = (Ax'.¢si), x € Qq
with ¢+ ; equal to the ¢-coordinate of u,, (xo, ) and xq, = (i%, 0,...,0) ¢

Q4. (Here, xo, and Q4 replace xq, and €2p in Lemma 3.13, Claim 1). Define
the map L; : B1(0) — H by setting

Lii(x)ifx! >0

Liix)=1{ Py ifx!'=0
L_;(x) ifx! <0
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Since u, converges locally uniformly to u,(x) = Ax' and dg(L; (), L;i(-)) =
dp (u(-), u(-)) we have,

dg(ue, (-), ug; () — dg(Li (), Li(-)) — 0 (3.19)
uniformly on compact sets of B1(0). We claim that
dg(ug,, L;i) — 0 uniformly on compact subsets of By (0). (3.20)

Indeed, let K C B;(0) be a compact set and € > 0 be given. For all i, we can
choose § > 0 such that

Ix'| <8 = dg(Li(x), Py) <e.
By (3.19)

limo dg(ue, (x), Po) = limO dg(ug, (x), ug,; (0))

= 11_1)11;0 dg(Li(x), Li(0)) = 11_1330 dig(Li(x), Po)
hence for i sufficiently large,
xeKand|x'| <8 = dglus (x), Py) <e.
Thus, for i sufficiently large, x € K and |x'| < 8 imply

dg(ui(x), Li(x))
< dg(u;(x), Po) + dg(Li(x), Po)
< 2e

For x € K with |[x!| > §, we have dg(ug; (x), Li(x)) < e for sufficiently
large i by (3.18). This proves (3.20).

We now use Lemma 3.17 to replace L; (up to a translation isometry) with
a symmetric homogeneous degree 1 map. Indeed, recall that by construction,
the ¢-coordinate of the point L; (xq, ) is ¢+ ;. Define

_ |, — il

oi : 7 ,

and let /; be a symmetric homogeneous 1 map with /; (x) = y(Axl) where y
is a geodesic passing through (A, ¢;) and (A, —¢;) and 7; be the translation
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isometry such that the ¢-coordinate of T; o [;(xq, ;) is equal to ¢+ ;. By
Lemma 3.17, we conclude that

dg(L;i, T; o l;) — 0 uniformly on compact subsets of By (0).
Combined with (3.20), we have proved the assertion. |
3.4.2 The completion of the proof of regularity Theorem 3.1

The following lemma is the heart of the argument of Regularity Theorem 3.1.
Due to its highly technical nature, we postpone the proof until Sect. 5.

Lemma 3.21 (The Key Technical Lemma for the Model Space). Given co,
Eo, A > 0, there exists Dy € (0, 1) that give the following implication.

Assumptions. The metric metric g on B1(0) and the map v : (B1(0), g) —
(H, dyp) satisfy:

(i) (almost Euclidean domain metric) The metric g is close to the
Euclidean metric in the sense of (5.21).
(ii) (energy decay) The energy of the map v satisfies

v n 1
E'(®) < 0"Ep, V9 € (0, 5).

(iii) (close to a symmetric homogeneous degree 1 map) There exists a
symmetric homogeneous degree 1 map
[:B1(0) > (H, gn)

with stretch A such that

sup dg(v,1) < Dy.
B%(O)

(iv) (subharmonicity of the distance) For ¥ € (0, 2—14), R € [%, %] and a
harmonic map w : (Byg(0), g) — (H, dgp),

€0

sup d%(v, LU) < W

f d%(v, w)dX. (3.21)
B%(O) 0By r(0)

Conclusion. Then v(0) # Py

Proof This is a special case of the key technical Lemma 4.11. The proof is
given in Sect. 5.5. O
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By combining Lemma 3.20 with Lemma 3.21, we obtain the following

Proposition 3.22 If u = (u”,u®) : B;(0) - (H, dy) is a harmonic map,
then there exist no order 1 singular points of u.

Proof For xo € S(u), let u,, be a sequence of blow-up maps of u at xo
converging to a tangent map u,. We want to show Ord”(xg) > 1. On the
contrary, assume Ord"(xg) = 1. As in the proof of Lemma 3.20, we assume
that u,(x) = Ax! (cf. (3.17). For sufficiently small o; > 0, assumption (i) of
Lemma 3.21 is satisfied with g replaced by g, .

Next, since g5, converges to go in C* (for any k = 1,2,...)as0; — 0,
there exists ¢p > 0 (independent of o; for o; > 0 sufficiently small) such that
for any subharmonic function f : B1(0) — R with respect to the metric g,
we have

co
sup  f < —_/ fdx.
Biss (0 O R JoB,r0

Furthermore, by (3.5), there exists Ep > 0 such that
1
E'i (%) < 9" Ey, Vo € (0, 5).

Choose Dg > 0 as in Lemma 3.21 depending on Ey, A and ¢y above. By
Lemma 3.20 there exists o; > 0 sufficiently small, a rotation R : R" — R”",
a translation isometry 7 and a symmetric homogeneous degree 1 map / with
stretch A such that

sup dg(T oug o R, 1) < Dy.
B%(O)

In other words, assumption (iii) of Lemma 3.21 is satisfied with v replaced
by T ous, o R. Since T and R are isometries, assumption (ii) of Lemma 3.21
is satisfied with v replaced by T o u,, o R. Furthremore, since T o us, o R
is a harmonic map, hence dl(T 0 Uy o R, w) is a subharmonic function for
any harmonic map w. Thus, assumption (iv) of Lemma 3.21 is satisfied with
v =T ous o R. Lemma 3.21 implies that 7" o u,, o R(0) # Py which in turn
implies u(xg) # Pop, a contradiction. O

Proof of Theorem (3.1). Combine Proposition 3.16 and Proposition 3.22. O

4 Harmonic maps into 7

In this section, we prove the Regularity Theorems 1.5 and 1.6 for harmonic
maps into the Weil-Petersson completion (7, d7) of Teichmiiller space 7.
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Recall that 7 is a stratified space
T = U T’ (4.1)

where 7" is either the original Teichmiiller space 7 or an open stratum of 7~
(cf. Sect. 2.3). Foramap u : (22, g) — (7T, d7), we say x € Q2 1is a regular
point if u maps a neighborhood of x into an open stratum 7" of 7. A point
x € Qs asingular point of u if it is not a regular point. We define the regular
set R(u) as the set of regular points and the singular set S(u) as a set of
singular points.

Analogously to the proof of the Regularity Theorem 3.1 for harmonic maps
into (H, dyp), the strategy is to first show that the set of higher order points is
of Hausdorff codimension at least 2, then to study the order 1 points. However,
this is more involved for harmonic maps into (7, d=). More precisely, because
of the more complicated structure of the stratification for 7 as compared to H,
we will use an induction based on the codimension of the boundary stratum.
Nonetheless, the main issue is the same for both 7 and H, namely, the non-
compactness and degenerating geometry near the boundary.

We will now give the outline of this section. According to Sect. 2.3, a
neighborhood of a point on an j-dimensional open stratum is asymptotically
the product of a smooth Kihler manifold of dlmenswn J and a neighborhood

of Py = (P, ..., Pp) in the normal space H / In Sect. 4.1, we define a local
representation u = (V, v) with respect to this asymptotic product structure;
more specifically, V maps into a smooth Kéhler manifold of dlmensmn j

(hence is referred to as the regular component map) and v maps into (H T dy)
(hence is referred to as the singular component map). We will prove that the set
of higher order points of u is of Hausdorff codimension at least 2 in Sect. 4.2.

The rest of Sect. 4 is devoted to studying the order 1 points of u. For
this, we will rely on the key technical Lemma (whose proof i 1s deferred until

Sect. 5) which gives sufficient conditions for a map into (H = ,dy) to not
hit the boundary point Py. This is the most challenging aspect of this paper
as it introduces techniques to address the non-compactness and degenerating
geometry of (7, d7). The difference between this section and Sect. 3 (where
we prove the regularity theorem for harmonic maps into the model space)
is that the singular component map v is not a harmonic map. Again, this is
because the Weil-Petersson metric is not a product near the boundary. (Recall
that in the proof of Theorem 3.1, the key technical Lemma for the Model
Space is applied to a sequence of blow-up maps of a harmonic map into
(H, dyp).) For this reason, we introduce in Sect. 4.3 the notion of a sequence

—k—j . .
of approximately harmonic maps into (H J, dy) and prove that if v; is such a
sequence converging to a harmonic map vg with Ord" (0) = 1, then vy (0) #
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Po. (This is the generalization of the result contained in Proposition 3.22 for
the case of a sequence of harmonic maps).

In Sect. 4.4, we begin the proof that the set of order 1 singular points of
u is of Hausdorff codimension at least 2 by setting up an induction on the
codimension of the stratum intersecting the image of u. Notice that if the
codimension is 0, then # maps into the interior of Teichmiiller space. Hence u
is regular and there is nothing to prove. The method follows closely our paper
[11], where we developed a theory of harmonic maps u = (V, v) into spaces
with an asymptotic product structure with the map v not necessarily harmonic.
More specifically, in [11] we developed the tools such as monotonicity, order
function and tangent map for almost harmonic maps to study the singular
component map v. The purpose of Sect. 4.5 is to introduce the results from
[11] needed in this paper and sketch the main ideas of their proof adapted to
the case of maps to the Weil-Petesson completion of Teichmiiller space. In
particular, we define the order of the singular component v. Analogously to
the case of a harmonic map, we first show that the set of higher order points of
v is of codimension at least 2 and then show that there are no singular points
of u that are also order 1 points of v. Finally, in Sect. 4.6, we finish the proof
of the Regularity Theorems 1.5 and 1.6 by completing the inductive step of
the argument.

4.1 A local represention for maps into 7'

Foramapu : (2,g) — (7T, d7), recall that R(u) is the set of points in £
that possess a neighborhood mapping into a single stratum in 7 and S(u) is its
complement. We decompose the singular set S(u) as a disjoint union of sets

k
Sw) =|_JS;w (4.2)
j=0

where
Siu)={x € Sw) : #ux) =j}, j=0,... .k

In other words, x € S () implies that u(x) is a point in a j-dimensional
stratum. If #u(x) = k, then u(x) € 7, and hence u(x) € R(u). Thus,

Si(u) = 9. (4.3)
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Forx, € S j(u), consider the composition W o u in By, (x,) for a sufficiently
small o, > 0 where

VN CT.dr) > UxVCCT xH !
is the coordinate chart defined in Sect. 2.2.

Definition 4.1 Forx, € S i (u), we will write the composition Wou in By, (x4)
as
u=(V,v): (Bo,(xs),8) = U xV,dg) (4.4)

where dg is the distance function induced from the Weil-Petersson metric G
(cf. Definition 2.6) and refer to it as a local representation of u at x,.

Let H and & be as in Corollary 2.12. The regular component map of u is
the map '
Vi (Bo,(x.), 8) > (C/, H) (4.5)

into the hermitian manifold (C/, H). The singular component of u is the map
iy —k—j
v=" ) (Bo,(xh), 8) — H ). (4.6)

. . . . . . —k—j
In particular, we observe that (since v can map into interior points of H M,
#u(x) > j for all x € By, (x,). Therefore,

Su)N By (x,) =W, VI =0,...,j—1. 4.7)

Remark 4.2 Let u as in (4.1) be a harmonic map, xo € By, (%), 00 € (0, %)

and ¢ € C?O(Bgo(xo)).. By considering a variation u; = .(V + tn,v),
where V = (V!,...,V/)isasin 4.5) and n = (n',...,n/) with p! =
Yk G'K(V,v)g, a straightforward computation implies

avl d¢p
—f g“ﬂa—aa—ﬁduzf @ fdu
BUO (x0) X X BD’O (x0)

for a bounded function f. (For explicit details, see [11, Lemma 50].) Thus, by
elliptic regularity, V € w2 (Bgy(x0)) and V is (Holder) continuous.

4.2 Higher order points of u

The purpose of this subsection is to show that the set of higher order points of
a harmonic map u : (2, g) — (7, d7) is of Hausdorff codimension at least
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2. Letx, € Sj (1) and
u=(V,v): (Bs,(x:),8) — UXV,dg)

be alocal representation (cf. Definition 4.1). For xo € S i ()N By, (x.), identify
xo = 0 via normal coordinates for the metric g and identify V (xg) = 0 via
normal coordinates for the metric H. We consider the family of blow-up maps
us of the harmonic map u described in Remark 3.8; in other words, u, is
scaled with respect to the scaling factor

1*(o)

oh—1"

n(o) = (4.8)

More precisely, we consider the maps

Vo 1 (B1(0), 80) = (C/, Hu(o)) vo : (B1(0), 85) — H . dy) @9

and
ug = Vo, ) : (B1(0), go) = U x V, de,(o')) (4.10)

where
Vo (x) = (o) V(ox) and vy (x) = 1~ (o)v(ox).

The metrics g5 and Hy, (o) are defined in terms of the normal coordinates of g
on Bj(0) and the coordinates V1, ..., VJ/ on C/ by

8ok (x¥) = gri(ox), and Hy o), ,;(y) = Hpj(n(o)y).

The metric G () on the stratified space U x V is defined similarly by
Gu) (. P) = Gu(u(o)y, n(o)P)

in terms of the coordinates V!, ..., V/ on C/ and the homogeneous coordi-
- k=) o
nates (pl, CI>1), e, (,ok_f, d>k_J) onH ’.Inthe above, the dilation map on

C/ is the standard multiplication map, whereas the dilation map on H is
defined in (2.4). We denote by

H® hyuo) = Huwo) D hpuo)

. . ; —k—j
the product metric on the stratified space C/ x H ! and let d Heoh dg

denote the corresponding distance functions.

n(o)? n(o)
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Lemma 4.3 Letu = (V,v), us = (Vy, vy ) be as above and dggp, dg be the
distance functions on U x V induced by the metric H ® h and G respectively.

(1) There exists a constant C > 0 such that for P, Q € U x V at distance at
most A from (0, Py),

_ duen(P. )

1—C)\?
( )= dg(P, Q)

< (1+C2%).

@) Ifh = (W, w) : B1(0) - U x V, G) is Lipschitz continuous in Br(0),
for some R € (0, 1), then there exists C > 0 such that

[IVRI?(x) = (IVW P (x) + [Vw[* ()] < CdF(w(x), (0, Py))

foralmost every x € Br(0). Here, we view W and w as maps into (U, H)
and (V, dy) respectively.

(i) Given R € (0, 1), there exists C > 0 such that for almost every x €
Br(0), every x € R(u) N Br(0) and o > 0 sufficiently small, the blow-
up map

ug = Vo, v5) : (B1(0), go) —> U XV, dG“’(g'))

of the harmonic map u with scaling factor (4.8) satisfies

k—j
1+ Co?) N Vug P(x) < [VVoP(0) + Y VUL P(x) < (1 + Co?)|Vug > (x).

i=1

Proof Part (i) follows from the C Ofestimate_s of G contained in Theorem 2.7.
Indeed, for any vector y’ € Tp/(C/ x HJ) with P’ € By (Py), we have

< vV >Hen — <Vv.¥ >¢| < Cr* <y, v >nen -
Let

y 1 10,dg (P, Q)] - C/ x HF
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be the arclength parameterized geodesic with respect to dg between P €
B).(Pg) and Q € By (Py). Then

, dG(P.O) g 2

dg(P,Q) .,
<dg(P, Q)/ <y.y >Hendt
0

dg(P,Q)
< (14 CxHdg (P, Q)/ <y vy >gdt
0

<dg(P, Q) (1+CA?).
Next, let
y [0, djgy(P. Q)] — C/ x H*/

be the arclength parameterized geodesic with respect to dy g, between P and
Q. Thus

dien(P,0) o\
d2(P, Q) < / <yLy'>gdt
0

duen(P,Q) .,
0

) dyen(P,Q) .,
<A+ CA)dyen(P, Q)/ <y.y >Hend!
0

< dfen(P, Q) (1+CA?).

This completes the proof of (i). The inequalities of (ii) hold for almost every
x € Bg(0) by the definition of energy density (cf. [27]) and (i). Finally, since
Uy is uniformly Lipschitz continuous in Bg(0) (cf. (3.6)), (iii) follows from
(i1). O

Lemma 4.4 Let u = (V,v) a local representation at x, € S i (u). For xo €

3 j(u) N By, (x4), there exists a sequence o; — 0 such that the blow-up maps
ug, = (Vo,, vo;) of u at xo converge locally uniformly in the pullback sense to
a nonconstant map

e = (Vi v2) = (Vi vl 0 T7) 0 B10) = ©F X Vi X X Vi
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where (Y1x, di1x), ..., (Yk—jx, di— j+) are NPC spaces and the sequences V,,
v}i, . v(l;_J converge locally uniformly in the pullback sense to homogeneous

degree o« harmonic maps Vi, vi, e vﬁ_j respectively.
Proof For any r € (0, 1), Lemma 4.3 and (3.6) imply that there exists C > 0
such that 4

IVV, %, VoL, ... [VuE=7 12 < C in B, (0) 4.11)

for sufficiently small o (with respect to the metric g(0) on the domain which is
uniformly equivalent to g, for o small). Let o; — 0 be such that u,, converges
to a tangent map u, locally uniformly in the pullback sense (cf. Remark 3.8).
Applying the Compactness Theorem 3.6 and a diagonalization argument, we
also have that there exist a subsequence of o; (which we call again o; for the
sake of simplicity), NPC spaces (Y14, di+), ..., (Yx—jx, dk—jx) and maps Vi :
R" — (C/, H(0)), v} : R" = (Y1 dia), ..., v 7 i R = (Vi juo i)
such that V,, LI vgi_" converge locally uniformly in the pull-back sense

g;°
to Vi, vi, R vi_] respectively. Furthermore, Lemma 4.3 implies that for

x',x" € By(0),

a%“i (o ", Uoi ") = d?‘la,- (Vo ), Vo, (x"))
k—j
+ Zdﬁ(véi '), v (x") + O(a).
n=1

Thus, we conclude that u,, converges locally uniformly in the pullback sense
to

(V*,vl,...,vi_j):Bl(O)—>(Cj X Y X oo o X Yi—jx

and
k—j
A2 (), un(x") = Vi) = Va2 + D dp (0 (), v (x7)).
m=1
In particular, we can now assume that u, is the map (Vi vi, R vf_j). The
harmonicity of Vi, vi, ey vl,ﬁ_J is implied by the harmonicity of the tan-
gent map u.. Furthermore, the homogeneity of tangent map ., implies the
homogeneity of Vi, vi, e vf,f_J. O

Lemmad.5 Letu : (2, 8) — (7, d7) be a harmonic map. There exists
€0 > 0 depending only on the dimension n of Q2 such that for xy € S j(u) and
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a tangent map uy of u at xo, we have
Ord"(xo) =1 or Ord"(xg) > 1+ ¢ (4.12)

and
dimy (8™ (uy) <n — 2. (4.13)

Proof For xg € R(u), statements (4.12) and (4.13) obviously hold (with €g =
1) since all the strata of 7 are smooth manifolds. Thus, now consider xg €
S j(u). By Lemma 4.4, there exists a sequence of blow-up us, = (Vy;, v5,) at
xo that converges locally uniformly in the pullback sense to a map

k_~ .
e = (Vi vh, oo, v 1) 0 Bi(0) — €7 X Yiy X -+ X Yi_ju

with V,, v ,...,vi_J homogeneous harmonic maps and Vi, v,;;, =
(véi, ey gl. ~7) converging locally uniformly in the pullback sense to Vi,
Ve = (vi, R vi_] ) respectively. First, assume V, is non-constant. Then

Ord"(0) = Ord"+(0), and since V, is a harmonic map into Euclidean space,
statements (4.12) and (4.13) obviously hold (again with €y = 1). Alternatively,
assume that V, is a constant map. In this case,

lim sup dHW)(Vg, 0), V5;) =0, Vre(,1). 4.14)
0,—)0 8B (0

Define

fioy : By (0) > (€ x ' dugn,)s o = (Vo (0), v5y)
and let

boi + BLO) > (© < B dnen, ), bo = Woy, wey)

be the harmonic map with boundary values equal to . Since ¢, and u,
are harmonic maps, dlz‘IEB I )(d)gi , Ug;, ) 1s a weakly subharmonic function by
wlo;

[27] Lemma 2.4.2. Thus, there exists a constant ¢y > O such that

dIZ-IEBhM(O,)((pa,- (x), Ug; (x)) < CO/ d%]@hﬂ(m)(d)ai’ uffi)dz'
! 9B (0) !
2
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By Lemma 4.3 and noting that ¢,, = ii; on B 1 (0), we have

lim sup dj (W, (x), v; (x) < C lim sup dirgy (9o, (x), o (x))
G,—)OBI(O) o‘,—)OBl(

< Ccp lim d? NETIRY 5>
= =05, 0 Hhy oy (Por: o)
2

= Ccp lim / d%—]@hu_((,,)(ﬁai’ u(ri)dE
9B1(0) '

0i—0 J:

< C lim dy (Ve (0), Vo, )dE
a;—0 3B (0) o
2

=0 (by (4.14)).

Thus, the sequence w,, of harmonic maps into H converges locally uni-
formly in the pullback sense to v, and wg, (0) — Po. Applying Lemma 3.13
with w; = wg,; and vg = v, we conclude that there exists €y € (0, 1] satisfying
(4.12) and also that (4.13) is valid. O

The following is the main result of this subsection.

Proposition 4.6 If u : (Q,g) — (7T, dF) is a harmonic map from an n-
Riemannian domain, then the set S~ (u) of higher order points is of Hausdorff
co-dimension 2; i.e.

dimy (8™ (w)) <n —2.

Proof Given xg € €2, let us, be a sequence of blow-up maps that converges
locally uniformly in the pullback sense to a tangent map u,. It suffices to
check assumptions (i) and (ii) of Lemma 3.12. To check (i), assume x; €
S>!(uy,) with x; — x,. By the order gap property of Lemma 4.5, we have
Ord"i(x;) > 1 4 €. The upper semicontinuity of order (cf. Lemma 3.10)
implies Ord"+(xy) > 1+ € which in turn implies x,, € S~ !(u,). This verifies
(i). By Corollary 3.15, we have dim3;(S™!(us)) < n — 2. This verifies (ii). O

In view of Proposition 4.6, it makes sense to disregard the higher order
points of the singular set of u#. Thus, with the notation as in Sect. 4.1, we set

Si(u) =Sjw)\S” ). (4.15)
In other words, S;(u) is the set singular points of S j(u) of order 1.
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4.3 A sequence of asymptotically harmonic maps

Letu: (22,8 — (7T, d7) be a harmonic map, x, € §;(u) and u = (V, v) be
a local representation at x,. Since the Weil-Petersson metric is not a product
near the boundary of 7, neither the regular component map V nor the singular
component map v is a harmonic map. We will see later (cf. Lemma 4.19 and
Lemma 4.32) that the singular component v is asymptotically harmonic in the
sense that a sequence of blow-up maps of v at xg € §;(u) N B%* (x,) is a
sequence of asymptotically harmonic maps. We now define this notion.

Definition 4.7 We say that a sequence of maps v; : (B1(0), g;) — (ﬁk_j, dp)
with v; (0) = Py is a sequence of asymptotically harmonic maps if the follow-
ing conditions are satisfied:

(i) The sequence of metrics g; on Bj(0) C R” converges in C* to the
Euclidean metric gg on B1(0) C R”".

(ii) There exists a constant Eg > 0 such that EVi () < 9" Eq for 9 € (0, %]
where 7 is the dimension of the domain Bj (0).

(iii) The sequence v; | B, (0) COnverges locally uniformly in the pullback sense
2

to a homogeneous harmonic map vg : (B 1 (0), go) — (Yo, dp) into an
NPC space. (Note that we also allow vy to be the constant map for
technical purposes.)

(iv) For any fixed R € (0,1),r € (0, 1) and ¢ > 0, there exist cg > 0 and
a sequence c¢; — 0 such that for any harmonic map w : (Bg(0), g;) —

H ™/ with

sup dp(w, Pg) <c,
Br(0)

we have

sup dj (vi, w) <
Byy (0)

/ dF (vi, w)d g, + ¢;93, V¥ € (0, R]
9By (0)

(4.16)
where X, is the volume form on 9 By (0) with respect to the metric g;.

1971—1

Remark 4.8 The sequence of blow-up maps of a harmonic map u
(B1(0), g) — (ﬁk_J, dy) with u(0) = Py as in Remark 3.8 is a sequence
of asymptotically harmonic maps. In particular, since u,, is harmonic for each
i, inequality (4.16) is satisfied with v; = u,, and ¢; = 0 (cf. [27] Lemma
2.4.2; replace n by tn and take the limit t — 0).

Remark 4.9 The theory we developed for a sequence of asymptotically har-
monic maps in [11] only requires that inequality (4.16) holds for the following
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two types of harmonic maps: (i) the Dirichlet solution with w|a B3(0) =
7

v ‘a B3(0) when v; is uniformly Lipschitz continuous in B% (0) and (i1) w is
Py

identically equal to Py.

The importance of a sequence of asymptotic harmonic map is that the limit
map vy satisfies the following property. This should be compared to the result
about the limit of harmonic maps in Lemma 3.13.

Lemma 4.10 Let v; : (B1(0), g;) — (ﬁk_j, dy) be a sequence of asymptotic
harmonic maps with v; (0) = Pg. Then vq (cf. Definition 4.7 (iii)) maps into a
product of NPC spaces; i.e.

UO:(U(I),_,,,vg_j):B%(O)%Y0:Y01 x---ng_j

where v(‘)‘ : B%(O) — (Y“,d(‘f) (forw = 1,...,k — j) is a homogeneous
harmonic map into an NPC space. If vg is non-constant, then there exists
€o > 0 such that

Ord™(0) =1 or Ord™(0) > 1+ €. (4.17)

If Ord™(0) = 1, then either vg maps into a geodesic or vg (x) = Py for all
x €B 1 (0). Furthermore, set of higher order points of vy has codimension at

least 2; i.e.
dimy (8™ (vg)) < n — 2. (4.18)

Proof Let w; : B 3 0) —» (Hk*j , d) be the harmonic map whose boundary

values agree with that of v; | B3 (0)" Let
z
R=9 5 2 (4.19)
= = —, r = —. .
4 3
By Definition 4.7 (ii)
3 3 3
EYi(=) < EY(=) < (=)"E), 4.20
(4)_ (4)_(4) 0 (4.20)

hence Theorem 3.2 implies that for a fixed zg € 0B 3 (0) and any x € B 3 0,

d(w;(x), w;i(z0))
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is uniformly bounded. This, combined with Definition 4.7 (iii), implies for any
X € B% (0),

d(w;(x),Po) < d(w;(x), w;(z0)) + d(w;(z0), Po)
= d(w; (x), w;(z0)) + d(vi(z0), vi (0))

<c,
hence by (iv) of Definition 4.7 we obtain

lim sup d2(v;, w;) = 0. (4.21)

i—00 B1 (0)
2

Again by (4.20), Theorem 3.2 implies that {w;} has uniform local Lipschitz
estimates which in turn implies that {wl“ } has uniform local Lipschitz estimates
foreach u =1, ...,k — j. Thus, by Compactness Theorem 3.6, there exists
a subsequence of wl“ | B, (0) (which we shall still denote again by the same

2
notation for simplicty) that converges locally uniformly in the pullback sense
to a limit map vg : B% 0) - (¥4, dg) into an NPC space. By (4.21), the

sequence vf‘ also converges locally uniformly in the pullback sense to vé‘ . Thus,

combining this with Definition 4.7 (iii), we can write vg = (v(l), e, vg_j ).
Furthermore, (4.21) also implies that lim,‘_wo(wl’.l (0), Pp) = 0. Thus, the
assertions (4.17) and (4.18) follow from Lemma 3.13. |

Lemma 4.10 leaves the possibility that Ord" (0) = 1. We will next elimi-
nate this case in Proposition 4.12 below. For this purpose, we need the following
key technical Lemma4.11 (that generalizes Lemma 3.21) which is the lynchpin
to the regularity theorem. We reiterate that this lemma handles the difficulties
stemming from the non-compactness and the degenerating geometry of the
target space 7 (like Lemma 3.21) with the additional complication that v is
not necessarily harmonic but only approximately harmonic in a certain sense
(unlike Lemma 3.21). The proof is deferred until Sect. 5 because of its highly
technical nature.

Lemma 4.11 (Key Technical Lemma). Given ¢y > 1, Ey, Al ... Am >0,
there exist Dy € (0, %g) and ¢ > 0 that give the following implication.

Assumptions. The metric metric g on Bi(0) and the map v =
W', ki) s (B(0), o) — (', dy) satisfy:

(i) (almost Euclidean domain metric) The metric g is C*-close to the
Euclidean metric.
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(ii) (energy decay) The energy of the map v satisfies
1
EY(9) <9"Ey, Vv € (0, 5).

(iii) (close to a symmetric homogeneous degree 1 map) There exists a map
I=(T'ol'oR',..., T" o™ o R™, I"T, .., %<7y : Byi (0) — (HX/, h)
where foru =1, ..., m,
R" : Byi(0) — Byi(0) is a rotation,

TH :H — H is a translation isometry,
" : B1(0) > H is a symmetric homogeneous degree 1 map

with stretch A" such that

sup dp(v,!l) < Dy,
B%(O)

dg(Po, 1M(0)) < % Yuel{l,...,m}

and

" is identically equal to Py

fory=m+1,...,k—].
(iv) (almost subharmonicity of the distance) There exists co > 1 such that
for ¥ € (0, 21—4), R € [%, %] and a harmonic map w : (Byr(0), g) —

—k—j
H 7, ap),

2 €0 2 3
sup dj (v, w) < —_/ di(v,w)d +cd°. (4.22)
Bisy (0 " @R Jig, e "

Conclusion. Then v(0) # Py.
Proof See Subection 5.5. O
Proposition 4.12 Letv; : (B1(0), g;) — (ﬁk_j, dy) be a sequence of asymp-

totic harmonic maps. If vy (defined in Definition 4.7 (iii)) is non-constant, then
Ord"(0) # 1.
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Proof Onthe contrary, assume Ord" (0) = 1. By Lemma4.10, we can assume
that vg maps into a product of NPC spaces; i.e.

voz(v(l),...,vg_j):B%(O)%Y0:Y01 x~--ng_j

where (Y, d) is an NPC space for u = 1, ...,k — j. Since vo is a homo-
geneous harmonic map, each component map vjy : B 10) - g, dy) is

a homogeneous harmonic map. By reordering if necessary, we can assume

e 7
vé, R vo’" are non-constant maps and vg’“(x) = Po,..., v, /(x) = Py for

all x € B%(O).
Let w, = (w},..., wH) : B%(O) — (H*"/,d),) be the harmonic map

whose boundary values agrees with that of v; as in the proof of

‘33(0)
1

Lemma 4.10. Then w; converges locally uniformly in the pullback

’Bl(())
2

sense to vg by Definition 4.7 (iv) which in turn implies that wl“ | B, (0) €ON-
2

verges locally uniformly in the pullback sense to v(’f foreachu =1,...,m.
Therefore, by Lemma 3.13, vé‘ maps into a geodesic since we are assum-
ing Ord"(0) = 1. Therefore, we can apply the same argument as the
proof of Lemma 3.20 with w; replacing u, and vy replacing u, to con-
clude that there exists a sequence of translation isometries Tl.“ , a rotation
R™ : Byi(0) — Byi(0) and a sequence of symmetric homogeneous degree 1
maps ;" with

du(Po, 1] (0)) — 0 (4.23)

and stretch A* such that

lim sup d(w!', T/ oI/ o R*) = 0.
1—> 00 Bl(o)
2

This defines the constant A*. Combined with (4.21), we see that

lim sup d(v!, T/ ol o R"*) = 0. (4.24)

i—)OOBI (O)
2

Let Ep and co be the constants in Definition 4.7 (ii) and (iv) respectively. Let
Dy € (0, \/Lg) and ¢ be constants in Lemma 4.11 corresponding to cq, Ej,

Al LA™ By Definition 4.7 (iv), (4.23) and (4.24), we can fix i sufficiently
large such that ¢; < ¢, and

d(Py, 1} (0) < % Yuell,...,m}

@ Springer



G. Daskalopoulos, C. Mese

and

D
sup d(, T" ol" o R") < =2, Vpefl,...,m).
B1(0) m

2

Define ! = (1!, ..., 157y : B;(0) - ﬁk_j by setting
M=T'oll'oRM, Vu=1,....m and I =Py, Vu=m+1,....k—j
which gives us

sup d(v;,l) < Do.
B%(O)

Applying Lemma 4.11, we obtain v;(0) # Py. This contradiction proves
Ord™(0) # 1. O

4.4 The inductive hypothesis

In this subsection, we begin the proof of Theorems 1.5 and 1.6 by starting
a backwards induction on j. We need the following two statements for a
harmonic map u : (2, g) — (7, dz):

STATEMENT 1[j]: For any x, € S;(u) and a local representation u =
(V,v) : (B, (x4), 8) = U x V,dg) at x, (cf. Definition 4.1), we have

dimy, (S(u) N B%(x*)) <n-2.

STATEMENT 2[j]: For x, € S;j(u), a local representation u = (V,v) :
(Bo, (x4), 8) = (U x V,dg) at x,, g € [1, 2) sufficiently close to 2 and any
subdomain €2 compactly contained in

Be (x0)\ (S@) N (By))

there exists a sequence of smooth functions ; and a neighborhood of N;
contained in an €;-neighborhood of S(u) with ¥; = 0 in a neighborhood of
Sw) N, ¥; = 1 outside of N;, ¢ — 0,0 < ¥; < 1, ¢¥; — 1 for all

@ Springer



Rigidity of Teichmiiller space

x € Q\S(u)
lim |Vul[Vipi| du =0,
=00 Boy (x4)
2
1lim [Vul|Vi|1 du =0
=00 J Boy (x4)
2
and
1lim [VVul|Viyi|l du = 0.
170 JBoy (x4)
2
We will prove STATEMENT 1[j]and STATEMENT 2[j]forall j € {0, ..., k}

by a backwards induction on j as follows:
INITIAL STEP. STATEMENT 1[k] and STATEMENT 2[k] hold since S; (1) =
# (ct. (4.3)).

Inductive Hypothesis [j+1]: STATEMENT 1[m] and STATEMENT 2[m]
holdform=j+1,j4+2,...,k.

INDUCTIVE STEP. The Inductive Hypothesis [j+1] implies that STATEMENT
1[j] and STATEMENT 2[j] hold.

Before we prove the INDUCTIVE STEP in Sect. 4.6, we will need to further
analyze the singular component v of the harmonic map u in the next section.

4.5 Order of the singular component map

In this section, we prove existence of the order function for the singular com-
ponent v of a harmonic map into 7. The difference with Gromov—Schoen is
that v is not necessarily energy minimizing, but only almost energy minimiz-
ing. However, the basic steps are the same as in Gromov—Schoen with the
additional complication of keeping track of the error terms coming from the
almost harmonic map v. As in [21], before proving that the order function
exists we have to show a target variation formula and a domain variation for-
mula. These theorems have been proved for approximate harmonic maps to a
wide range of spaces in [11].

For the sake of completeness we state these theorems and sketch their proof
in Proposition 4.16 and Corollary 4.17 for the target variation, Proposition 4.22
and Corollary 4.23 for the domain variation and Proposition 4.24 for the exis-
tence of the order function. These theorems parallel [21, Proposition 2.2] for
the target variation, [21, Formula (2.3)] for the domain variation and [21, For-
mula (2.5)] for the monotonicity and thus the existence of the order function.
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Throughout this subsection, we assume that the Inductive Hypothesis [j+1]
holds for a harmonic map u : (22, g) — (7, d7), and let

u=V,v):(Bo,(x0), 8 - UxV,dg)

be a local representation of u at x, € S;(u). We start with the following
proposition which is a restatement of our inductive hypothesis.

Proposition 4.13 Forany q € [1, 2) sufficiently close to 2 and any subdomain
Q1 compactly contained in

B (x)\(S(w) Nv™' (Py)),

there exists a sequence of smooth functions V; and a neighborhood of N;
contained in an €;-neighborhood of S(u) with 0 < ¢y < 1, ¥; = 0ina
neighborhood of S(u) N Q1, Yi = 1 outside of N;, €, — 0, ¥; — 1 for all
x € Q\S(u) such that

lim \Vu||Vy:| dp = 0.
11— 00 Ql
lim IVu||Vy; |4 dp = 0.
1—> 00 Ql
lim IVVul|Vi| di = 0.
i—00 JQ,

Proof Since v(£21) does not contain (the most singular point) Py, this follows
from the inductive hypothesis STATEMENT 2[j + 1], ..., STATEMENT 2[k]
and a partition of unity argument. O

Before we discuss the target variation we need two preliminary propositions.
In the language of [11] these correspond to Assumptions 3 and 4.

Proposition 4.14 The set S;(u) satisfies the following:
(1) v(x) =Py for x € Sj(u) N By, (x,)
(i) dimy((S\S;(w)) N B (x4)) <n — 2.

Proof Assertion (i) follows immediately from the definition of S;(u). The
inductive assumption along with Proposition 4.6 implies the assertion (ii). O

Proposition 4.15 For Br(xg) C B%* (xx) and any harmonic map w

(Br(xp), g) — (ﬁk_j, dy), the set R(u, w) = R(u) NR(w) is of full measure
in R(u) N Bgr(xp).
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Proof By Theorem 3.1, we have dimy (S(w)) < n — 2. Thus, R(w) is of full
measure in B, (xg) which immediately implies R (u, w) is of full measure in
Ru) N By (x0). O

By rarget variation, we mean the one-parameter family of maps
—k—i
Vi : By(xo) > H' 7, wpy(x) = (1 — m(0))v(x) + i (x)w(x)

where n € C2°(By(xp)) and w : By (xp) — H Tisa Lipschitz map. Here,
the sum mdlcates geodesic interpolation; in other words, given two points

P, Qe H , T+ (1 —1)P + 7Q for t € [0, 1] denotes a constant speed
parameterlzatlon of the unique geodesic from P to Q.
We start by observing that if v was energy minimizing, we would have

E},(®) — Exy'(9) < 0. (4.25)

However, since the singular component map v is not necessarily energy min-
imizing, we don’t expect (4.25) to hold. On the other hand, the full map
u = (V, v) is energy minimizing and hence for u;,;, = (V, v;;)

E! (9) — Ex)'(®) < 0.

Furthermore, since by Proposition 2.12, the Weil-Petersson metric is asymp-
totically a product, we have

E,(9) ~ Ey(9) + Ex (9)
EY (9) ~ EV ) + Ev’”(ﬁ)
These approximations mean that the equalities are correct up to a small error.

By precisely accounting for these errors, we obtain the following theorem and
its corollary which is the target variation formula.

Proposition 4.16 There exists R > 0 and C > 0 such that

By ()~ Ey
lim sup

t—07t t

1
@) C/ ndp (v, Po)dp (v, wydu  (4.26)
By (x0)

forany xo € Sj(u) N B%*(x*), ¥ € (0, R], n € Cy°(By(x0)) and harmonic
map

w: (Br(xo). g) — (' 7. dy)
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where

iy (x) i= (1 = tn(x))v(x) + 1n(x)w(x).

Proof This is proved in [11, Proposition 37] by a straightforward computation
by using the precise asymptotic estimates of the Weil-Petersson metric given
in Proposition 2.12 and Propositions 4.14 and 4.15. We omit the details here.

[}

If v is harmonic, then the target variation formula (cf. [21, (2.2)]) is
Adj (v, Q) = 0, (4.27)

where Q is any point on the target space. However, since v is only approxi-
mately harmonic, we have to modify (4.27) by adding an error term to obtain
equation (4.29). The precise estimate is

Corollary 4.17 There exists R > 0 and C > 0 such that

- c/ nd} (v, Po)dp + 2/ nIVuldu < —f V- Vd: (v, Po) du (4.28)
By (x0) By (x0) By (x0)

and

0=<-— / V- Vdi (v, wydp +C / ndy (v, Po)dp (v, wydp (4.29)
By (x0) B

» (x0)

forany xo € Sj(u) N B%* (x.), ¥ € (0, R], n € C3°(By(x0)) and harmonic
map

w: (Brxo). ) — H /.

Proof For inequality (4.28), we combine the computation of the target varia-
tion formula in [21, Section 2] with Proposition 4.16. See also [11, Corollary
39]. We now prove (4.29). Let R > 0 and C > 0 be as in Proposition 4.16.
By [27, Lemma 2.4.2] (with u9 = v, u; = w, replacing n by ¢n, integrating
over By (xo) and noting that w is an energy minimizing map)

t/ Vi - Vdi (v, wydp — 0(t?) < EY () — Exy'(9) (4.30)
By (xo0)
which combined with Proposition 4.16 implies the result. O
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Lemma 4.18 Forxp € Sj(u) N B % (x4), let vy be the singular component of
the blow-up map us, = (Vy, vs) of u at xo (cf. (4.9)). For a fixed R € (0, 1)
andr € (0, 1), there exists a constant C > 0 that can be chosen independently
of o such that for any harmonic map

w : (Br(0), g5) — " with sup dp(w,Py) < c,
Br(0)

we have

sup djf (v, w) <
Brl?(o)

/ d} (vy, w)dZs 4+ Co?93, VO € (0, R]
9By (0)
(4.31)

l}nfl

where d X, is the volume form with respect to the metric g,.

Proof Throughout this proof, we use ¢ to denote an arbitrary constant that
is independent of o that may change from line to line. In the estimate of
Corollary 4.17, identify xo = 0 and replace ¥ by o ¢}. Multiply the resulting
inequality by u;l and apply change of variables to obtain

0=< _/ v - Vd}%(vay w)dps + 002/ ndn(vs, Po)dp (v, w)d e
By (0) By (0)

where d 11, is the volume form with respect to the metric g, (cf. (3.3)). Fixr €
(0, 1). Letx € B,»(0),s € (0, ¥(1 —r)) and n approximate the characteristic
function of B;(x) C By (0). We then obtain

0
0= [ SdnwdZ, o [ dioo P (v, widi
By(x) 08 B (x)

P / A2 (v, w)dE
s — Vg, W
= das \s"ag ’

teo? / o, POt P+ a0 B0
By (x

Multiply this by s!=” and apply Holder inequality to obtain

d cs
0<= (6_1/ (v, w)dEg)
ds \ s"— 9By (x)

resl 0 [ d . Podig
By (x)

1 1
+es' o2 d? (v, Po)d i A2 (w. Po)dus |
1w (e, Po)d s p(w, Po)dus ) . (4.32)
B (x) By (x)
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Since the blow up map u, has Lipschitz bound that can be chosen indepen-
dently of o in Bg(0) (cf. (3.6)), so does the singular component map v, by
Lemma 4.3. Indeed, there exists a constant ¢ > 0 that can be chosen indepen-
dently of o such that

sup dj(ve, Py) < cs.
B;(0)

Additionally,
Vol,, (Bg(x0)) < cs".
Combining the above two inequalities with the assumptionsupg (o) dn(w, Po)

¢, we conclude that the last two terms of the right hand side of (4.32) can be
replaced by co?s?; i.e

A

d eCS
0<— ( / d? (vs, w)dEg) + co?s?. (4.33)
0B (x)

Sn—l

Integrating this over s € (0, t) for t < 9 (1 — r) yields

d,%(vo (x), wx)) < L_lf d%(v(,, w)dE, + co’t3.
1" JoB,(x)

Multiplying the above by *~!, integrating over ¢ € (0, 9 (1 — r)) and noting
that B;(x) C By (x0),

sup d}%(vg, w) < in/ dﬁ(vg, w)dpy + co?om™ . (4.34)
B (x0) 0" J By (x0)

Now we consider (4.33) with x = x¢ and integrate this over s € (¢, ). We
obtain

1 2 c 2 243
1 dh (UO—, U))dEo' =< l?nfl dh (v0'7 w)dEO‘ +co .
t 9B; (x0) 9By (x0)

Multiplying by #*~! and integrating this over 7 € (0, ¥),

1
— d} (Vo W) Ty < —— / A} (Ve W)dZg4ca?B3. (4.35)
0" J By (x0) "% JoBy (xo)
Combine (4.34) and (4.35) yields the desired inequality. O
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Lemma 4.19 If xo € Sj(u) N B%* (x4) and us; = (Vs,, v,) is a sequence of
blow-up maps of u at xo as in Lemma 4.4, then vy, is a sequence of asymptot-
ically harmonic maps.

Proof By Lemma 4.4, there exists a sequence of blow-up maps u, =
(Vs,. vg;) that converges locally uniformly in the pullback sense to a map
uy = (Vi, vi) where V,, v, are homogeneous degree o harmonic maps and
the sequences V., v, converge to Vi, v, respectively. We check properties
(1)-(iv) of Definition 4.7 for v; = v, and g; = g,,. Property (i) regarding the
metric g; follows immediately from the definition of g,,. Property (ii) follows
from the fact that u,, and hence vy, is uniformly locally Lipschitz continuous
by (3.6) and Lemma 4.3. Since v,; converges to v,, we have Property (iii).
Finally, Property (iv) follows from Lemma 4.18 with ¢ = C and ¢; = Cal.z.
O

Lemma 4.20 [fx € S;()NBz (x,) andit, = (V, v2) = (Va, v}, ..., vk

%
is a tangent map of u at xo as in Lemma 4.4, then v, is a constant map.

Proof Let us, = (Vy;,v5) be the sequence of blow-up maps converging
locally uniformly in the pullback sense to u, = (Vi, vy) as in Lemma 4.4.
By Lemma 4.19, v,, is a sequence of asymptoticly harmonic maps converg-
ing to v,. Since xo € S;(u), we have by definition that v,,(0) = P and
Ord"+(0) = 1 (cf. (4.15)). By Proposition 4.12, v, is identically constant. O

Proposition 4.21 Fora.e. x € Sj(u) N B% (x4), we have

IVu|?(x) =0 and |VV|*(x) = |Vu|*(x).

Proof Let xg € Sj(u) N By, (x,) and identify xo = 0 via normal coordinates.
By Lemma 4.20, we can fix a sequence u,;, = (Vy,, vs,) of blow-up maps of u
such that u,, and V,, converge to a tangent map u, = V, : B1(0) — C/ and
Vs; converges to a constant map. Lemma 4.3 implies

E'i(r) = (E% (1) + E*1() + O (D). (4.36)
Therefore,

lim sup E " () < lim sup(E "7 (r) + E%i (r))

o;—0 o;—0

= lim E“i(r) (by (4.36))

= E"*(r) (by Theorem 3.6)
= EY(r) (since u, = V)
< lim ir&f EYoi (r) (by the lower semicontinuity of energy).

g —>
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This immediately implies

lim EYi (r) = lim E%i(r) and lim E%i(r) = 0. (4.37)
O’,‘—)O o‘,‘—>0 0[—)0

Since |Vv|? is an integrable function, almost every point of By, (x,) is a
Lebesgue point. In particular, at almost every x € S;(u) N By, (x4),

1
Vol2(x) = lim ————— VuPdu
o‘i—>0 VOZ(Bair(x)) Bair(o)
2
_ Uz 2
= lim ———— Vo, [*d o,
0i—0 Vol (B,(0)) B,(O)| il
2
Vo, [*d o,

< lim ———
0i—0 Vol(B;(0)) Jp, )
—0 (by (4.37)).

This implies the first assertion. The second follows immediately from the first.
O

Next, we discuss the variation of the domain which gives an estimate on
how far v is from being an energy minimizing map with respect to domain
variations. By a domain variation, we mean the one-parameter family of maps

vt Bo(xo) = (' 7 d), v(x) =vo Fx)
where F; is a diffeomorphism given by
Fi(x) =1 +16(x)x, § € CZ(Bs(x0), 0 <& <1
In the next Proposition, if v was a minimizer as in [21], then the right hand

side would be 0. The error terms come because v is almost energy minimizing
with respect to the asymptotic product structure of the Weil-Petersson metric.

Proposition 4.22 There exists C > 0 such that for xo € Sj(u) N B % (xx) and
o € (0, rg), we have

Uy
i E©@) — EN(@)

C/ £d* (v, Py)du + Co/ E|Vv|2dp
t—0 t By (x0) Bs (x0)

Furthermore, C depends only on the constant in the estimates for the target
metric G, the domain metric g and the Lipschitz constant of u.
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Proof Follows from Proposition 4.16 and the computation of [11, Chapter 7
and Chapter 8] (cf. [11, Lemma 52]). O

An important consequence of Proposition 4.22 is the domain variation for-
mula.

Corollary 4.23 There exist Ry > 0 and C > 0 such that for xo € S;j(u) N
BGT* (x4) and o € (0, Rg), we have

2

9
Ul ds =0, 438)

d
G—E;’O(G)+(2—n+C0)E;’O(G)—20/
3B, (xo) | 07

do

Furthermore, C depends only on the constant in the estimates for the Weil—
Petersson metric Gw p, the domain metric g and the Lipschitz constant of
u.

Proof Combine the usual computation for harmonic maps (cf. [47, Chapter
2.4)or[21,p. 192-193]) with the domain variation formula of Proposition 4.22.
The details are given in [11, Proposition 53] O

Finally, we discuss the existence of the order of the singular component
map v. If v is harmonic, then we have the monotonicity formula [21, (2.5)]

d (ewz aE”(a)) > 0

do 1%(o)

which immediately implies that the order exists. Furthermore, by [21, proof
of Theorem 2.3], we also obtain

d (.2 E'0) d (.2 I'(0)
E e m 20andd—0 e 0'”_—1"'20‘ ZO

Since v is not necessarily harmonic, by applying the target variation formula
(cf. Corollary 4.17 with n approximating the characteristic function of B (x())
and the domain variation formula (cf. Proposition 4.22), we obtain

Proposition 4.24 The singular component map v has a well-defined order at
any point of Sj(u) N BOT* (x4). In other words,

oEV(0)

IV (o)

Furthermore, there exist constants ¢ > 0, C1 > 0 and Ry > 0 depending
continuously on the point xy such that

Ord®(xp) := limo exists for any xo € Sj(u) N B%* (x4). (4.39)

ocEV(0)
IV(o)

Ord?(xp) < e

, Yo € (0, Ry) (4.40)
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and
EV EY
e—Claa UX(U) < eclpp+w Yo < p < R(). (441)
IY(0) 1Y (p)
Finally,
I (0) - EY(0)
o (o2
o e° O—n——l-i-Zoc’ o> e O_n—2+2(x (4'42)

are non-decreasing functions in (0, Ry) where o = Ord"(xg) > 1.
Proof See [11, Proposition 54 and Corollary 60]. O

As the consequence of the existence of order, we will show that the sequence
of blow up maps is sequence of approximately harmonic maps (cf. Lemma 4.32
below).

Definition 4.25 Let xo € S;(u) N B%* (x4), identify xg = 0 via normal coor-
dinates and let g, as in (3.3). For

v(o) =/ % (4.43)
o

ot (B1(0), g0) = (H . dp). vo(x) = v (0)v(0). (4.44)

define

We call v, the blow-up map of v at xy.

Remark 4.26 We emphasize that the scaling factor in the map v, of (4.44)
is different from the one in the map v, of (4.9) although we use the same
notation. More specifically, v, of (4.44) (i.e. the blow-up map of v) is scaled
1Y(0)

on—17

with respect to the scaling factor

whereas the map v, of (4.9) (i.e. the
singular component map of the blow -up u, of u) is scaled with respect to the

scaling factor |/ - e ( ) . For a singular component map of the blow-up u, of u,

the energy bound follows from the energy bound of u, (cf. Lemma 4.3). On

the other hand, the blow-up map v, of v is rescaled by ! ,,(Gl , which may

tend to 0 much quicker than " (") and hence the energy bound for u, does

not help. On the other hand, by Proposmon 4.24, we can now give a uniform
energy bound for the blow-up map v, of v at xg. More precisely, for o > 0
sufficiently small, (4.39) implies

ocEV(0)
1V(0)

E% (1) = < Ep :=20rd"(xp). (4.45)
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Definition 4.27 The harmonic map

wo : B3 (0) — (H,dy)

whose boundary values agree with that of v, ‘ B3 (0) is called the approximating
I

harmonic map for v, .

Lemma 4.28 Let v, and w, be as in Definitions 4.25 and 4.27 respectively.
There exists a sequence o; — 0 and a constant C > 0 such that

|[EYi (r) — EVi (r)] < Coi, Yr € (0 l)
— 1 a2 .

Proof The main issue is that the map v, is not a competitor to the harmonic
map w, in the domain B, (0) because their boundary values do not necessarily
match. Therefore, we “bridge” the gap between v, and w, using [28, Lemma
3.12]. This is estimate [11, estimate (132)] where we refer for complete details.

O

We next prove the existence of blow up maps of the singular component
map converging to a tangent map. We will need the following.
Lemma 4.29 For xo € S;j(u) N B%* (xy), let vy be a blow-up map of v at
xo (cf. Definition 4.25). For a fixed R € (0,1) and r € (0, 1), there exists
a constant C > 0 that can be chosen independently of o such that for any
harmonic map

w: (Br(0), g5) — ﬁk_j with sup dp(w, Pg) <c,
Br(0)

we have

sup dj (vg, w) <

— / di (Vo w)dEs + Co®¥>, V9 € (0, R]
By (0) 0= JaBy )

where d ¥, is the volume form with respect to the metric g,-.

Proof We argue in a similar way as in the proof of Lemma 4.18. The only
difference is that we do not know v, is Lipschitz continuous in this proof.
Instead, we use the monotonicity property of the singular component map v
given by Proposition 4.24. Indeed, the first estimate of (4.42) implies

f P2 (vy, Po)d Sy
9B,(0)

pr < cp?, ¥p € (0. 1).

@ Springer



G. Daskalopoulos, C. Mese

Multiplying by p"~! and integrating over p € (0, s), we obtain
/ d?(vy, Po)du, < cs"2, Vs € (0, 1). (4.46)
5 (0)

Arguing as in the proof of Lemma 4.18, we obtain the analogue of (4.32).
Combining it with (4.46), we obtain

0 < d [ e / a2 Sy | + cols?
— | — Vg, W co’s
~ ds S"_1 3B, (0) hime 7

which should be compared to (4.33) in the proof of Lemma 4.18. The rest of
the proof follows exactly as the proof of Lemma 4.18. O

Lemma 4.30 For xo € Sj(u) N B % (x4), there exists a sequence of blow-up
maps vy, of v at xq (cf. Definition 4.25) converging locally uniformly in the
pullback sense to a homogeneous harmonic map vy : B1(0) — (Yo, do) into
an NPC space with

0rd™(0) = Ord"® (xo).

Proof Letw, : B% (0) — (H*"/, d},) be the approximating harmonic map for
v (cf. Definition 4.27). Since

3 3
E" (5) < E™(7) < Eo (4.47)
4 4
by (4.45), the family of harmonic maps w, has a uniform local Lipschitz

estimate by Theorem 3.2. The Compactness Theorem 3.6 implies that there

exists a sequence of wg; | B, (0) that converges locally uniformly in the pullback
2

sense to a harmonic map vg : B 1 (0) — (Yo, dp) into an NPC space and
U, . We: 1
EY@) = lim EYi(r), Vr € (0, =).
0’,'-)0 2

By Lemma 4.29,

lim sup d,%(v(,i, Wy;) =0,
O‘,'—)O Bl(o)
2

and thus

Vg, converges locally uniformly in the pullback sense to vg. (4.48)

\BL(O)
2
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In particular, we have
Uy : Vo 1
I(r) = lim I%i(r), Vr € (0, -).
O'i—>0 2
Furthermore, by Lemma 4.28, there exists a constant C > 0 such that
1
|E™i (r) — E"i (r)| < Coy, Vr € (0, 5), (4.49)
and hence
1
EY(r) = lim EYi(r), Vr € (0, =).
O’i~>0 2
Thus, for r € (0, %),

rEV"(r) . rEVei (r) _ ro;EV(ro;)

= lim ———= = lim = Ord"(xp).
Ivo(r) ai—0 179 (r) a—0 IV(roj)

Note that the right hand side is independent of r. Thus, by following the
argument of [21] Proposition 3.3, we conclude that the map vg is homogeneous
degree o = Ord®(xp). Furthermore, letting r — 0 above, we obtain

0rd™(0) = Ord" (xo).

O

Definition 4.31 The homogeneous harmonic map vy of Lemma 4.30 will be
referred to as a tangent map of v at xg € S;(u) N B% (x,). Note that vgp may
be different from v, of Lemma 4.4, the singular component of a tangent map
Uy = (Vi, vy).

For the convenience of the reader bellow we summarize the different blow-
up and tangent maps used in the paper:

e The blow-up maps u,, = (U, vs;) of the harmonic map u = (U, V)
defined in (4.10) with scaling factor 1, defined in (4.8) and converging in
the pullback sense to the tangent map u, = (Vi, vy) = (Vi, vi, R vfxf)
(cf. Lemma 4.4).

e The blow-up maps v,, of the singular component v of the harmonic map
u = (U, V) defined in (4.44) with scaling factor v, defined in (4.43)
converging to the homogeneous harmonic map vg (cf. Lemma 4.30).

e The approximating harmonic map w, : B 3 (0) — (H*~/, d},) for v, whose

boundary values agree with that of v, | B3 (0) (cf. Definition 4.27).
7
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Lemma 4.32 Ifxo € S;(u)NB % (x4), then the sequence vy, of blow-up maps
of v at xo converging to a tangent map vq (cf. Definition 4.31) is a sequence
of asymptotically harmonic maps.

Proof We check properties (i)-(iv) of Definition 4.7 for v; = vy, and g; = g,
Property (i) regarding the metric g; follows immediately from the definition
of g,;. From the monotonicity property (4.42) and the energy bound (4.45),
we obtain (ii). Property (iii) is about the convergence of vy, to a tangent map
vo (cf. (4.48)). Finally, Property (iv) follows from Lemma 4.29 with co = C
andc; =C oiz. O

This yields the following corollary.

Corollary 4.33 If xo € B%* (x.) NS;j(u), then
Ord’(xg) > 1+ €.

Proof Since v, of Lemma 4.32 is a sequence of asymptotically har-
monic maps, the assertion follows from Lemma 4.10, Proposition 4.12 and
Lemma 4.30. O

The above discussion yields a slight variation of Lemma 3.10 on the upper
semicontinuity of the order for v.

Lemma 4.34 Let xo € S;(u) N B o (x+) and vy, be the sequence of blow-up
maps of v at xog converging locally uniformly in the pullback sense to a tangent
map vo. After identifying xo = 0 via normal coordinates, let

o; 1(Sj(w) N By (x,)) == o7 'x 1 xeSjwn Box (x,)}.
Ifx; € Gl._l(S_,- )N B%* (x)) N B% (0) and x; — x4, then

liminf Ord"@i (x;) < Ord™ (x,).
U,'*)O

Proof Since o;x; € Sj(u), we can apply Proposition 4.24 to assert that

exists. The proof follows as in Lemma 3.10 with u,, replaced with v,, and
u, replaced with vg. The only difference is that the equality (3.7) in the proof
of Lemma 3.10 uses the uniform local Lipschitz continuity of the sequence
ug;. Although we know that, for each i, v,, is Lipschitz continuous by the
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Lipschitz continuity of u, we have not proven any uniform local Lipschitz
estimates (i.e. independent of 7) of the sequence v, . (See again Remark 4.26.)
On the other hand, the sequence of approximating harmonic maps w,, for
Vg; (cf. Definition 4.27) is uniformly locally Lipschitz continuous. Indeed,
according to Proposition 4.24 there exist constants ¢c; > 0,c3 > Oand Rg > 0
such that for0 < 0; < p < Ry

oiEg . (0i) - ClpE};,.x(p) -
13 (oi) —  Ip.(p)

Vo;

T N
Ex,- (Z) = E)Ci (Z) = Ex,- (1) =

c.

(4.50)
Here, the last inequality follows from the continuity of

pEL(p)
}_) ———
1 (p)
and the second to the last inequality follows from (4.41). Thus (4.50) and

Theorem 3.2 imply that w,, is uniformly Lipschitz.
Therefore, repeating the proof of (3.7), we obtain

lim |Ex" (r) — Ey." (r)] = 0.
O','-)O
Combining (4.49) with the estimate

Vo Vo Vo, W W, W,
|Ex,' (r) — Ex," ()| < |Ex, (r) — Ey, (D) + [Ex, " (r) — Ey, " (r)]
W Vo
+ |Ex*l(") - Exil ),

we obtain

lim |E, (r) — Ex/ (r)| = 0
O’i—>0

which is (3.7) with v, replacing with u,,;. The rest of the proof is exactly as
in Lemma 3.10. o

4.6 Inductive step

Throughout this subsection, we assume that the Inductive Hypothesis [j+1]
holds for a harmonic map u : (2, g) — (7, d5). Let x, € §j(u) and

u=(V,v):(Bo,(x:),8) = U XV, dg)
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be a local representation (cf. Definition (4.1)) of u at x,. The goal is to show
that both STATEMENT 1[j] holds and STATEMENT 2[j] holds.

Proposition 4.35 The set S;(u) is of Hausdorff codimension 2 in B%* (x4);
ie.

dimy (S (u) N B%(x*)) <n-—2.

Proof The assertion holds trivially if v is identically equal to Py (in this case
u maps into a single stratum of 7), so assume that v is a non-constant map.
Assume on the contrary that dimy(S;(u) N B%*(x*)) > n — 2; thus, there
exists s > n — 2 such that H*(S;(u) N B%*(x*)) > (. By [18, 2.10.19] (also
see the proof of [21, Lemma 6.5]), there exists xo € S;j(u) N B%* (x4) such
that

- . HY(Sj) N Be (x,)) N By (xo)
27 < liminf -
oc—0 (0'/2)5

With ofl (Sju)NB % (x4)) defined as in Lemma 4.34 and after identifying
xo = 0 via normal coordinates, we conclude

n—2<s <lim supdimH(ai_l(Sj(u) N B%(x*)) N B%(O). 4.51)

oj —0
We claim

lim sup dimyy (0, (S () N By (x,)) N B1(0) < dimy(S™ ' (v0)). (4.52)

O’l‘—>0

Combining (4.51) and (4.52), we arrive at a contradiction (cf. Lemma 4.10
(4.18)) which finishes the proof.

We are left to prove (4.52). Indeed, taking a subsequence if necessary, we
can assume that the sequence of blow up maps v,,; of v at xo converges to a
tangent map vg. Let R € (0, %), x; € 0;(Sj(u)N B%* (x4))N Bg(0) and assume
X; —> xy. Corollary 4.33 implies Ord"i (x;) > 1 + €y which in turn implies
Ord™(xy) > 1 + €g by the upper semicontinuity of order (cf. Lemma 4.34).
Thus, we conclude that if x; — x, for x; € S;j(u) N B%* (x4) N Br(0), then

xx € 8™ (vg) N Bg(0). Thus, (4.52) follows from Lemma 3.11. O

Lemma 4.36 [f STATEMENT 1[j] holds, then STATEMENT 2[j] also holds.

Proof Throughout this proof, we will use C (which may change line by line)
to denote an arbitrary constant that depends only on the dimension n of the
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domain, the Lipschitz constant of  in B% (x,) and the modulus of continuity
of Vin B% (x4) (cf. (4.2)).

Let €9 > 0 be smaller than either of the €q that appears in Proposition 4.5
and Corollary 4.33. Choose g <2, p > 2,8 € (0, 1)and D € (0, 1) such that
Proposition 4.13 holds for ¢ and

1 1
—+—-—=1, D<é<e€, D<e—396
p q

—24+D<—q—q8, =2+ D < —p— pé+e€p. (4.53)

To prove STATEMENT 2[j], we show that, for a fixed subdomain Q CC
B% (x,) and ¢ > 0, there exists an open set N contained in an e-neighborhood

of S(u) N Q and a smooth function ¥ such that 0 < ¢ < I, ¢ =0ina
neighborhood of S(u) N Q, ¥ = 1 on Q\N that satisfies

/ [Vul||Vyr|du < Ce, (4.54)
By (x4)

2
/ \Vul |V |9 du < Ce (4.55)
By (x4)

2

1

/ IVVu||[Vy| du < Ce?. (4.56)
BO'T* (xx)

Note that [Vu|(x) # 0 for x € S;j(u) since u is of order 1 at any point in
Sj(u) (cf. (4.15)). Thus, by Proposition 4.21, [VV[(x) # 0 for x € S;(u) N
BGT* (x4). Since VV is continuous (cf. Remark 4.2), there exists an open set

N cc B%* (x,) contained in an e-neighborhood of S () N € and a constant
Ao such that
[VV|> X9 >0 onN. (4.57)

STATEMENT 1[j] implies that we can c_hoose a finite covering {B,, (xy) :
J =1,...,1} of the compact set S; (1) N 2 satisfying
D r TP <6 and By, (x)) C N (4.58)

J

Let ¢; be a smooth function such that ¢; = 0 on B,,(x;), ¢; = 1 on
Q\Bay, (v2), [Ves| = Cry ' |VVe,| < Cry2, [V(gIVel))| = Cry' ™ and
IVV(¢|Ve[®)| < Cr;*°. Define ¢ by setting

¢=[]¢s
J
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Let p be a Lipschitz function such that p = 1 on | J; B, (x), p = 0 outside
U, Bsr,(xy) and [Vp| < % in By, (xy) (cf. [21, before (6.3)]).

With ¢ and p now fixed, Proposition 4.6 implies that we can choose a finite
covering {By, (§)) : J =1,...,1I'} of S~ (u) N Qp with

max{sup|V(p| sup |[VVo], sup|V,0|)}Zs” D ¢ (4.59)

and
By, (xy) C N.

Let ¢; be a smooth function such that ¢, = 0 on By, (§;), ¢; = 1 on
Q0\Bas, (£)), [V¢s| < Cs7' and [VV¢g,| < Cs72 Define ¢ by setting

¢=]]es
J

Since S(u) N v~ (Py) € Sj(u) US> (), the set
[ — I .
Q =\ [ Bs,GHU | Bs, &)
J=1 J=1

is compactly contained in Bx* O\ (S@) N v~ 1(Py)). With @, p and ¢ now

fixed, we apply Proposition 4 13 to obtain a smooth function w such that
0< 1,0 <1, w = 0 in a neighborhood of S(u) N Q1, w = 1 outside N/,

/|W||V&|du<s, / VullVY [ < 69,

Q Q
sgp{IV(¢p¢|V¢|5)lp, IV (epp|Vel®)]} /Q IVVu||Vi|du < £(4.60)
1 1

Let

v =),

By construction, 0 < ¢ < 1, ¥ = 0 in a neighborhood of S(u) N Q, v =1
for all x € Q\N. By (4.53),

[ vaiverdu<c [ va, I1 ¢ dM<CZrJO

J#Jo
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By (4.59), a similar estimate applies to the integral involving ¢ and using the
inequality n — 2 + D < n — g implied by the fourth inequality of (4.53).
Combined with (4.60), we thus conclude

/IVuHWflduff |W||w|du+f IVuHVdJIdMJr/ IVl V| du < Ce
Q Q Q Q

which proves inequality (4.54). Similar computation proves (4.55).
We are left to prove (4.56). We first write

/wanwmu =2/S2¢2¢21@|VWIIV1@Idu+2/Q¢¢Z¢IZWWHV¢WM

12 /Q 06021V Vul|Voldu

=:(A) + (B) + (O). (4.61)

Applying (4.60), we can estimate

(A) := 2/ Q2O |VVu| |V ldu < 2/ IVVul|Vi|du < Ce.
Q Q

1

We next estimate (C). Noting that the support of the function ¢¢21/72|V<p|
is contained in R(u) N Ulj:1 Bor, (xy),

(€):=2 /Q @d* U \VVul|| Vel du

1/2 1/2
<2 / oY Vol IVVul*|Vul " dp / Vull Vo>~ dp
Uy=1 By (x) Ul Bary ()
1/2 I 1/2
=2, 0o VP Vuvul~ d ) (€30
U=y Bary () J=1

12
1 B _
<cet ([ oo U1V IVVUPIVul " dps
U/:] BZrJ (xy)

where the last inequality uses (4.53) and (4.58). Combining the Eells-Sampson
and Schoen-Yau formulae (cf. [21, proof of Theorem 6.4]), we have

IVVu|>|Vu|~"' < C (|Vu| + A|Vul) on R(u).

@ Springer



G. Daskalopoulos, C. Mese

We multiply (pd)@pr(pl‘S to both sides of the above inequality to obtain

/Z 0V’ IVVul* | Vul ™ dp
U]=1 BZrJ (xy)
< c/ 00 Vol |Vuldy
UJ:]BSrJ ()

+C / Ay p|Vol®) | Vuldu
UljleSrJ (x7)

=: (C1) + (C2).

By (4.58) and since § < 1,
(Cp = Cf IVolPdu < CY ri™ < Ce.
Uy Bar, (x) 7

To estimate (C»), we write

() = f Agpdl Vel Vuldy

U{]:]B3rj(x./)

=/ Alppp P |Vol®) (IVV] + |Vu| — [VV])du
UJ:]B3rj(XJ)

_ f Aopdl Vo) VV]dp
U, _ By, (x))
+/ Appd ¥ |Vol®) (IVu| — [VV ) du

U, _ B3, (x))

=— /QV“""Q”'&'W"S)'V'W'”’“
+ L@aww%aw —|VV])dp
+ fgwpwwm%&(wm —|VV])du

+ 2/9 Vipod|Vel®) - Vi (Vul — [VV ) du

=:(C21) + (C22) + (C23) + (C24).

Using the fact that |[VVV| € L?(€2) (cf. Remark 4.2) and the fact that deriva-
tives of ¢ and p are supported in UZJZIB3r , (x7) and the derivatives of ¢ are

@ Springer



Rigidity of Teichmiiller space

supported in UZJ/:1 B3, (§7), we have

1
p

(Ca1) = C(L|V<¢p¢1ﬁ|w|‘3)wda)” - (fQ|VVV|"du>

<c ( /Q IV(<pp¢IV<p|3)|qdu>q

-

! I
n—q—qé ) n—q
<C E ry + sup |Vg|°? E s
J=1 $ J=1

1
< Ce1

by (4.53), (4.58) and (4.59). Furthermore, by the order gap of v (cf. Proposi-
tion 4.10),
sup |Vv| < CrS. (4.62)

B3, (x7)

Next, note that by the lower bound (4.57) of |VV| and the Lipschitz estimate
of u, we have in \V the estimates

[IVul> = |VV]?| |IVuP+2 < VV, Vv >|
<
|Vul +|VV| — |Vu| + |VV]

[IVul = [VV]| < = C|Vul.

and
IV (Vu| —|VV])| < C|VVul.

Thus, by (4.53), (4.58), (4.59) and (4.60),

(Cn)=C f |A(ppd Vo)) Voldp < €Y 270t
Q
J
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and

(Ca3) = /ngpmww (IVu| — [VV])du
= —/Q(Nm — |VV]) V(ppo|Vel®) - Virdp

— /ngp¢|V<o|5V¢-V(|W| —|VV])du

< c(/Q|V<<pp¢|wo|5>|f’|w|du)p (/me‘ﬂvmdu)q

+C/ Vol V1V Vuld
Q

< Ce.

Finally, (4.60) also yields
(Co4) = 2551211) IV(¢0¢|V¢|5)I/ V|| Vuldu < Ce
1 Q

Combining the estimates for (C1), (C21), (C22), (C23) and (C4), we obtain
(C) < Cep.

The estimate for (B) is similar to the estimate for (C), so we omit the details.
Indeed, to prove (B) we can repeat the argument for (C) with § = 0 while
keeping in mind that

sup |Vu| < Cs9 (4.63)
Bas; (67)

by the order gap of u of Proposition 4.10 along with the monotonicity property
of u (cf. proof of [21, Theorem 2.4]). Note that the argument for (B) is simpler
than that for (C); indeed, we can use the decay of |Vu|in By, (¢ ) by (4.63) for
(B) whereas |Vu| is only bounded in B, (x) for (C). Applying the estimates
for (A), (B), (C) into (4.61) proves (4.56). |

Proof of Theorem 1.5 and Theorem 1.6. Proposition 4.35 implies that S;(u)
has codimension at least 2. Combined with Proposition 4.6, this implies that

dimyy(S; () <n —2.

Now STATEMENT 1[j] follows immediately. Additionally, STATEMENT 2[]
follows from Lemma 4.36. Thus, induction completes the proof of Theorem 1.5
and Theorem 1.6. O
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5 Proof of the key technical lemma

In this section, we will provide a proof of the key technical Lemma 4.11
by deducing it from the iterative Lemma 5.7. We will take advantage of the
fact that a harmonic map (resp. approximate harmonic map) at an order one
point is closely approximated by homogeneous degree 1 maps as indicated
in Lemma 3.20 (resp. proof of Proposition 4.12, formula (4.24)). We employ
an iterative argument which has its origin in [21], but with serious additional
complications due to the non-local compactness and degenerating geometry
of the Teichmiiller space near its boundary. In Sect. 5.1, we motivate our proof
of the iterative Lemma 5.7 by explaining its origin in the Gromov—Schoen
regularity theorem. We do so by providing a short proof of the Lemma for the
simple case of maps into a k-pod considered in Example 1 of the introduction.
The preparation of the proof of the key technical Lemma is given in Sects. 5.2
and 5.3 where we summarize our results from [12] needed in the proof. The
main step in the proof of the iterative Lemma is presented in Sect. 5.4. Finally,
the proof of the key technical Lemma 4.11 is given in Sect. 5.5.

5.1 Simple Gromov—-Schoen

In order to motivate the proof of the iterative Lemmas 5.5 and 5.7 we will now
sketch an argument due to Gromov—Schoen for harmonic maps in the simple
case where the target is a finite tree as in Example 1 of the introduction. As
we will see later, iterative Lemma 5.7 is a more complex version of the above
argument.

Let X be a k-pod formed by k distinct copies Eq, ..., E; of the half-
line [0, oo) identified at O as in Example 1 of the introduction and X¢ =
E1UE; be atotally geodesic subspace isometric to R. For a harmonic map
u: B1(0) C R* — X and a homogeneous degree 1 map/ : B1(0) — X
as in (1.5) effectively contained in the essentially regular totally geodesic
subspace X¢ ~ R, assume that #(0) = /(0) and

sup d(u(x),l(x)) < D. 5.1
xeB1(0)

Given the above set up, the idea is to show that there exists 6 € (0, %] such
that if an affine map

il 1 Bgi (0) = X
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is “close” to u in a small ball in the sense that,

sup  du(x),l(x)) <68
x€B,; (0)

sup d(u(x), il(x)) < 6'dy, (52)
XEBQ,' 0)
then then there exists a new affine map
i+10 1 Byi+1(0) = X
such that
sup  du(x),l(x)) <0 (8 +207 dy)
X€B,i+1(0)
- do (53)
sup  d(u(x), j411(x) < 12
x€Byi11(0) 2

Proof that (5.2) implies (5.3). Sincel is effectively contained in X, fore > 0
to be chosen later, there exists § > 0 such that (cf. (1.6))

Vol({x € Byi (0) : Bgyi (1(x)) N (X\Xo) # 7)) < €6™,
thus, there exists R € [%, 1] such that
Vol({x € 3Bggi (0) : Byyi (1(x)) N (X\Xo) # #}) < 40"V,

(Note that B denotes the ball in the target). For x € 9 Bgg: (0), the first inequal-
ity of assumption (5.2), implies

Byis, 1(x) N (X\Xo) =¥ = ux) € Xo = moulx)=ulx).
Thus,
Vol({x € 0BpRpi(0) : mou(x) # u(x)}) < 4epin=1)

Consider the harmonic function v : Bgyi(0) — Xo &~ R with boundary con-
dition 7w ou on 9 By (0). Using the fact that the image of ;/ is contained in Xy,
7 is the closest point projection and the second inequality of assumption (5.2),

d(u,v) < d(u,;l) < 0'dy ondBgyi(0).
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Thus,

f d(u, v)dT < 40’ Dgiq,.
3B i (0)

Since v is minimizing and 7 is distance non-increasing, EV < E7°" < E“,
Since X is essentially regular, there exists ;1 1/ such that (cf. (1.7))

sup d((x), i411(x) < €O sup d((x),il(x) (54
x€Byi11(0) xeBi (0)
2

where C > 1 depends only on E*. Since u and v are harmoninc maps, d (i, v)
is subharmonic. Thus, for a constant ¢, > 0 depending only on the domain
dimension 7,

sup d(u(x),v(x)) < cnebidp.
xeB ;i (0)
T

The triangle inequality then implies

sup  d(u(x), i+1l(x))

X€B,i+1(0)

< sup d@ux),v(x)+ sup d(x),i+1l(x)))
xX€B,i+1(0) X€B,i1+1(0)

< cp€ebidy + CO* sup  d(v(x),l(x))

xEBQi 0)
2

< anQido + Co? sup (d(v(x), ux)) +du(x), l-l(x)))
x€B i (0)

< cpebidy + CO*(cphedidy + 6'dp).

Thus, by choosing 6 = %, €= 497”, we obtain

. d
sup du(x), il(x) < T2,
x€Byis1(0) 2

This proves the second inequality of (5.3).
By assumption (5.2) and the triangle inequality

sup d((x),il(x)) < sup (d((x), u(x)) +dw(x),l(x)) < 6' (8 + do)
x€B,; (0) X€EB,i (0)
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Furthermore, the assumption that /(0) = u(0) implies
d(1(0), ;1(0)) = d(1(0), u(0)) + d(u(0), ;1(0)) < 6'dy
By the linearity of / and ;I, we thus conclude

sup  d((x),;l(x))= sup d({(0x),;l(0x))
x€B,i+1(0) x€B,; (0)

=0 sup d(l(x),l(x))+ (1 —6)d(0),1(0))
x€B,; (0)

< 0 (S0 + do) + (1 — 0)6'dy
=010 + 607 1dy).

Combining this with assumption (5.2), we obtain

sup  d(u(x), 1(x)) < 6" (89 +207"dp) .
X€B,i+1(0)

5.2 Effectively contained

In preparation of the proof of the key technical Lemma, we recall the results
from [12]. First, we introduce a global coordinate system on H using symmetric
geodesics (cf. Sect. 3.4.1).

These new coordinates, denoted (o, ¢), will depend on a given symmetric
homogeneous degree 1 map

[:Bi(0) > H, I(x)=7y(Ax})

where A > 0 is the stretch of [ and y is a symmetric geodesic (cf. Defi-
nition 3.19 and Sect. 3.4.1). We construct the coordinates (g, ¢) so that if
we write y (1) = (¥o(1), Yp(t)) with respect to (o, ¢), then y,(r) = t and
Ye(t) = 0;ie.

y (@) = (,0).
Thus, [(x) with respect to coordinates (o, ¢) is given by
I(x) = (Ax',0). (5.5)

There is an advantage in using the coordinates (g, ¢). Indeed, since harmonic
maps into H and the singular components of maps of harmonic maps into 7°

@ Springer



Rigidity of Teichmiiller space

at order 1 points are well approximated by symmetric homogeneous degree
1 maps, the coordinates (o, ¢) are the most convenient when analyzing the
behavior of such maps.

In the sequel, we will need to consider several symmetric homogeneous
degree 1 maps at once. Thus, we first introduce new coordinates (s, ¢) such
that we can associate a constant 7, to any symmetric homogeneous degree 1
map /(x) such that with respect to coordinates (s, )

I(x) = (Ax', 1,). (5.6)
We refer to the number ¢, as the address of [. Once we fix a particular symmetric
homogeneous degree 1 map /(x), then we apply a simple translation in the ¢-
coordinate which results in new coordinates (o, ¢) with respect to which [ is
expressed by (5.5).

To construct the coordinates (s, ¢), we foliate H by an one parameter family
of symmetric geodesics. Indeed, consider

¢ = (cp,cy) : (—00,00) X (—00, ;) — H (5.7)

satisfying the following:
e 0 c'(0) = c(o, @) is a unit speed symmetric geodesic.  (5.8)
0
o 1 — ¢,(0, 1) satisfies the equation %(0, t) = cf) 0, 1), (5.9)

3
® (0. 1) = Tand cg(0. 1) = O forall 1 € (~00, 7). (5.10)

The parameters s and ¢ define coordinates of H via the map
(s,1t) — c(s,1).

Given a symmetric homogeneous degree 1 map /(x) with address ¢,
(cf. (5.6)), we apply a translation by #, to construct (o, ¢) (see Fig. 2). More
precisely, since

[(0) = (0, ty) in the coordinates (s, ), (5.11)

we define coordinates (o, ¢) by setting

(0, 9) = (5,1 — ). (5.12)
This results in

[(0) = (0, 0) in coordinates (o, ¢).
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Thus, the construction of the coordinates (g, ¢) depends on t,, and we will
say that the coordinates (o, ¢) are anchored at t,. Using the new coordinates
(0, ¢), we introduce a family of totally geodesic subspaces of H which will
play a central role in the proof of the key technical Lemma.

Definition 5.1 Let (o, ¢) be the coordinates anchored at ¢,.. For ¢g > 0, define
the subset

Hlgo, ] := {(0, 9) € H: |¢| < go}.

Furthermore, let

algo, t«] :=cp(0, 00 + 1) = max ¢,(0, ¢ + ;). (5.13)
{e:lel=<¢o}

In other words, ﬁ[goo, 1] is the union of the level sets ¢ = k where —gp <
k < ¢o, and the level set ¢ = k is the image of symmetric geodesic

o> clo, k+t).
The boundary of H[go, 1] consists of a pair of level sets ¢ = ¢ and ¢ = —¢,
and the set H[¢p, #.] is totally geodesic_. Moreover, al¢o, t4] is the distance
from Py of the symmetric geodesic in H[¢y, t,] furthest away from Py. See

Fig. 2. Define the function J (g, ¢) by writing the metric gg with respect to
coordinates (o, ¢) as

gn = do* + J (0. )y’ (5.14)
Asobserved in [12], this local expression of g with respectto (o, ¢) is close to

the local expression gy = dp” + p0d¢?* with respect to (p, ¢). More precisely,
there exists a constant C > 0 such that

0’ <T@ 9) < Clo+cp(0.9+1))°, (5.15)
In particular,
0’ < J(0.¢) < Clo +algo. 1)’ for (0. ) € Higo, t.].
The following lemma plays the role for a homogeneous map to be effec-
tively contained in a totally geodesic subspace. The proof is contained in [12]

but since it is simple geometric argument we include it here for the sake of
completeness.
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Lemma 5.2 Fix 0 € (0, 5;). Given A > 0, €0 > 0 Dy € (0, %) and i €
{0,1,2,...0, if

. -3 .
_ /o 6D
il Byi (0) — H[(ﬁ) 720

2 21
and
v: Byi(0) > H
satisfies .
sup v, — Ax'| < 8¢ (5.16)
B, (0)
and .
0' Dy
sup dg(v,;l) < — (5.17)
B, (0) 2
then
. -3 .
) — 9’60 QID() : 260
2vn_1 Vol {x € B@z(O) : U(X) ¢ H[Z (T) T, t*]] < 9”’7

where Vol is the volume with respect to Euclidean metric and v,—1 denotes
the Euclidean volume of the unit (n — 1)-dimensional ball.

Proof We start with the following claim.
CLAIM. For 8y < £

22
dig((0. ¢). Hle 80, 1.])) < 80 = ol <2¢ or (0. ¢) € H[2e7%60, 1.].
To prove the claim, assume on the contrary that there exists (g, ¢) with

diz((0. ¢). Hle %80, 1.]) < 8. lol = 2¢ and (0. ¢) ¢ H[ 26780, ].
Lety = (vo, ¥p) : [0, 1] — H be a geodesic with
y(0) = (15(0), v,(0)) = (0, ¢) and y(1) € aH[e 5o, 1]
where y (1) is the point in H[e 380, 1,] closest to (0, ). We claim

i 1] > e. 5.18
tér[léfll]lyg()l_s (5.18)
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Indeed, assume on the contrary that y,(f9) < € for some 7y € (0, 1]. Then
since ¥, (0) > 2¢, we obtain

& < |7o(t0) = yo(0)]

10 o
0 0

dt dt
< d((0, ¢), H[e 8], £.) < 80.

d
Y1 ar

This contradicts the assumption that §g < % and proves (5.18). Combined with
(5.15), we conclude

e < Ty @)).

Therefore

oy
&’ ‘|‘P| —8_350‘ < 83/0 ‘%(f)
1 dy(p 2
< f \/j(y(t))‘?(t)
[ I

= length(y)

= dg((0, 9), y (1))
<o

dt

dt

dt

g T (@) ‘ﬂm

which in turn implies
lpl < 26734,
In other words,
(0 ¢) € H[ 26778, 1,].

This contradiction proves the CLAIM.

=3 i
Since ;/(x) € H[(e 60) 92@, t.], assumption (5.17) implies that we have
for x € Byi (0)

9’60 QZD() 6 Dy
dg(v(x), H 1)) < sup d(v,il) < ——.
2 B,i (0) 2!
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Thus, applying the CLAIM with

Oie 0! Do
& > an 0 5

implies that

(b€ 0Dy
x € Byi(0) : v(x) ¢ H[2 — 1]
2 2!
C {x € Byi (0) : [u,(x)| < 6o}
Furthermore, assumption (5.16) implies
we(0)| < 6'eg = |Ax'| < |Ax" —vo(¥)] + v ()] < 267€g
in Byi (0). Hence

{x € Byi(0) : [up(x)] < 0o} C {x € Byi(0) : [Ax!| < 26 ).

The assertion now follows from the fact that

: : 260
T Vol{x € Byi(0) : |Ax'| < 20'¢p} < 91"7.

5.3 Essentially regular subspaces

Now we turn to the notion of essentially regular. We assert that the totally
geodesic subspace H[go, 7] of H is essentially regular in the sense that a

harmonic map into H[gy, ,] is approximated by an almost affine map. We
first need the following

Definition 5.3 Let (o, ¢) be the coordinates anchored at 7, defined in the
previous section. A map [ = (I, 1,) : B1(0) — H written with respect to

coordinates (o, ¢), is said to be an almost affine map if the first coordinate
function /, is an affine function; i.e.

lo(x)=a-x+b

fora e R" and b € R.
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We have so far been unable to prove that these subspaces are essentially
regular in the strict sense of Gromov—Schoen [21]. (We remark that, as far
as we know, Euclidean spaces and buildings are the only known examples of
essentially regular sets in the strict sense of [21].) On the other hand, ﬁ[(po, ty]
satisfies a weaker notion of essentially regular that is sufficient for obtaining
good estimates for harmonic maps. For convenience, we will also call this
weaker notion essentially regular. Given that the the local geometry of H is
very singular near Py, it is surprising that essentially regular subspaces near
the point Py exist at all.

The key is the introduction of different set of new coordinates in H that are
motived by Example 2. Specifically, we let

3
YT:=0-— 5Qs(pz and @ = Q3(p. (5.19)

To explain the relationship of the new coordinates (Y, ®) to the Euclidean
coordinates (x, y) in Example 2, we first consider (o, 0%¢) as the analogue of
the polar coordinates (r, 6) of R2. Then the coordinates

(0, ¢) > (0cos /309, 0sinv/30%¢)

are the analogues of the standard Euclidean coordinates (1.12). The coordi-
nates Y and +/3® agree up to the first order with ¢ cos v/30%¢ and o sin /30%¢
respectively. We then write the harmonic map equations in terms of the coordi-
nates (Y, ®) to obtain the regularity results needed. An important observation
about Example 2 is the implicit use of the assumption 0 < hg < 27. (We need
this assumption in order to show that the change of variables defines a dif-
feomorphism away from the origin). In fact, without assuming this bound,
it is unclear whether the solutions to (1.11) are regular. For a harmonic
u: QL — ﬁ[goo, t«], we are also assuming an apriori bound on the “angu-
lar” component function. For a harmonic u : Q — ﬁ[goo, t.], we are also
assuming an apriori bound on the “angular” component function by virtue of
the definition of the target set. This bound is precisely why we are able to use
ﬁ[(pg, t«] as the analog of essentially regular sets (cf. [21, page 210]) when
we generalize the Gromov—Schoen argument in Sect. 5.4 below. Indeed, the
following (1 4 o)-Taylor approximation of a harmonic map into H[¢o, ] is
proved in [12], Theorem 28.

Theorem 5.4 Let R € [%, 1), Eo > 0, Ag > 0 and a metric g (in normal
coordinates) on Bg(0) be given. Then there exist C > 1 and o > 0 depending
only on Eo, Ao and g with the following property:
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For g9 > 0, s € (0, 1] and_z? € (0, 1], if Bagw (Po) is a geodesic ball of
radius Ag?Y centered at Py in H, if

w : (Byg(0), g) — ﬁ[%, 1,10 B Ay (Po)

is a harmonic map with

%0 L%
a[p, ] < 5 (5.20)
and
EY < 9"Ey,
then
7 I+« 2 R
sup dg(w,l) < Cr sup dg(w, L) + Crdgy, Vr € (0, =]
By (0) Bry (0) 2

where [ = (lAQ, l:/,) : B1(0) — H is the almost affine map given by
Io(x) = wp(0) + Vwy(0) - x,  [y(x) = wy(x)

and L : B\ (0) — H is any almost affine map.

5.4 The statement and proof of the iterative Lemma

In this subsection, we prove the iterative Lemma which allows us to go from
an approximation of a harmonic map (resp. approximate harmonic map) by an
almost affine map on one scale to an approximation on a smaller scale. This
lemma plays a central role in the proof of the key technical Lemma 4.11.

Let g be a metric on B (0) sufficiently close to the Euclidean metric gg in
the sense that if we denote by Vol and Vol to be the volume with respect to
go and g respectively, then for any smooth submanifold S of B;(0)

15 17
EVOZ(S) < Voly(S) < EVOI(S)' (5.21)

Additionally, we assume g is sufficiently close to go (in C 2) 5o that the error

term ¢ that appears in the monotonicity formula of Theorem 3.5 is < 2 for
allo € (0, 1].
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Next, let co > 1 be a constant such that for any subharmonic function
f : B1(0) — R with respect to the metric g, we have

co
sup f<—2 / fdx. (5.22)
Bisgk ©) @R JyByr0)

Iterative Lemma 5.5 Given Eg, A > 0 and a metric g (in normal coordi-
nates) on Bgr(0), there exist 6 € (0, 2—14), €9 > 0and Dy € (0, \/Lg) that satisfy

the following statement.
Assume the following:

e The map
[:Byi(0) — H, I(x)=(Ax',0)
is defined in the coordinates (o, ¢) anchored at t,. € (—o0, %).

— i -3
The subset H[2 <9—2€°> 9 Do 4 1 satisfies

=7

. 3 . .
0'ep\ 0Dy 16.Dg o'
al2 (T) TR ] = a[w, 1] < ER (5.23)

e The map
Ey

on+l '
(5.24)

u:(B1(0),g) - H is harmonic with u(0) = Py, E*(1) <

e The map

QiEQ - QiD() .
- —, t,] is an almost affine map.

il : Byi (0) — ﬁ[( >

The constant ;§ > 0 is such that

D
sup dg(u, ;1) < oi 22
B, (0) 2!
; (5.25)
sup lup — Ax'| <075 <0
Bgi (0) k=0

971D0
k=2

Then there exists an almost affine map

9i+160>—3 0i+1 Dy

,'+1l . BQi+1(O) — ﬁ[( ) 2i+1 s t*]
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such that
. DO
sup di(u, ip1l) < 0 —
By 241
L 2Dof” i g-1p,
sup |up(x) — Ax'| < ;4180 = ( )91“ < gitl —
Byis1(0) 2 Z 242
1 [ 23 (A +9Dg)’
sup dgg(u, 1) < 6'F! ¥+10 07! Dy.
Byi+1(0) €0
(5.26)

Remark 5.6 The harmonicity of the map u implies by the last part of Theo-
rem 3.5, the assumption on the metric g, the comment after (5.21) and the
assumption (5.24) the following energy decay estimate

E" (V) Ey
o <eE"(1) < o (5.27)

Furthermore, by [27] Lemma 2.4.2, for R € (0, %] and a harmonic map w :
(Byi g(0), g) — H with E¥(6'R) < E"(6'R), we have for ¢ as in (5.22)

€0

2
sup d (l/t, l,U) < W

B 5pig (0)
6

/ dZ(u, w)d (5.28)
giR(O)
Proof For the sake of simplicity, we denote d = dgg throughout the proof. For
R = %, Eo > 0 asin (5.24) and the metric g as above, let

C > 1 and o > 0 be as in Theorem 5.4. (5.29)

Letd € (0, min{2—14, \/LX}) sufficiently small such that

Cco <1, (5.30)
o ! 5.31
co <%, (5.31)
and
3. ] 532
Co° < 5k (5.32)
Define
. A 2
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1
Choose Dy € (0, Jg) such that

ey

(=fe)
B>
)

. { eo]
Dy < min . (5.34)

8

Furthermore, inequality (5.34) implies 80~ Dy < ¢y. Combining this with
(5.25) and (5.33), we obtain

sup |up, — Ax'| < 0'807'Dy < 0’y < 6 A. (5.35)
B, (0)

Thus, the assumption (5.16) of Lemma 5.2 is satisfied. Additionally, the
assumption (5.17) of Lemma 5.2 is implied by (5.25). Thus, Lemma 5.2 and
(5.21) imply

. 3 .
— 9160 QlDo 17vn,1 ; 260
VOlg [X S BQ;(O) . M(X) ¢ H[2 (T) T, l*]] < T . 91}17
(5.36)

which in turn implies that there exists Ry € [%, %] with the property that

i =3 i 2n+3
Vol, {x € 3Byi p(0) : u(x) ¢ﬁ[2(92€°) ez?o,t*]} < (0"R0)”*1¥. (5.37)

To see this, denote by f(R) the volume appearing on the left side of (5.37)
and let R be such that

f(Ro) = inf_ f(R).

Relg. gl

Then by (5.36)

171),1_1 260

A

. 70!
% & 4
7/ (Ro) Sﬁ; f(R)R < _gin
kR

hence

f(Ro) < 9“"—1)17””—“60 < (giRO)(n—l)(§)<n_1) 17vn—1€0‘
A - 5 A

Since the Euclidean volume v,_; of the unit (n — 1)-dimensional ball is
bounded by 6 for all n and vy = 2, (5.37) follows.
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Let

. 3 .
Y 0D
o HoHR (L) 220

2 2

be the closest point projection map and

. -3 .
— (0'e 0' Dy
w BQiR()(O) — H[2 <T) T, f*]

be the harmonic map with boundary value equal to 7 o u. By the definition of
i N3 i
w, the fact that ;/(x) € H[(Q%) 92#, t.], we conclude
d(u(x), w(x)) <d(u(x),l(x)), VYx € dBgig(0). (5.38)

We thus obtain

sup d%u,w)g%f d>(u, w)dS (by (5.28))
B spi g, O (0" Ro) 0By g, (O)
16
22n+2
<D Gp P, w) by (5.37)
A 9B, O
22n+3€0€0

<— sup  d*(u,;l) (by (5.38))
aBg[RO(O)

22n+3€0C0 5 D(%
<=0 by (525)
g2 Do (by (5.33)) (5.39)
22i+38 y 9:33)), :

or more simply

i+1 Do
sup d(u,w) <86 ia (5.40)
Blseiko © 2
16
Combining (5.25) and (5.40), we obtain
. Dy
sup d(w,;l) < sup d(u,w)+ sup d(u,;l) < O’TI. (541
B, (0) B,i (0) B, (0) 2
2 T T
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We will now check that we can apply Theorem 5.4. We fix R = % Ep as in
(5.27), Ag = 6A. Set

€o\—3 Dy !
(p():2(3> 7311(:1 7}:3

First, since w ‘2 9Ro = T © u}z 9 Ro 'and the pl‘O]-eCtIOIl into a convex set in an
NPC space is distance non-increasing, we obtain

EY (29 Ro) < E*(29Ry).
Furthermore, (5.27) implies

E“(20R E
(20Ro) _ CEY(1) < =2,

Q29 Ry)" — - n
Since Ry € [%, %], we therefore conclude

EY(9) < 9"E).

Next, Lemma 2.2, (5.40), (5.34) and (5.35) imply that in B 5, (0), we have
6

T
1 1
|[wol| < |wo —up| + lug — Ax"| + |Ax"|

D . .
<010 L piAteiA

2it+4
<360'A = Ay (5.42)
Thus, w maps into ﬁ[%, ] N B a9 (Po). Finally, (5.23) implies
©o _ 0'eg 0' Do _ 16Dg 0" _ 9
Cl[p, l'*] = Cl[2 (T) T, t*] = G[W, t*] < E = 5(543)

which is assumption (5.20) of Theorem 5.4. In other words, we have verified
all the assumptions of Theorem 5.4. Thus, with

~ : 1
il=L, H_ll:l, 19291, Rziand 1’29,

Theorem 5.4 implies with the choice of the constants in (5.29) that

. —3 D\ 2
sup d(w, ip1l) < CO™Y sup d(w, ;l) + Co'H! <2 (E—O> —lo) )
Byi+1(0) B ;i (0) 2 2

T
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Hence
D2
sup d(w,ip1l) < cel“e“ +ce)’+1m (by (5.41))
gt+l(0) 02

< it Do (by (5.31) and (5.34
sa 0y and (5.34)).

Combined with (5.40), we obtain

sup d(u,i+1l) < sup d(u,w)+ sup d(w,;t1l)
Byi+1(0) Byi+1(0) Byi+1(0)

D
i+1 0
<o . (5.44)

This implies the first inequality of (5.26). Furthermore, note that ; 1/ o = Wy
by definition (cf. Theorem 5.4). Since 6 € (0, 21—4),

Qiéo - QiD() - 9i+160 - 9i+1D0
2 2 2 2i+1
(5.45)

li+1l, ()| = |wy ()] < 2(

i+l =3 i+l
Thus, we conclude ; 1/ maps into H[(e 921+?°, ty].

We now proceed with the proof of the second inequality of (5.26). Since ;/,
and Ax! are both affine functions and u (0) = Py, we have for everyx € Byi (0)

11(6x) — ABx| = [(1 = )15 (0) + 6 ilo(x) — Ax")|
< (1 = 0)il,(0) + 0]l (x) — Ax'|.
By the definition of the coordinates (o, ¢), i[,(0) is the distance between the
point ;/(0) and the geodesic ray £ = {¢p = 0} U Py. Since u(0) = Py, we have
that
ilg(0) = d(;1(0), £) < d(;1(0), u(0)).
Thus,

lilg(6x) — ABx'| < (1 = 6)dGL(0), u(0)) + 61il,(x) — Ax'|
< (1= 0)dGLO), u(0)) + Olily(x) — g ()] + Jup (x) — Ax'|

Since

lilg(x) —up(x)| = d(l(x), u(x)).
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Thus,

lilo(0x) — A6x"| < (1 = 6)d(1(0), u(0)) + 0d(l(x), u(x)) + Olug(x) — Ax'|

D, .
< 9’2—;’ +6'18 (by (5.25))

: Dy6~
=07 (s
( + = )

which implies

. Dob~
sup  ilp(x) — Axl| < o't < 5+ 02 ) ) (5.46)
B,it1(0)

Thus, for x € Byi+1(0)

lug(x) — Ax'|
< Jup(x) = ily ()| + lily(x) — Ax'|

< d(u(x), 1(x)) + |il,(x) — Ax'| (by Lemma 2.2)
—1

. D . Do
<912_i0+91+1 (l8+ 0

, 2Dof~!
+1 0
<6 (l(S + > )

) (by (5.25) and (5.46))

_ i+1 Q_IDO
<0y o by (5.25). (5.47)
k=0

This is the second inequality of (5.26).
Finally, we will prove the third inequality of (5.26). Since [(x) = (Ax!', 0)
and since by (5.25)

i

g-1
D
8 < Z = <867 Dy,

we conclude from (5.46) that

sup  d((ilp(x),0),1(x)) = sup |il,(x) — Ax'| < 96'Dy.

Byi+1(0) Bi+1(0)
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Thus, for x € Byi+1(0),

d(l(x), (il 5(x), 0))
< (il ())*|ily ()]

. 3 .
. L 0iD
<63 (A+9DO)3-2<$) 70 (by (5.25))
23 (A +9Dy)>
<2 AP0, (5.48)
€0

Combining the above two inequalities, we obtain

- (23 (A +9Dp)?
d(il(x),l(x)) <6 (% + 9) Dy. (5.49)
€0
Combined with (5.25),
sup d(u,l) < sup d(u,;l)+ sup d(Gl, 1)
Byiv1(0) Byiv1(0) B,i1(0)
(23 (A +9Dy)’
< 6 (% + 10) Dy.
€0
O

We now present the general case of the above theorem. This generalization
is needed in order to handle the case of approximate harmonic maps. The
assumptions made on v in Theorem 5.7 should be compared with the properties
of the harmonic map observed in Remark 5.6.

Iterative Lemma 5.7 Given ¢y > 1, Eg, A', ..., A™ > 0, there exist 0 €
(0, ﬁ), €y > 0 and Dy € (0, «/Lg) that satisfy the following statement.
Assume the following:
e The map

[=("o (RY™, ... "o (R, M+ 10y By(0) — H
is such that R* is a rotation,
1M (x) = (A"x!, 0) in coordinates (o, ) anchored at t"* € (—oo, %) (cf. (5.12))
foru=1,...,mand

" is identically equal to Py
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foru=m+1,...,k—j.
Olen —3 0Dy 1 .
o The subset H[2 < > s I | satisfies

0'eo 9Do 16Dy
“[2( 2) e = al g e —(cf(s 13)) (550

foru=1,...,m
e The map

v=0' ) (Bi0), g) > H
is such that
v(0) =Py, EV(®) <V"E (5.51)
and

for R e (0, %], a harmonic map w : (Byig(0),g) — H ™/ with
EY(0'R) < EV('R) and a constant

= 92D3 5.52
c = 28 ’ ( . )
we have
2 0 2 3i
sup dy(v,w) < —/ dy(v,w)ydx +c6>. (5.53)
B spig (@ @' R)y"~! B,i z(0)

Sl
e The metric g is a metric satisfying (5.21) for any smooth submanifold S of

B1(0).
e The map

=Gl o (RY™ L™ o (RY™ MY kT Byi(0) > HY Y,

is such that

0160 - 0" Dy [y
i Byi (0) — H[ T ty | is an almost affine map

for uw=1,..., m(cf. Definition 5.3) and
[ is identically equal to Py

fory=m+1,....k—].
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o The constant ;§ > 0 is such that

i Do
sup dp(v,;l) <6 T
B, (0) 2

P (5.54)
. . 6~"'D
sup v o RI(x) — Alx!| < 08 <01y 0.
Byi (0) = 2
Then there exists a map
il = Garl o (RY™Y L el o (R™M™Y g™+ ) By (0) > HY

such that

, t! is an almost affine map

- 9i+1€0 -3 95+1D0
11" : Byin1 (0) — H[( 5 ) s
forp=1,....m,
i+1I" is identically equal to Py

foru=m+1,...,k— jand

.. D
sup dp(v,i41l) < git! ‘+0|
Byi+1(0) 2!
1 - 20007 iy i em 671Dy
sup v} o R*(x) — Alx'| < 180T = (,-8 + y )0’+ <ot Z
) 2i 2k72
Byis1(0) k=0
1 [ 23 (A+9Dp)?
sup dp(v,1) <mo'+! %—FIO 0~ Dy.
Byi+1(0) €0
(5.55)
Proof Let

Amin ;= min{A!, ..., A"} and Apax := max{A', ..., A"}.  (5.56)

For R = %, Eg > 0 asin (5.51) and the metric g given as in the statement
of the theorem, let

C > 1and o > 0 be as in Theorem 5.4. (5.57)

Let6 € (0, min{4;, fz}) sufficiently small such that (5.30), (5.31) and (5.32)
are satisfied. Define

. Amin 2
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1
Choose Dy € (0, Jg) such that

6
Ao 0
min ﬂ} (5.59)

. €
Do <mim) o = 4 3

As in (5.35), we obtain

sup [vf o R*(x) — Atx'| < 6'eg < 0" A" (5.60)
B, (0)

Thus, assumption (5.16) of Lemma 5.2 is satisfied. As in (5.37)

. -3 .
— (b€ " 0Dy
Voly { x € 9By z(0) : v/ o R*(x) ¢ H[2 (T) — }

22n+260

< (QiR)n—l - v

ym (5.61)

Let
w= @', ... W) B0 > H

be the harmonic map defined as follows:

e Let

be the closest point projection map and

- QiD()
i

wh : Byi p(0) — H[2 (@)

1, =1,....m
5 1, u

be the harmonic map with boundary value equal to 7/ o v¥.
e Foruy=m+1,...,k— j,let w" be identically equal to Py.

i N=3 i
By definition of 7#, the fact that ;/*(x) € H[(Q—;°> 9 Do th] for p =

2t 7

1,...,mand that ;[*(x) = Ppforu =m+ 1, ...,k — j, we conclude
d(w(x), w(x)) <d(v(x),il(x)), Yx € dByig(0). (5.62)

@ Springer



Rigidity of Teichmiiller space

Since 6 < we have 0! < and thus (5.52) implies

24’ 221+I ’

D2
0931 — O~ 29314-2 < 02!+2221+9 (563)

We thus obtain

sup d’(v,w) < %/ d*(v, w)dT + c6¥  (by (5.53))
BIS%R(O) (0'R) i 2 (O)
22n+2 )
<2 00 qup @Pv, w) + 63 (by (5.61))
Amin 3BeiR(0)
22n+260C0

sup  d*(v,il) + ¢ (by (5.62))
Amin 3B€iR(0)

22n+2€0C0 ) 2
_— -92’— 6> by (5.54
<= e (by (5.54))
2i42 Dj
<4t 22!28 (by (5.58) and (5.63)), (5.64)
or more simply
i+1 Do
sup d(v,w) <0 i (5.65)
Bspig (0 2
16
Combining (5.54) and (5.65), we obtain
D
sup dw,;l) < sup dv, w) + sup dv,;l) <0 — —- (5.66)
B, (0) B, (0) B, (0) 2
T 7 T
We will now check that we can apply Theorem 5.4. We fix R = Eo as in
(5.51), Ag = 3Amax, ¥o = 2(60) -3 % and ¥ = 6, First, note that since

projection into a convex set in an NPC space is distance non-increasing, we
obtain E¥"(0") < EV(#") < 6" Eq by (5.51). In analogy with (5.42) we
obtain

wk o RM| < Ag?.

Thus, w*”* maps into H[%, 7, ]NB Agw (Po). Finally, in analogy with (5.43)

92’

9[

[192’ <3 =3
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which is assumption (5.20) of Theorem 5.4. Thus, with

) ‘ 1
=Ll =1 9=6 R=_-adr=0

]

in Theorem 5.4, we have by the choice of the constants in (5.57) that

2
. en\—3 D
sup dg(w', ;1" < COY sup dg(w”, ;1M) + O] (2 (%’) 2—0) .
Bi+1(0) B i (0)
Vi

This immediately implies

. en\ =3 D
sup  d(w, is1l) < COMY sup d(w, ;l) + mCO! (2 (—0) —°>
Byi+1(0) Byi (0) 202
2

hence

D2
sup d(w. i41l) < Coitlge 20 -+ mCoT ——— (by (5.66))
1(0) 2 €§2% -8
91

< it Do (by (5.31) and (5.59)).
2i+4 y

Combined with (5.65), we obtain as in (5.44)

Dy

TR (5.67)

sup d(v,ip1l) <0 —
Byi11(0)

This implies the first inequality of (5.55). Furthermore, since ;+1l{, = wy, by
definition (cf. Theorem 5.4), we conclude via the analogous equation to (5.45)

91+1 -3 9i+lD0 "
i+l o Tk A

that ; +1/* maps into H[(
We now proceed with the proof of the second inequality of (5.55). Seting

A* = 0foru = m+1,...,k — j for simplicity, we deduce in a maner
identical to (5.46)
: Do6~
sup [ill o R*(x) — Atx'| < ' ( 8+ =2 ) . (5.68)
Byi11(0) 2

Thus, for x € Byi+1(0) we obtain as in (5.47)

H—l -1
Dy
vl o RFM(x) — Alx!| < 671 2k_2
k=0
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which is the second inequality of (5.55).
Finally, we will prove the third inequality of (5.55). Since [*(x) =
(A*x', 0) and since by (5.54)

P -1
0~ Do _
l‘8< E nge 1l)(),
k=0

we conclude from (5.68) that

sup d((,-lg o R*(x),0), " (x)) = sup |,-lg o RM(x) — A*x'| < 90" Dy.
Bgi-H 0) Bei+l (0)

Thus, for x € Byi+1(0) as in (5.48)

.23 (A" 4 9Dg)?
d1" o R*(x), (Il o R*(x),0)) < 9’¥D0
€

0

Combining the above two inequalities, we obtain

3 3
d(;I* o R*(x), I"(x)) < ' (M + 9) Do.

3
€

Combined with (5.54)

sup d(w*, ") < sup d@",iI" o R*)+ sup d(GI" o RM,IM)

Byi+1(0) B,i+1(0) Bi+1(0)
(23 (A +9Dy)’
< 01 (% + 10 D().
€
0
Hence,

m
sup d(v.1) < sup Y d(l" o RM(x), 1" (x))
Bi+1(0) Byi+1(0) 1

(23 (A +9Dy)?
mo' <(+0)+10> D.
€0

O
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5.5 Proof of the key technical Lemma 4.11

Proof The assumption (i) that g is sufficiently close to the Euclidean metric is
the condition glven by (5. 21) Let 6, ¢p and Dy be as in the iterative Lemma 5.7

02 D
and let c =

sup dp(v, 1) < Dy. (5.69)
B%(0>

We will also assume v(0) = Py. In order to arrive at a contradiction, we
will apply iterative Lemma 5.7 starting with [ = ¢/ and ¢6 = Dg (cf.
assumption (5.54) of the iterative Lemma 5.7). To do so, we need to verify
assumption (5.50) of iterative Lemma 5.7; in other words, we need to show

Oieo 9 Do 16Dy ol
a[2< > ) — tf1=a [892i2i’t*]<3'

For this purpose, we note the constants € and €q are chosen before the constant
Dy in the proof of iterative Lemma 5.7; hence, there is no loss of generality in
assuming that Dy is chosen sufficiently small (cf. (5.59)) such that

8D
<1 (5.70)
€
0
and \
23 (A +9Dy) ! 1
m|—————— +10|67'Dy < —. (5.71)
( 68 0 NG

For i = 1,..., m, recall that ¢! is the address of I* (cf. (5.6)). Reordering if
necessary, we can assume

th =max(r), ... ") (5.72)

*
Let iy be the non-negative integer such that

ei()-i-l ] QiO 5
— <¢,(0,t,) < —. (5.73)
7 S0 =g

Recall by (5.9) and (5.10) that # = ¢, (0, t) =: f(t) satisfies
£ty = £3@) with £(1) = 1.

@ Springer



Rigidity of Teichmiiller space

Solving this differential equation, we obtain

f(l):m
and
3 1

In particular, since f (ti) = ¢, (0, ti) < %, we have

L S (5.74)
-ty =——t——>—=+ ——. .
2224y T 2 o

*

Therefore, if

e (1.2, io} and |1] — 1| < 2P0
ie{l,2,...,ip} an |t*—t|_€802i2i,

then by (5.70) and (5.74)

1 32Dg 8 4 8 4 4
E e T e e A i

In turn, this implies

0,t)=f(t) = ! 0
Cp(, —f( —ﬂ<3

In summary, we have shown

%, th= max  ¢,(0,1) +¢) < 9_1
€022 2

{p:lp]=< ;16 }

ief(l,2,... i) = al

921 i

By (5.9), t + ¢,(0,1) is an increasing function. Since ti > tf for p
2, ..., m, this implies that

il 16Dy _ 0. 11 6’
ie{l,2,..., i} = al5=—= EPEE 1= " |‘/)|max6l)0 }cp( e ) < >
- '592121
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In other words, the assumption (5.50) of iterative Lemma 5.7 is satisfied for
i =0,1,2,...,ip. We can now complete the proof by applying the iterative
Lemma 5.7 as follows:

Let o/ = [ and ¢6 = Dg (cf. assumption (5.54) of the iterative Lemma 5.7).
By (5.69) and Lemma 2.2,

sup dp (v, ol) < Do

By (0)
sup |vg o RM — Alx!| < o8 <4671 Dy.
By (0)
We apply the iterative Lemma 5.7 fori = 1, 2, ..., ip to obtain
int1 [ 2} (A+9Do) -1
sup dp(v,1) < mb* ——>—— +10) 67 Dy. (5.75)
Big+1(0) €0
Thus,
950+1
7 < ¢, (0, ti) (by (5.72) and (5.73))
= dgg(Po, 1" o (RH71(0))  (by (5.11))
= dg(v'(0),1" o (R")7'(0)) (by the assumption that v(0) = Pp)
< dp(v(0), 1(0))
: 23 (A 49Dy)?
< moiot! (# + 10) 6~'Dy  (by (5.75))
€0
9i0+l
< (by (5.71)).
NG y
This contradicts our assumption that v(0) = Py. O

6 Two dimensional domains

In this section, we prove Theorem 1.7, the regularity of harmonic maps from
two dimensional domains. We first need the following preliminary lemma.

Lemma 6.1 Let u : (2,g8) — (7T, dz) be a harmonic map from an n-
dimensional Lipschitz Riemannian domain, ¥ a connected submanifold of 2
(possibly £ = Q) and T’ a stratum of T (possibly T' = T ). Ifu(£)NT' # ¢
and ¥ C R(u), then u(X) C 7'. Moreover, there exists a stratum T of T
such that u(R(u)) Cc T'.
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Proof Since u(X) N'T' # @, we have that W := u~'(7’) N ¥ is a nonempty
subset of . Assume on the contrary that u(X) ¢ 7, and let x be a boundary
point of W in X. Since ¥ C R(u), there exists r > 0 such that u(B,(x))
is contained in a single stratum. Since B,(x) N W # {J, we conclude that
u(By(x)) C 7' contradicting the fact that x is a boundary point of W in X.
This proves the first assertion. Since S(u) is of Hausdorff codimension 2 the
set R(u) is connected. (This follows easily from [44] Corollary 4.) Thus, the
second assertion follows from the first. ]

Proof of Theorem 1.7. We first prove that if u : & — (7, d=) is a harmonic
map from a Riemann surface, then the set S~!(u) of its singular points of
order > 1 is discrete. Assume on the contrary that there exists x; € S > (u)
such that x; — x¢. By Lemma 4.5, Ord"(x;) > 1 + €g for some ¢y > 0.
By Theorem 3.5, the order is a decreasing limit of continous functions and
hence upper semicontinuous. Thus, xo € S ! («). Identify a neighborhood of
xo = 0 to a disk D via normal coordinates. By letting o; = 2|x;| and taking
a subsequence, if necessary, we can assume §; = g—i — ¢ and the blow up

I"(o})

maps Uy, = (Vy,, Vo, ) with blow-up factor o

in the pullback sense (cf. Lemma 4.4) to

converge locally uniformly

k—j j
e = Vi, 0) = (Vi, vl o, v ) 2 B1(0) > € X Vi X -+ X Vi jue

By Lemma 3.10, Ord"*(¢y) > 1+ €, and thus the homogeneity of u, implies
that Ord“+(x) > 1 + ¢ for every point on the ray starting at 0 and going
through ¢,. By rotating if necessary, we assume that this ray is the positive
x-axis and ¢, = (%, 0). Thus, V, must be identically constant since otherwise
V, is a harmonic map into C/ with order > 1 + ¢( along the x-axis which is
impossible. Since u, is a non-constant map, it follows that v, must be non-
constant.

We will now do a similar argument with v, in order to get a contradiction.
From the proof of Lemma 4.5, we observe that there exists a sequence of

harmonic maps w; : D — " converging locally uniformly to v,. For sim-
plicity, we will assume that k — j = 1. (Otherwise, pick one of the non-constant
components of v, and the corresponding component of w;.) By homogeneity,
v, (v4(0)) is a union of rays emanating from the origin in I and the connected
components of D\v, L(v,(0)) are sectors of D. Furthermore, Claim 1 in the
proof of Lemma 3.13 says that v, must map every connected component of
D\v, L(v4(0)) into a geodesic ray starting at v,(0). Since Ord"™ > 1+ €
along the positive x-axis, the postive x-axis is one of the rays in v L(04(0)).
We choose a sufficiently small neighborhood N of ¢, = (%, 0) such that
intersects exactly two sectors of D\v '(v4(0)). Thus, v (N) is contained in a
union of two geodesic rays. Harmonicity of v, implies that v, () is a geodesic
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segment. After identifying the geodesic segment with an interval [a, b] in the
real line, v, is a harmonic function in A/ with order > 1 + € along the x-axis,
a contradiction. Thus, we have shown that S~ !(u) is a discrete set.

Next we prove that the set Sj(u) (cf. (4.15)) is discrete. Indeed, on the
contrary, suppose that there exists a sequence x; € S;j(u) — x. € S;(v).
Letu = (V, v) be a local representation at x,.. By Corollary 4.33, there exists
€0 > Osuchthat Ord"(x;) > 1+¢. Identify a neighborhood of xg = 0 with D
and take as before 0; = 2|x;|and ¢; = j% — ¢ such that the sequence of blow-
1°(0i)

0
harmonic maps and converges locally uniformly in the pullback sense to a
homogeneous harmonic map vg. Lemma 4.34 on the upper semicontinuity of
order implies Ord"(Z,) > 1 + €p. As before, the homogeneity of vy implies
Ord"™ > 1+ ¢ along a the ray. This contradicts Lemma 4.10 (cf. (4.18)).

We have thus shown that the singular set of u is discrete and hence given
x € S(u), thereis r > O such that B, (x) NS(u) = {x}. Thus 0B, (x) C R(u).
Applying Lemma 6.1 for ¥ = 9 B, (x), we have that u(d B, (x)) C 7’ for some
stratum 7’ of 7. Now recall the existence of a convex exhaustion function
f T — [0,00) (cf. [55]). Since u(dB,(x)) is closed, there exists ¢ > 0
such that u(dB,(x)) C {p € 7' : f(p) < c}. Since sublevel sets of a convex
function are convex, we conclude u(B,(x)) C {p € T' : f(p) < c}, and
hence x € R(u). This contradicts the assumption that x € S(u) and proves
Su) =0. O

up maps v, of v at x, with blow-up factor is a sequence of asymptotic

7 Proof of Theorem 1.2 and Corollary 1.3

Letu : M — (T, d7) be a I'-equivariant harmonic map as in the state-
ment of Theorem 1.2. By Lemma 6.1, there exists a stratum 7" of 7 such that
u(R(u)) C T’ and therefore M(M ) C T where T denotes the Weil—Petersson
completion of 7. Since 7" is isometric to a product of lower dimensional
Teichmiiller spaces with the Weil-Petersson metric, the strong negative cur-
vature of 7’ together with Theorem 1.5 and Theorem 1.6 imply, as in [21]
or [14], that u is pluriharmonic on the regular set R (u) (also cf. [48]). More
precisely, on R(u), we have that

D'"du=0=D'd"u and Y Rijud"ui Ad'ujndugnd"up=07.1)
i,j.k,l

Next, applying [44] Lemma 2, there exists a holomorphic disc D through
any x € S(u) such that
HY (Sw)ND) =0 (7.2)
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where H! denotes 1-dimensional Hausdorff measure. We next need the fol-
lowing

Claim 7.1 The restriction of u to D is a harmonic map.

Proof Letw : D — (7/, d?) be a harmonic map with w|8D = “‘aD' We
will show ¥ = w, thereby proving the claim. Fix ¢ € C2°(D) with 0 <
¢ < 1.For e > 0, (7.2) implies that there exists a covering {B,, (x,-)}f.V: , of
sup(¢) N S(u) C D such that vaz | i < €. Let ¢; be a smooth function such
0<¢; <1,¢; =0in B, (x;), ; = 1 outside By, (x;) and |V¢;| < %
Define ¢ = HlN: 1¢i and (/52 = I1j+;¢;. Since u is pluriharmonic in R (u),

its restriction M‘D\ UY., B, (v1) is a harmonic map. Thus, d*(u, w) is weakly
i=1 rp 1

subharmonic in D\ U,N:1 B (x;) (cf. [27] Lemma 2.4.2 and Remark 2.4.3).
Thus,

N
f ¢V - Vd* (u, wydxdy + ) QP i - Vd*(u, wydxdy
D i=1 Y Bar; (xi)

= / V(ppe) - Vd* (u, wydxdy > 0.
D

Since d?(u, w) is a Lipschitz function in supp(¢), we can estimate

N N
Z/ |(p¢év¢l~ - Vd*(u, w)‘ dxdy < C Zri_lf dxdy
; BZrl‘ (-xi) i=1 B

i=1 2r; (Xi)
N
<C Z r; < Ce.
i=1
Letting ¢ — 0, we obtain
/ Vo - de(u, w)dxdy > 0.
D
In other words, d(u, w) is a weakly subharmonic function on ID. Since u and

w agree on the boundary 0D, we conclude that u = w on D. O

Now Theorem 1.7 implies that the image of u lies in the stratum 7. From
here the proof of Theorem 1.2 follows from the strong negativity of the cur-
vature of 7" as in [48].

We now proceed with the proof of the Corollary 1.3. Notice that by the
assumption that p is sufficiently large, [15] Corollary 1.3 implies that there
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exists a finite energy p-equivariant harmonic map
u:M—T.

By Theorem 1.2, there exists a stratum 7’ of 7 such that u is a plurihar-
monic map into 7. Since the image of u is invariant under all pseudo-Anosov
transformations,

T' =T and u(M) C 7.

This completes the proof of the Corollary.

8 Proof of Theorem 1.1 and Corollary 1.4

Proof of Theorem 1.1. Atthis point, we argue more or less as in Jost-Yau [26].
We include the details here for the sake of completeness. Let g : M—> M
be a smooth resolution of singularities with exceptional divisor ¥ and let
M=M \ Z. We label the connected components of X by X;, j =1, ... J and
the irreducible components of X; by Eé, I =1,...,L;. Wecan also assume
that X; consists only of normal crossings. We endow M with a Poincare type
metric (originally due to Cornabla and Griffiths [9]) defined as follows: Let
o0j,1 be a canonical section of the line bundle O (X 5) vanishing along ¥ § For w

a Kihler a form on M induced from a projective embedding of M we consider
the metric associated to the Kéhler form

i a — -
w =) -ddlogloglojl; " + Cq" (@) (8.1)
J.l

where £ ; is a Hermitian metric on O(Eﬂ.) and C > 0 is chosen sufficiently
large such that w is positive. Let g be the Kihler metric associated to w. By
[26, Section 1], g has bounded diameter and bounded Ricci curvature.

For each connected component X ; of M \M,theend E; of M corresponding
to X; can be written topologically (not metrically) as

E; ~JE; x RT. (8.2)

To see this, consider the holomorphic section o vanishing on X; and Hermi-
tion metric 4 ; defined by

O'J :Gj,l ®"'®Uj,Lj7 h] :th ®®h_],L]
and use the gradient flow of |o; |%j to decompose into level sets.
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Retraction of each end E | to its boundary 0 E; via (8.2) induces a deforma-
tion retraction of M into its core

re:M— M. :=M\| JE;. (8.3)
i

The same is true for M’, by taking a resolution of singularities of a compact-
ification of M’ and arguing as for M.

Since M and M’ are homotopy equivalent, we can induce via (8.3) a smooth
homotopy equivalence

ke : MA\OM,. — M.

Under the codimension assumption of M\ M given in the statement of Theo-
rem 1.1, the energy of the map r. is bounded with respect to the metric g on
M by [26, p.487]. Hence, by the smoothness of k. and the compactness of M,
we conclude that

fi=kcore: M — M

defines a smooth homotopy equivalence of finite energy. Since I" contains
pseudo-Anosov elements associated to different measured foliations, I" is suf-
ficiently large. We thus obtain from Corollary 1.3 that there is a pluriharmonic
map of finite energy

u M —> M

which is also a homotopy equivalence.

Next, consider the embedding of the moduli space of Riemann surfaces
M = T/T in D/A where D is the Siegel upper half space of degree g, A
is the Siegel modular group and let D_/ASBB denote the Satake-Baily-Borel
compactification of D/A (cf. [5]). Let HSBB denote the closure of M in
D_/ASBB. Since /VSBB\M has more than one connected components (cf.
[24] Proposition 4.1), it follows that M has more than one ends. Since the

quotient map M’ — M is a proper surjective map, M’ must have more than
one ends as well. O

Lemma 8.1 The map u’ is holomorphic or conjugate holomorphic, and its
rank is equal to 2 dimc M.

Proof Let m = dimc M. We claim that Hy,,—1(M, R) # 0. Assume on the
contrary that Hy,;,—1 (M, R) = 0. Since u’ is a homotopy equivalence, it also
implies that Hp,—1(M’,R) = 0 and, since M., is homotopy equivalent to
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M, Hyp—1 (M., R) = 0. This contradicts the fact that M’ has more than
one ends. Indeed, since Hay (M., R) >~ Ho((M., dM.), R) = 0, the exact
sequence
H2m(M;s R) - HZm((M;v 3Mé), R) - H2m—l(aM:;7 R) - HZm—I(Méa ]R)
implies
Hap (ML, 9M.), R) = Hap 1 (9M, R)
and by Poincare Lefschetz duality
0 ~ o0
H°(M.,R) >~ H(AM., R).
This is a contradiction since M, is connected and dM.. is not. Hence
Hypy—1(M, R) # 0. Since u’ is a homotopy equivalence it must carry a non-
trivial 2m — 1 homology class to a non-trivial 2m — 1 homology class and

hence it must have rank > 2m — 1 somewhere. Since u" is holomorphic or
conjugate holomorphic by Theorem 1.2, it must have maximal rank = 2m. O

By changing orientations if necessary we can assume u’ is holomorphic.
Let

u: M- M

denote the composition of the quotient map to M and u’, which is also holo-
morphic. By embedding M in D/A, we obtain a holomorphic map

u:M— D/A
which by [6] extends to a holomorphic map
i:M— WSBB
where M is a smooth compactification of M as before.

Lemma 8.2 The map ii as given above takes M\M into HSBB\M. In par-
ticular, u and hence also u' is proper.

Proof Let p € M \M and

v:D={zeC:lz|l<1}> M, v)=p
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be such that
v = v({|z] = t}) homotopically nontrivial in M, length(y;) — 0.

Since u : M — M is a homotopy equivalence, u(y;) is homotopically
nontrivial on M and since the domain metric has bounded Ricci curvature,

we obtain by the Schwartz Lemma [42] length(u(y;)) — 0. It follows that

u(p) € D/ASBB\D/A, hence ii(p) € MS35BB\ M which proves the lemma.

O

Since u’ is proper and has maximal rank, it is onto. Given y € M, u’ - )
is a compact subvariety of M and hence, if of positive dimension, it is homo-
logically nontrivial. Since u is a homotopy equivalence and maps u’ - (y) to
{y} which is homologically trivial, this is a contradiction. It follows that u’ is a
covering map and since it is also a homotopy equivalence it must have degree
1. The fact that u” is a biholomorphism follows as in [48, proof of Theorem 8,
p.110].

Proof of Corollary 1.4. Assume on the contrary that there exists a sufficiently
large homomorphism p : A — I'. Asin [21, Lemma 8.1], we first construct
a finite energy equivariant Lipschitz map f : M=G/K - T. Corollary 1.3
implies that there exists a A-equivariant harmonic map

u:M— (?’dT)-

By Lemma 6.1, there exists 7' C T such that u(R(u)) C T'. We are going
to show that u is constant, so with an intent of arriving at a contradiction, let’s
assume that u is non-constant. As in [14] Corollary 14 and Lemma 15, our
regularity Theorem 1.5 and Theorem 1.6 imply that u« is totally geodesic on
the regular set R (u). In other words, u satisfies on R(u)

Vdu = 0. 8.4)

As in [14] proof of Theorem 1, (8.4) combined with Theorem 1.5 implies that
u is totally geodesic on the entire M in the sense that » maps geodesics to
geodesics.

Since the domain is an irreducible symmetric space, ¥ must be a totally
geodesic immersion into a stratum 7. This is clearly a contradiction if the
symmetric space has rank > 2. In the rank 1 case, the contradiction follows
from [57] Theorem 1.2. We thus conclude that u is constant, hence p(A) fixes
a point in Teichmiiller space. Since the action of the mapping class group is
properly discontinuous, this implies that p(A) is finite contradicting the fact
that p is sufficiently large. O
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