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Abstract We show that harmonic maps from 2-dimensional Euclidean polyhedra to arbi-
trary NPC spaces are totally geodesic or constant depending on a geometric and combinatorial
condition of the links of the 0-dimensional skeleton. Our method is based on a monotonicity
formula rather than a codimension estimate of the singular set as developed by Gromov–
Schoen or the mollification technique of Korevaar–Schoen.
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1 Introduction

The connection between harmonic maps and representations of discrete groups has been stud-
ied extensively in recent years. A harmonic map is classically defined between Riemannian
manifolds and is a critical point of the energy functional. With the seminal work of Gromov
and Schoen on p-adic superrigidity (cf. [7] and also [9,10]), one can employ techniques from
geometric analysis to study harmonic maps from Riemannian manifolds to metric spaces of
non-positive curvature (NPC spaces). Under appropriate curvature assumptions, one can
prove that the harmonic map is totally geodesic or even constant and conclude this way that
it is rigid. In the case the harmonic map is equivariant with respect to a representation of the
fundamental group of the domain manifold to the isometry group of an NPC space, one can
deduce the rigidity of the representation. Instead of smooth domains, one could also ask about
the rigidity of representations of the fundamental group of a singular space like a piecewise
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smooth polyhedron into the isometry group of an NPC space. These questions are motivated
by the study of representations of lattices in non-Archimedian groups in connection with
Margulis superrigidity.

Harmonic maps from singular domains were first studied in [3] and further elaborated in
[4–6]. More precisely, let X be an admissible, Euclidean, 2-dimensional simplicial complex
(cf. Sect. 2 for precise definitions). We will denote by X (i) the i th skeleton of X , X̃ its
universal cover and � = π1(X). Let Y be an NPC space and let ρ : � → Isom(Y ) be a
representation of � via isometries on Y . Under very general assumptions on � and ρ, one
can construct a �-equivariant energy minimizer f : X̃ → Y , also called a harmonic map
(cf. [4] for details). For reasons explained in [5], it is useful to associate certain weights w
to the 2-skeleton of X and modify the notion of energy to account for the weights. One then
obtains the notion of a w-harmonic map (cf. Sect. 2 for details).

Perhaps the most interesting feature of harmonic (or w-harmonic) maps from singular
domains is that they are Hölder continuous, but in general fail to be Lipschitz continuous.
Given p ∈ X , let ord(p) denote the order of f at p. As in the case of smooth domains, ord(p)
can be identified with the degree of homogeneity of the blow-up map of f and the Hölder
constant of f (cf. [4] and Sect. 2). If ord(p) ≥ 1 for all p, then the map is Lipschitz continu-
ous and combined with a Bochner formula, one can obtain rigidity of f ; in other words that
the w-harmonic map f is totally geodesic on each simplex of X or even a constant map. In
the case of a smooth target Y , this was one of the main results of [5].

The goal of the present paper is to extend these results in the following ways. First, we
consider maps to arbitrary NPC space targets. These include important examples like trees or
the Weil-Petersson completion of Teichmüller space. Moreover, we allow our domain space
to be polyhedra with arbitrary Euclidean metrics rather polyhedra consisting of simplices
isometric to equilateral triangles. This makes our theorems applicable to a larger variety
of examples than considered in [5] and the combinatorial approach of [8,13,14] discussed
below. The main results of the paper can be summarized as follows:

Theorem (cf. Theorem 13) Let X be a 2-dimensional admissible Eucliean simplicial com-
plex, Y an NPC space and f : X̃ → Y a�-equivariantw-harmonic map such that ord(p) ≥ 1
for all p ∈ X (0). Then f is totally geodesic on each 2-simplex F of X. If the curvature of
Y is strictly negative, then f maps each 2-simplex F into a geodesic. If ord(p) > 1 for all
p ∈ X (0), then f is constant.

As for smooth targets, the order of a harmonic map at a 0-simplex p is related to certain
geometric and combinatorial information of X . Let λ1(Lk(p), TQY ) denote the first eigen-
value of Lk(p), the link of p in X with values in the tangent cone TQY of Y (cf. Sects. 2 and
4) for details. We show:

Theorem (cf. Theorem 16) Let X and Y be as in above and f : X̃ → Y a �-equivariant
w-harmonic map. If λ1(Lk(p), TQY ) ≥ β(> β) for all Q ∈ Y , then ord(p) ≥ √

β(>
√
β).

By combining the previous two theorems, we obtain:

Theorem (cf. Theorem 17) Suppose λ1(Lk(p), TQY ) ≥ 1 for all p ∈ X (0) and all Q ∈ Y .
Then any w-harmonic map f : X̃ → Y is totally geodesic on each simplex of X. If Y is
strictly negatively curved, then f maps each simplex of X into a geodesic. Furthermore, if
λ1(Lk(p), TQY ) > 1 for all p ∈ X (0) and all Q ∈ Y , then f is constant.

We now give a sketch of the proofs of the above theorems. Let f : X̃ → Y be a
�-equivariant w-harmonic map as before. As mentioned above, the condition ord(p) ≥ 1
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for all p ∈ X (0) implies that f is Lipschitz and this is a key part of the argument. Next, by
performing domain variations along the x-axis we obtain as in [9], the subharmonicity of
| ∂ f
∂x |2 (cf. Lemma 5). Since variations in the y-direction do not make sense along the edges,

we have to appeal to the balancing condition and the holomorphicity of the Hopf differential

to obtain the subharmonicity of
∑

F∈F(E)
∣
∣
∣
∂ fF
∂y

∣
∣
∣
2
, where the sum is taken over all the faces

of X adjacent to the edge E (cf. Lemma 5). This implies the subharmonicity of the energy
density |∇ f |2 (cf. Lemma 6). In particular, the energy density |∇ f |2 is of Sobolev class W 1,2

and hence it has sufficient regularity to justify our main monotonicity formula (cf. Lemmas
9–11). The weak inequality �|∇ f |2 ≥ 0 defined on each face of X is now summed over all
the faces of X . In [5], we used Stokes’ Theorem on each face and balancing condition along
the boundary of each face to justify the conclusion that this sum is zero which immediately
implies the harmonicity of |∇ f |. Because of the singular nature of the target space considered
in this paper, we use an alternate argument based on the monotonicity formula (cf. Theorem
12) to deduce a more general conclusion. This implies that the pullback tensor

(πi j ) =
(

| ∂ f
∂x |2 ∂ f

∂x · ∂ f
∂y

∂ f
∂x · ∂ f

∂y | ∂ f
∂y |2

)

is smooth on each simplex. The NPC condition on the target space implies that this pullback
tensor πi j is also NPC (cf. Appendix). This, combined with the harmonicity of its com-
ponents, implies that πi j , and hence also the map f , is flat (cf. Theorem 13). The totally
geodesic property or the constancy of the map f follows.

We next indicate how to relate the order of f at p with the eigenvalues of the link at p. In
the case when the target Y is smooth, this can be done by reducing the harmonic map equation
of the blow up map to the eigenvalue equation of the Laplacian on Lk(p) (cf. [5]). In the
case Y is singular, we adopt the Rayleigh quotient definition of eigenvalue and relate it to the
order (cf. Theorem 16). At this point our approach is parallel to the combinatorial approach
of M-T. Wang and Izeki and Nayatani (cf. [8,13,14]). We note that for X , a 2-complex with a
property that each 2-simplex is isometric to an equilateral triangle, and a smooth target Y we
showed in [5] an explicit relation between the conditionλ1(Lk(p)) ≥ 1 and the corresponding
condition for the eigenvalue of the combinatorial Laplacian λcomb

1 (Lk(p)) ≥ 1/2.
We end this introduction by mentioning one important application of our results to rigidity

questions of the mapping class group. Recently Wolpert showed that the tangent cones of the
Weil-Petersson completion T̄ of the Teichmüller space T of marked genus g, n-punctured
Riemann surfaces are Euclidian cones. In this case, the condition

λ1(Lk(p), TQ T̄ ) ≥ 1

can be replaced by the simpler λ1(Lk(p)) ≥ 1. Therefore, we immediately obtain the fol-
lowing rigidity result:

Theorem (cf. Theorem 18) Let X be a 2-dimensional admissible simplicial complex such
that λ1(Lk(p)) ≥ 1 for all p ∈ X (0). Then any w-harmonic map to the Weil-Petersson
completion T̄ of Teichmüller space is totally geodesic on each simplex of X. Furthermore, if
λ1(Lk(p)) > 1 for all p ∈ X (0) then f is constant.

The previous theorem clearly implies that given a group � which is the fundamental
group of a 2-complex X admitting an Euclidean metric with the property that π1(X) = �

andλ1(Lk(p)) > 1 for all p ∈ X (0), then any representation of� into the mapping class group
is constant. In the special case � is realized as a fundamental group of a 2-complex X where
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all simplices are equilateral triangles with the condition λ1(Lk(p)) > 1 for all p ∈ X (0), this
result was obtained by using discrete harmonic maps (cf. [8,15]). In this case, the condition
λ1(Lk(p)) > 1) is replaced by the combinatorial condition λcomb

1 (Lk(p)) > 1/2, which
are shown to be equivalent by Proposition 13 and Corollary 14 of [5]. Although technically
simpler than ours, the Bochner formula for discrete harmonic maps does not seem to carry
over to the case λcomb

1 (Lk(p)) = 1/2 or for the apparently more general condition that we
are considering for �. As pointed out by M-T. Wang (cf. [14]), there are important examples
of complexes where the combinatorial eigenvalue of the Laplacian is equal to 1/2.

2 Definitions and known results

2.1 Admissible Euclidean complexes

A simplicial complex of dimension 2 is referred to as a 2-complex. A connected locally finite
2-complex is called admissible (cf. [3,6]) if the following two conditions hold:

(i) X is dimensionally homogeneous, i.e., every simplex is contained in a 2-simplex, and
(ii) X is locally 1-chainable, i.e., for any 0-simplex v, every two 2-simplices A and B con-

taining v can be joined by a sequence A = F0, e0, F1, e1, . . . , Fk−1, ek−1, Fk = B
where Fi is a 2-simplex containing v and ei is a 1-simplex contained in Fi and Fi+1.

The boundary ∂X of X is the union of 1-simplices that are contained in only one 2-simplex.
A Riemannian 2-complex is a 2-complex X along with a Riemannian metric gF defined
on each 2-simplex F smooth up to the boundary of F so that for any two 2-simplices F
and F ′ sharing a 1-simplex e, gF and gF ′ induce the Riemannian metric on e. We call a
Riemannian 2-complex Euclidean if for any 2-simplex F , there exists a simpicial isometry
φF : (F, gF ) → T where T is a triangle in R2 with the induced Euclidean metric. In the
sequel, all complexes are admissible, Euclidean, compact and without boundary. We will
assume all simplices are closed and use X (i) to denote the i-skeleton of X , i.e. the union
of all i-simplices of X . For any simplex s, star(s) will denote the union of all simplices
containing s.

2.2 NPC spaces

A complete metric space (Y, d) is called an NPC space if the following conditions are satis-
fied:

(i) The space (Y, d) is a length space. That is, for any two points P and Q in Y , there
exists a rectifiable curve c so that the length of c is equal to d(P, Q) (which we
will sometimes denote by dP Q for simplicity). We call such distance realizing curves
geodesics.

(ii) For any three points P, R, Q ∈ Y , let c : [0, l] → Y be the arclength parameterized
geodesic from Q to R and let Qt = c(tl). Then

d2
P Qt

≤ (1 − t)d2
P Q + td2

P R − t (1 − t)d2
Q R .

We say that the curvature of (Y, d) is strictly negative if there exists κ < 0 so that

cosh(−κdP Qt )

≤ sinh(−(1 − t)κdQ R)

sinh(−κdQ R)
cosh(−κdP Q)+ sinh(−κtdQ R)

sinh(−κdQ R)
cosh(−κdP R).
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We now recall the notion of a tangent cone of an NPC space Y at a point Q ∈ Y . Let
G QY be a set of nonconstant arclength parameterized geodesics c so that c(0) = Q. Given
c, c′ ∈ G QY , define

¯	 (
c(t), c′(t ′)

) = cos−1

(
d2

Qc(t) + d2
Qc′(t ′) − d2

c(t)c′(t ′)
2dQc(t)dQc′(t ′)

)

and

	 (c, c′) = lim
t,t ′→0

¯	 (c(t), c′(t ′)).

Define an equivalence relation c ≈ c′ iff 	 (c, c′) = 0. The completion of the quotient
SQY = (

G QY/ ≈)
with the distance function induced by 	 is called the space of directions

at Q. The tangent cone is the cone over SQY , namely

TQY = (SQY × R+)/(SQY × {0}).
For W = (V, t),W ′ = (V ′, t ′) ∈ TQY , the distance function dTQ Y is defined by

d2
TQ Y = (W,W ′) = t2 + t ′2 − 2t t ′ cos 	 (V, V ′)

and the inner product on TQY by

< W,W ′ >= t t ′ cos 	 (V, V ′).

We then have |W | :=< W,W >1/2= dTQ Y (0,W ) where 0 = SQY × {0} is the origin of the
cone TQY . The projection map π : Y → TQY is defined by setting

π(P) = ([c], d(Q, P))

where c is the geodesic joining Q to P and [c] ∈ SQY is the equivalence class of c. The NPC
condition guarantees that π is a distance decreasing map. We refer to [2] for more details.

2.3 w-harmonic maps

We first recall the Korevaar–Schoen energy for a map into a complete metric space (cf. [6]).
Let X be a 2-dimensional Riemannian complex and dx the volume form defined by the
Riemannian metric. Let Bε(x) be the set of points in X at a distance at most ε from x and
set Sε(x) = ∂Bε(x). Define eε : X → R by

eε(x) =
∫

y∈Sε (x)

d2( f (x), f (y))

ε2

dσx,ε

ε

where σx,ε is the induced measure on Sε(x). We define a family of functionals E f
ε : Cc(X) →

R by setting

E f
ε (ϕ) =

∫

X

ϕeεdx .

We say f has finite energy (or that f ∈ W 1,2(X, Y )) if

E f := sup
ϕ∈Cc(�),0≤ϕ≤1

lim sup
ε→0

E f
ε (ϕ) < ∞.
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It can be shown that if f has finite energy, the measures eε(x)dx converge weakly to a
measure which is absolutely continuous with respect to the Lebesgue measure. Therefore,
there exists a function e(x), which we call the energy density, so that eε(x)dx ⇀ e(x)dx .
In analogy to the case of smooth targets, we write |∇ f |2(x) in place of e(x). In particular,
E f = ∫

X
|∇ f |2dx .

Let � = F int for some 2-simplex F of X . For V ∈ �� where �� is the set of Lips-
chitz vector fields on �, | f∗(V )|2 is similarly defined. The real valued L1 function | f∗(V )|2
generalizes the norm squared on the directional derivative of f . The generalization of the
pull-back metric is

π f (V,W ) = ��× �� → L1(�,R)

where

π f (V,W ) = 1

2
| f∗(V + W )|2 − 1

2
| f∗(V − W )|2.

We refer to [9] for more details.
Let X be a 2-dimensional admissible Euclidean complex and Y an NPC space. An iso-

metric action of a group � = π1(X) on Y is a homomorphism ρ : � → Isom(Y ). A map
ϕ̃ : X̃ → Y is said to be equivariant if

ρ(γ )ϕ̃(p) = ϕ̃(γ p)

for γ ∈ � and p ∈ X . By identifying X with a fundamental domain of X̃ , we can think of ϕ̃
also being defined on X . We say ϕ̃ : X̃ → Y has finite energy if

E ϕ̃ =
∫

X

|∇ϕ̃|2dx < ∞.

In order to include certain important examples appearing in p-adic geometry (e.g. p−adic
buildings), we will assume that for each 2-simplex F in X , we have an associated weight w;
more precisely w assigns a positive number w(F) to each 2-simplex F of X . We define the
w-measure dµw by setting

dµw = w(F)dx

where dx is the volume form on F defined by metric gF . We define the w-energy Ew(ϕ̃) of
a finite energy map ϕ̃ : X̃ → Y as

Ew(ϕ̃) =
∑

F

w(F)
∫

F

|∇ϕ̃|2dx =
∑

F

∫

F

|∇ϕ̃|2dµw

where
∑

F indicates the sum over all n-dimensional simplices F of X . For the sake of nota-
tional simplicity, we will fix weights w(F) on F and we will denote dµ = dµw , E = Ew ,
etc. A map f̃ : X̃ → Y is said to be w-harmonic if E( f̃ ) ≤ E(ϕ̃) for all equivariant finite
energy maps ϕ̃ : X̃ → Y . If w(F) = 1 for all F , then we recover the usual notion of
harmonicity defined in [4].

2.4 Blow up maps and tangent maps

Let X be a Euclidean admissible 2-complex X , Y an NPC space and f : X → Y aw-harmonic
map. Fix p ∈ X . We set St (p) = star(p) if p ∈ X (0), St (p) = star(E) if p ∈ E − X (0)
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and St (p) = F if p ∈ F − X (1). For any σ > 0 sufficiently small so that Bσ (p) ⊂ St (p),
let

E(σ ) =
∫

Bσ (p)

|∇ f |2dµ

I (σ ) =
∫

∂Bσ (p)

d2( f, f (p))ds

and

µ(σ) =
√

σ

I (σ )
.

Let B1 be a dilation of Bσ (p) by factor of 1
σ

and dσ : Y × Y → R be the distance function
on Y defined by dσ (·, ·) = µ(σ)d(·, ·). The w-measure dµw is inherited on B1 from Bσ (p)
without any dilation. We define the σ -blow up map of f at p as the map

fσ : B1 → (Y, dσ )

defined by

fσ (z) = f
( z

σ

)
.

The following results for w-harmonic maps from a 2-complex into a non-positively met-
ric space follow by minor modification of the arguments presented in [4]. (In [4], we only
considered 2-simplices isometric to the standard equilateral triangle and a weight function
w so that w(F) = 1 for all 2-simplices F of X .)

Theorem 1 Let f : X → (Y, d) be a w-harmonic map from an Euclidean admissible
2-complex into an NPC space (Y, d). For each p ∈ X, the function.

σ �→ σ E(σ )

I (σ )

is monotone non-decreasing forσ < σ0 whereσ0 is sufficiently small so that Bσ0(p) ⊂ St (p).
We call

ord(p) = lim
σ→0

σ E(σ )

I (σ )

the order of f at p. Let α = ord(p). Then the functions

σ �→ I (σ )

σ 1+2α

and

σ �→ E(σ )

σ 2α

are monotone non-decreasing for σ < σ0.

Theorem 2 Let f : X → (Y, d) be a w-harmonic map from an Euclidean admissible
2-complex into an NPC space (Y, d). Fix p ∈ X and let α = ord(p). There exists a sequence
σi → 0 so that the σi -blow up maps fσi : B1 → (Y, dσi ) of f at p converge in the sense of
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Korevaar–Schoen (cf. [10]) to map f∗ : B1 → (Y∗, d∗) into an NPC space. The map f∗ is
Lipschitz continuous except possibly at the vertex and is homogeneous of order α, i.e.

d∗( f∗(z), f∗(0)) = |z|αd∗
(

f∗
(

z

|z|
)

, f∗(0)
)

for every z ∈ B1. We call f∗ a tangent map of f at p.

We remark that one of the consequences of the convergence in the sense of
Korevaar–Schoen is that the directional energy converges in L1. In particular, if we con-
sider ∂Bλ as a graph, let τ be the arclength parameter on each edge, and consider fσi and f∗
as maps defined on ∂Bλ by the restriction, then

∫

∂Bλ

∣
∣
∣
∣
∂ fσi

∂τ

∣
∣
∣
∣

2

ds →
∫

∂Bλ

∣
∣
∣
∣
∂ f∗
∂τ

∣
∣
∣
∣

2

ds for a.e. λ ∈ [0, 1]. (1)

Here ds is the measure induced on ∂Bλ from the measure dµw on B1.

2.5 Existence and regularity results

We also have the following existence and regularity ofw-harmonic maps which again follow
from a simple modifications of [4].

Theorem 3 Let X be an admissible Euclidean 2-complex with � = π1(X), Y an NPC space
and ρ : � → Isom(Y ) be an isometric action of �. Assume that ρ does not fix an equivalent
class of rays. If the curvature of Y is strictly negative or Y is locally compact, then there
exists a ρ-equivariant w-harmonic map f̃ : X̃ → Y .

Theorem 4 Let X be an admissible Euclidean 2-complex, Y an NPC space and f : X → Y
a w-harmonic map. Then f is Lipschitz continuous away from the 0-simplices of X with the
Lipschitz bound dependent only on the totalw-energy of f and the distance to the 0-simplices.
Let p be a 0-simplex and α be the order of f at p. Then there exists σ > 0 so that

|∇ f |2(q) ≤ Cr2α−2

for all q ∈ Bσ (p) where C depends on E( f ) and r = dX (p, q).

3 The harmonicity of the energy density

Let X an admissible Euclidean 2-complex, Y an NPC space and f : X → Y be aw-harmonic
map. In this section, we show that under the assumption ord(p) ≥ 1 for every p ∈ X (0), we
can prove that the energy density function is harmonic.

Fix a 1-simplex E of X , let p ∈ E and σ0 > 0 sufficiently small so that Bσ0(p) ⊂ star(E)
if p ∈ E − X (0) or Bσ0(p) ⊂ star(p) if p is a 0-simplex. Suppose F is a 2-simplex incident
to E . Recall that there exists a simplicial isometry φF : (F, gF ) → T where T ⊂ R2 is an
Euclidean triangle. Let ψ be the linear isometry of R2 which takes T = φF (F) into y ≥ 0,
φF (E) into the line y = 0 and φF (p) to the origin (0, 0). We refer to the coordinate (x, y) of

F as the compositionψ ◦φF . We will write
∣
∣
∣
∂ fF
∂x

∣
∣
∣
2
,
∣
∣
∣
∂ fF
∂y

∣
∣
∣
2

and ∂ fF
∂x · ∂ fF

∂y to denote
∣
∣ f∗( ∂∂x )

∣
∣2

,
∣
∣
∣ f∗( ∂∂y )

∣
∣
∣
2

and π f

(
∂
∂x ,

∂
∂y

)
respectively on F . These are L1-functions on F .
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Lemma 5 Let p ∈ E − X (0), σ0 > 0 sufficiently small so that Bσ0(p) ⊂ star(E) and
D ⊂ R2 be a disk of radius σ0 centered at the origin. Define |∂x fE |2, |∂y fE |2 : D → R by
setting

|∂x fE |2(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

F∈F(E)

∣
∣
∣
∣
∂ fF

∂x

∣
∣
∣
∣

2

(x, y) y ≥ 0

∑

F∈F(E)

∣
∣
∣
∣
∂ fF

∂x

∣
∣
∣
∣

2

(x,−y) y < 0

|∂y fE |2(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

F∈F(E)

∣
∣
∣
∣
∂ fF

∂y

∣
∣
∣
∣

2

(x, y) y ≥ 0

∑

F∈F(E)

∣
∣
∣
∣
∂ fF

∂y

∣
∣
∣
∣

2

(x,−y) y < 0

respectively, where F(E) is the set of 2-simplices incident to E. The functions |∂x fE |2 and
|∂y fE |2 are weakly subharmonic in D, i.e.

∫

D

�η|∂x FE |2 ≥ 0 and
∫

D

�η|∂y FE |2 ≥ 0

for every η ∈ C∞
c (D).

Proof Fix ε > 0 and let f0(x, y) = f (x, y) and f1(x, y) = f (x + ε, y) on each face
F ∈ F(E). For non-negative smooth function η with compact support in D, let fη =
(1 − η) f0 + η f1. We can follow the proof of Lemma 2.4.2 and Remark 2.4.3 of [9] (also see
[4], Proposition 3.8) to see that

∫

D

�ηd2( f (x, y), f (x + ε, y)) ≥ 0.

Divide by ε2 and use the fact that f is Lipschitz as well as the Dominated Convergence
Theorem as we let ε → 0 to see that |∂x fE |2 is weakly subharmonic.

The function

φF =
∣
∣
∣
∣
∂ fF

∂x

∣
∣
∣
∣

2

−
∣
∣
∣
∣
∂ fF

∂y

∣
∣
∣
∣

2

− 2i
∂ fF

∂x
· ∂ fF

∂x
(2)

is holomorphic in F and Im
∑

F∈F(E) φF (x, 0) = 0 ([4], Theorem 3.9). Therefore, the func-
tion φE : D → C defined by

φE (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

F∈F(E)
φF (x, y) y ≥ 0

∑

F∈F(E)
φF (x,−y) y < 0

is holomorphic by the reflection principle. This implies that |∂x fE |2 − |∂y fE |2 is harmonic.
Since |∂x fE |2 is weakly subharmonic, |∂y fE |2 is also weakly subharmonic. ��
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Lemma 6 Let p ∈ E − X (0) and D as before. The function eE : D → R defined by setting

eE (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

F∈F(E)
|∇ fF |2(x, y) y ≥ 0

∑

F∈F(E)
|∇ fF |2(x,−y) y < 0

is weakly subharmonic

Proof Since eE = |∂x fE |2 + |∂y fE |2, the assertion follows from Lemma 5. ��
Lemma 7 Let p ∈ E. For any F ∈ F(E), let (r, θ) be polar coordinates for F centered at
p ∈ E so that E − {p} is given by the line θ = 0 and the line θ = π . Let r1, r2, θ1, θ2 be so
that RF = {(r, θ) : 0 < r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2} ⊂ E ∪ (F − ∂F) for all F ∈ F(E).
Then

(r, θ) �→
∑

F∈F(E)
|∇ fF |2(r, θ)

for 0 < r1 ≤ r ≤ r2 and θ1 ≤ θ ≤ θ2 is a W 1,2 function.

Proof If RF is contained in F − ∂F , then the assertion is obvious since the weak subharmo-
nicity and boundedness of |∇ fF |2 implies |∇ fF |2 is W 1,2

loc . If p ∈ E − X (0), then this is also
obvious by Lemma 6. Now we assume p is a 0-simplex. We need to consider the case when
θ1 = 0. Let r0 ∈ (r1, r2) and p′ ∈ E be so that d(p, p′) = r0. Let D be defined as before
with p replaced by p′. Then the subharmonicity of eE in Lemma 6 implies

(r, θ) �→
∑

F∈F(E)
|∇ fF |2(r, θ)

is W 1,2
loc in D ∩ {(r, θ) : 0 < r1 ≤ r ≤ r2, 0 ≤ θ ≤ θ2}. Thus, assertion follows immediately.

��
Corollary 8 For p ∈ X (1), let σ0 > 0 be so that Bσ0(p) ⊂ star(E) if p ∈ X (1) − X (0) and
Bσ0(p) ⊂ star(p) if p is a 0-simplex. Then

r �→
∫

∂Br (p)

|∇ f |2ds

for 0 < r < σ0 is a W 1,2
loc function.

Proof Let (r, θ) be the polar coordinates in Lemma 7. If p ∈ X (1)− X (0) then the conclusion
follows immediately from Lemma 7 and the fact that

∫

∂Br (p)

|∇ fF |2ds =
∑

F∈F(E)

π∫

0

|∇ fF |2(r, θ)rdθ.

If p is a 0-simplex, then for every 1-simplex E with p ∈ E , there exists θ2 > 0 sufficiently
small so that

(t, θ) �→
∑

F∈F(E)
|∇ fF |2(t, θ)

123



Geom Dedicata (2009) 141:33–57 43

is W 1,2
loc for 0 < t < σ0 and 0 ≤ θ ≤ θ2 by Lemma 7. For any r ∈ (0, σ0), let q ∈ E so that

d(p, q) = r . There exists ε > 0 small so that

Bε(q) ⊂ ∪{(t, θ) ∈ F : t ∈ (r − ε, r + ε), θ ∈ (0, θ2)}.
Thus,

t �→
∫

∂Bt (p)∩Bε (q)

|∇ f |2ds =
∑

F∈F(E)

θ2(t)∫

0

|∇ fF |2(t, θ)tdθ

is W 1,2 where θ2(t) = sup{θ : (t, θ) ∈ Bε(q)}. This together with the fact that |∇ fF |2 is
W 1,2 in the interior of a 2-simplex F implies the assertion. ��

Corollary 8 implies that

r �→
∫

∂Br (p)

|∇ f |2ds

is absolutely continuous and hence differentiable a.e. for σ ∈ [0, σ0].
Lemma 9 Let f : X → Y be a harmonic map, p ∈ X (0) and ord(p) ≥ 1. For every σ0 so
that Bσ0(p) ⊂ star(p), there exists a set A ⊂ [0, σ0] of positive measure so that

d

dσ

⎛

⎜
⎝

1

σ

∫

∂Bσ (p)

|∇ f |2ds

⎞

⎟
⎠ ≥ 0 for σ ∈ A.

Proof Let

G(σ ) = 1

σ

∫

∂Bσ (p)

|∇ f |2ds

and suppose there exists σ0 > 0 so that G ′(σ ) < 0 for almost all 0 < σ < σ0. Then G(σ ) is
non-increasing for 0 < σ < σ0. Let c1 = lim

σ→0
G(σ ). Now let

F(σ ) = 2

σ 2

∫

Bσ (p)

|∇ f |2dµ.

The assumption that ord(p) ≥ 1 and Theorem 1 implies that F(σ ) is non-decreasing for all
0 < σ < σ0. Let c2 = limσ→0 F(σ ). We claim G(σ ) ≥ F(σ ). Indeed,

0 ≤
⎛

⎜
⎝

2

σ 2

∫

Bσ (p)

|∇ f |2dµ

⎞

⎟
⎠

′

= 2

σ 2

∫

∂Bσ (p)

|∇ f |2dµ− 4

σ 3

∫

Bσ (p)

|∇ f |2dµ

= 2

σ
(G(σ )− F(σ )).
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Since G(σ ) is non-increasing, F(σ ) is non-decreasing and G(σ ) ≥ F(σ ), we conclude
c1 > c2 and there exists σ1 so that G(σ ) > c1+c2

2 > F(σ ) for 0 < σ ≤ σ1. Therefore,

c1 + c2

2

σ 2
1

2
>

∫

Bσ1 (p)

|∇ f |2dµ

=
σ1∫

0

⎛

⎜
⎝

∫

∂Bσ (p)

|∇ f |2ds

⎞

⎟
⎠ dσ

>

σ1∫

0

c1 + c2

2
σdσ = c1 + c2

2

σ 2
1

2
,

a contradiction. ��
Lemma 10 Let f : X → Y be a harmonic map, p ∈ X (0) and ord(p) > 1. Either f is
constant on star(p) or there exists a set A′ ⊂ [0, σ0] of positive measure so that

d

dσ

⎛

⎜
⎝

1

σ

∫

∂Bσ (p)

|∇ f |2ds

⎞

⎟
⎠ ds > 0 forσ ∈ A′,

where σ0 is sufficiently small so that Bσ0(p) ⊂ star(p).

Proof If α := ord(p) > 1, then Theorem 1 implies that limσ→0 F(σ ) = 0. Thus, for any
ε > 0, there exists σ1 > 0 so that F(σ1) < ε. Thus, there exists σ2 ∈ (σ1/2, σ1) so that

1

σ2

∫

∂Bσ2 (p)

|∇ f |2ds ≤ 2

σ1

∫

∂Bσ2 (p)

|∇ f |2ds

≤
(

2

σ1

)2
σ1∫

σ1/2

⎛

⎜
⎝

∫

∂Bσ (p)

|∇ f |2ds

⎞

⎟
⎠ dσ

< 2ε,

which implies limσ→0 G(σ ) = 0. Thus, unless G(σ ) is identically equal to 0, G ′(σ ) > 0 for
σ ∈ A′ where A′ ⊂ (0, σ ) is of positive measure. But if G(σ ) is identically zero then F(σ )
is identically equal to 0 which implies |∇ f |2(p) = 0 p ∈ Bσ0(p) and hence f is constant in
Bσ0(p). By following the proof of [7] Proposition 3.4, it is not hard to show f is constant in
star(p). ��
Lemma 11 Let p ∈ E − X (0). For σ0 > 0 so that Bσ0(p) ⊂ star(E),

d

dσ

⎛

⎜
⎝

1

σ

∫

∂Bσ (p)

|∇ f |2ds

⎞

⎟
⎠ ≥ 0 for 0 < σ < σ0.

Proof For 0 < σ < σ0,
∫

∂Bσ (p)

|∇ f |2ds =
∫

∂Dσ (x,0)

eE ds
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where (x, 0) is the coordinates for p and Dσ (x, 0) is a disk of radius σ centered at (x, 0).
The conclusion follows immediately from the subharmonicity of eE . ��

Theorem 12 If f : X → Y is a w-harmonic map so that ord(p) ≥ 1 for all p ∈ X (0), then
|∇ f |2 is a harmonic function on each 2-simplex F of X. If ord(p) > 1 for all p ∈ X (0), then
f is a constant map.

Proof Let p ∈ X (0). Since ∂X = ∅, there exists σ0 > 0 so that Bσ0(p) ⊂ star(p). By
Lemma 9, we can choose δ p

k → 0 so that

d

dσ

⎛

⎜
⎝

1

σ

∫

∂Bσ (p)

|∇ f |2ds

⎞

⎟
⎠ |σ=δ p

k
≥ 0. (3)

Fix k and let ε > 0. Choose points {p1, . . . , pn} ⊂ X (1) − ∪p∈V(X)Bδ p
k
(p) and positive real

numbers {r1, . . . , rn} so that (1) ri < ε, (2) Bri (pi ) ∩ Br j (p j ) = ∅ for i, j = 1, . . . , n and
i 	= j , (3) Bδ p

k
(p) ∩ Bri (pi ) = ∅ for all p ∈ X (0) and i = 1, . . . , n and (4) X (1) is covered

by

⎛

⎝
⋃

p∈X (0)

Bδ p
k
(p)

⎞

⎠ ∪
(

n⋃

i=1

Bri (pi )

)

.

Let X ′ = X −
(⋃

p∈X (0) Bδ p
k
(p)

)
∪

(⋃n
i=1 Bri (pi )

)
. For each F ∈ F(X), we have

−
∫

F

∇|∇ f |2 · ∇ζ ≥ 0

for any ζ ∈ C∞
c (F). Let ζ approximate the characteristic function of F ′ = F ∩ X ′. Then

0 ≥ −
∫

∂F ′

∂

∂η
|∇ f |2ds

=
∑

p∈X (0)∩F

∫

∂B
δ

p
k
(p)∩F

∂

∂r
|∇ f |2ds +

∑

pi ∈F

∫

∂Bri (pi )∩F

∂

∂r
|∇ f |2ds

=
∑

p∈X (0)∩F

δ
p
k

d

dσ

⎛

⎜
⎜
⎝

1

σ

∫

∂B
δ

p
k
(p)

|∇ f |2ds

⎞

⎟
⎟
⎠ |σ=δ p

k

+
∑

pi ∈F

ri
d

dσ

⎛

⎜
⎝

1

σ

∫

∂Bσ (pi )

|∇ f |2ds

⎞

⎟
⎠ |σ=ri (4)
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where η is the outward pointing normal to ∂F ′ defined everywhere except at finite number
of points. On the other hand,

−
∑

F∈F(X)

∫

∂F ′

∂

∂η
|∇ f |2ds =

∑

p∈X (0)

δ
p
k

d

dσ

⎛

⎜
⎜
⎝

1

σ

∫

∂B
δ

p
k
(p)

|∇ f |2ds

⎞

⎟
⎟
⎠ |σ=δ p

k

+
n∑

i=1

ri
d

dσ

⎛

⎜
⎝

1

σ

∫

∂Bσ (pi )

|∇ f |2ds

⎞

⎟
⎠ |σ=ri

≥ 0, (5)

where the last inequality is implied by Lemma 11 and (3). Thus,
∫

∂F ′

∂

∂η
|∇ f |2ds = 0.

The arbitrariness of ε along with the fact that δ p
i →0 proves the harmonicity of |∇ f |2

oneach F .
If ord(p) > 1 for all p ∈ X (0), then either f is a constant map or δ p

k can be chosen so that
(3) is given with a strict inequality for some p ∈ X (0) by Lemma 10. The strict inequality in
(3) leads to a strict inequality in (5) which contradicts (4). Thus, f is a constant map. ��
Theorem 13 If f : X → Y is a harmonic map with ord(p) ≥ 1 for all p ∈ X (0), then f
is totally geodesic on each 2-simplex F of X, i.e. f maps every Euclidean line in F to a
geodesic in Y . If the curvature of Y is strictly negative, then f maps each 2-simplex F into
a geodesic. If ord(p) > 1 for all p ∈ X (0), then f is constant.

Proof By Theorem 12, |∇ f |2 =
∣
∣
∣
∂ f
∂x

∣
∣
∣
2 +

∣
∣
∣
∂ f
∂y

∣
∣
∣
2

is a harmonic function on each 2-simplex

F of X . Since φF defined by (2) is holomorphic, ReφF =
∣
∣
∣
∂ f
∂x

∣
∣
∣
2 −

∣
∣
∣
∂ f
∂y

∣
∣
∣
2

is also a harmonic

function. Thus,
∣
∣
∣
∂ f
∂x

∣
∣
∣
2

and
∣
∣
∣
∂ f
∂y

∣
∣
∣
2

are harmonic functions and hence smooth. Additionally,
1
2 ImφF = ∂ f

∂x · ∂ f
∂y is harmonic and smooth. Let

(πi j ) =
(

| ∂ f
∂x |2 ∂ f

∂x · ∂ f
∂y

∂ f
∂x · ∂ f

∂y | ∂ f
∂y |2

)

and� be any open subset of F where π is non-degenerate. We will show that f |� is a totally
geodesic map. First, we note that (�, π) is a smooth Riemannian manifold of non-positive
curvature (see appendix). Let dπ be the distance function induced by the metric π . The
identity map f0 : � → (�, π) is a (smooth) harmonic map. Indeed, if h0 : � → (F, π)
is so that E(h0) < E( f0) and h0|∂� = f0|∂�, then E( f ◦ h0) < E( f ◦ f0) = E( f ), a
contradiction. Furthermore, �|∇ f0|2 = �|∇ f |2 = 0, so the Eells-Sampson Bochner’s for-
mula implies that |∇d f0|2 = 0 and f0 is a totally geodesic map. Thus, if t �→ γ (t) is a unit
speed parameterization of a Euclidean line in �, then γ (t) is a geodesic with respect to the
metric π . Hence, the Christoffel symbols of π are identically constant which implies that π
is constant. In particular, this means that π is flat, t �→ π(γ ′(t), γ ′(t)) is constant, and given
two constant speed parameterization γ1(t) and γ2(t) of a Euclidean line emanating from the
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same point, t �→ dπ (γ1(t), γ2(t)) is a linear function. For any z0 ∈ �, let (r, θ) be the polar
coordinates centered at z0. For any 0 < r < R with R sufficiently small, we therefore have

∣
∣
∣
∣
∂ f

∂r

∣
∣
∣
∣

2

(r, θ) = 1

R2 (dπ ((R, θ), z0))
2

and
∣
∣
∣
∣
∂ f

∂θ

∣
∣
∣
∣

2

(r, θ) = r2

R2

∣
∣
∣
∣
∂ f

∂θ

∣
∣
∣
∣

2

(R, θ).

Define h : DR(z0) → Y by setting

h(r, θ) =
(

1 − r

R

)
f (z0)+ r

R
f (R, θ).

Note that h maps radial lines to geodesic lines. The NPC condition implies that

d(h(r, θ1), h(r, θ2)) ≤ r

R
d( f (R, θ1), f (R, θ2)).

Thus,

∣
∣
∣
∣
∂h

∂θ

∣
∣
∣
∣

2

(r, θ) ≤ r2

R2

∣
∣
∣
∣
∂ f

∂θ

∣
∣
∣
∣

2

(R, θ) =
∣
∣
∣
∣
∂ f

∂θ

∣
∣
∣
∣

2

(r, θ).

Furthermore, the fact that the distance function induced by the pull back metric always bounds
the pull back of the distance function implies

∣
∣
∣
∣
∂h

∂r

∣
∣
∣
∣

2

(r, θ) = 1

R2 d2( f (R, θ), f (0)) ≤ 1

R2 (d
π ((R, θ), z0))

2 =
∣
∣
∣
∣
∂ f

∂r

∣
∣
∣
∣

2

(r, θ)

This implies Eh ≤ E f , but since f is energy minimizing h = f . Therefore, f maps radial
lines emanating from z0 to geodesics. Since z0 is an arbitrary point in �, this proves f |� is
totally geodesic in �.

Since πi j is smooth, the set of points in F where π is non-degenerate is an open set. On the
other hand, the above argument shows that π is constant on this set, so this set is also closed.
Thus, either π is non-degenerate on all of F or degenerate on all of F . In the former case, we
are done by the argument in the previous paragraph. If Y has strictly negative curvature, this
case is impossible. In the latter case, we choose local coordinates so that the Hopf differential
is equal to dz2, i.e.

∣
∣
∣
∣
∂ fF

∂x

∣
∣
∣
∣

2

−
∣
∣
∣
∣
∂ fF

∂y

∣
∣
∣
∣

2

− 2i
∂ fF

∂x
· ∂ fF

∂y
= 1.

If π not equal to the zero matrix in a neighborhood, then it follows that

∣
∣
∣
∣
∂ fF

∂x

∣
∣
∣
∣

2

= 1 and

∣
∣
∣
∣
∂ fF

∂y

∣
∣
∣
∣

2

= 0.

This immediately implies that f maps this neighborhood to a Lipschitz curve. By the same
argument as in the non-degenerate case, this line must be a geodesic. The last statement of
the theorem follows from Theorem 12. ��
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4 The first eigenvalue and order

We now wish to establish assumptions on X for which the order of the w-harmonic map at a
0-simplex in X is ≥ 1. In this section, we define the first eigenvalue of a link of a 0-simplex
of X with values in an NPC space and give a lower bound of the order in terms of the lower
bound on the first eigenvalues.

Let G be a metric graph. We denote the edges of G by e1, . . . , eL and assume that each
edge el has an associated weight ŵl = ŵ(el). In the case G = Lk(p) where p ∈ X (0), X
is an Euclidean admissible 2-complex with weight w, there is a one-to-one correspondence
between the edges and the 2-simplices F1, . . . , FL incident to p; namely, Fl is the join (i.e.
convex hull) of v and el . Moreover, the length of the edge el is equal to the angle at vertex p
in Fl . We define

ŵ(el) = w(Fl).

Returning to the case of a general metric graph G with weights ŵl , l = 1, . . . , L , we define
a measure ŵl dτ on each edge el where τ is the arclength parameter of the edge. Let ds be
the measure on G so that ds|el = ŵldτ .

Let T be an NPC space. A center of mass of a map ϕ ∈ L2(G, T ) is a point ϕ̄ ∈ T so that
∫

G

d2
T (ϕ, ϕ̄)ds = inf

P∈T

∫

G

d2
T (ϕ, P)ds.

The unique existence of such a point is guaranteed by the NPC condition (cf. [9] Proposition
2.5.4). Now let G(T ) be the set of Lipschitz functions ϕ : G → T into an NPC space T and
define the first eigenvalue of G with values in T as

λ1(G, T ) = inf
G(T )

∫

G

∣
∣
∣

dϕ
dτ

∣
∣
∣
2

ds

∫

G
d2(ϕ, ϕ̄)ds

. (6)

In the application, the NPC space T will be a tangent cone of an NPC space Y . We will need
the following lemma.

Lemma 14 Suppose f : X → Y is a continuous map and Q ∈ Y so that
∫

∂Bσ (p)

d2( f, Q)ds = inf
P∈Y

∫

∂Bσ (p)

d2( f, P)ds.

If π : Y → TQY is the projection map into the tangent cone of Y at Q, then
∫

∂Bσ (p)

d2
TQ Y (π ◦ f, 0)ds = inf

V ∈TQ Y

∫

∂Bσ (p)

d2
TQ Y (π ◦ f, V )ds,

where 0 is the origin of TQY .

Proof Let t �→ c(t) be a geodesic so that c(0) = Q. By the minimizing property of c(0) = Q,
we have

0 ≤
∫

∂Bσ (p)

d2( f, c(t))ds −
∫

∂Bσ (p)

d2( f, c(0))ds.
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Furthermore, by Bridson-Haeflinger, Corollary II 3.6, we have

lim
t→0

d( f, c(t))− d( f, c(0))

t
= − cos 	 (c, γy)

where γy is the geodesic from c(0) to f (y) and 	 (γy, c) is the angle between γy and c at
c(0) = Q. Therefore,

0 ≤ lim
t→0

∫

∂Bσ (p)

d2( f, c(t))− d2( f, c(0))

t
dt

= lim
t→0

∫

∂Bσ (p)

d( f, c(t))− d( f, c(0))

t
(d( f, c(t))+ d( f, c(0)))ds

= −2
∫

y∈∂Bσ (p)

cos 	 (γy, c)d( f (y), c(0))ds.

Let [c] be the equivalence class of c and V = ([c], 1) ∈ TQY . Since π ◦ γy is the (radial)
geodesic from the origin 0 and π ◦ f (y) in TQY ,

cos 	 (γy, c)d( f (y), f (0)) =< π ◦ f (y), V >,

and thus

0 ≤ −
∫

y∈∂Bσ (p)

< π ◦ f (y), V > ds. (7)

By the continuity of the inner product, (7) holds for all V = (V0, t) ∈ TQY where V0 =
V/|V |. Therefore, for t ≥ 0,

∫

∂Bσ (p)

d2
TQ Y (π ◦ f (y), (V0, t))ds =

∫

∂Bσ (p)

t2 + |π ◦ f (y)|2 − 2t < π ◦ f (y), V0 > ds

≥
∫

∂Bσ (p)

|π ◦ f (y)|2ds

=
∫

∂Bσ (p)

d2
TQ Y (π ◦ f (y), 0)ds.

��
For p ∈ X (0) and σ > 0 sufficiently small so that Bσ (p) ⊂ star(p), define

σ : B1(p) → Bσ (p), σ (x) = σ x

to be the dilation by σ as was done in defining the domain of the blow up maps fσ (cf
section 2.4). Since the edge el of Lk(p) are isometrically identified with the interval [0, θ ]
where θ is the angle of p in Fl , ∂B1 is isometrically identified with Lk(p). Thus, Lemma 14
immediately implies

Corollary 15 Suppose f : X → Y is a Lipschitz map and Q ∈ Y so that
∫

∂Bσ (p)

d2( f, Q)ds = inf
P∈Y

∫

∂Bσ (p)

d2( f, P)ds.
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If π : Y → TQY is the projection map into the tangent cone of Y at Q, then

∫

Lk(v)

∣
∣
∣
∂(π◦ f ◦σ)

∂τ
(x)

∣
∣
∣
2

ds

∫

Lk(v)
|π ◦ f ◦ σ(x)|2ds

≥ λ1(Lk(v), TQY ).

Proof By Lemma 14, the center of mass of the map π ◦ f ◦σ is 0. Thus, the assertion follows
immediately from the definition of λ1(Lk(v), TQY ). ��

A consequence of Corollary 15 is the following theorem which associates the first eigen-
value with the order of a w-harmonic map.

Theorem 16 Let f : X → Y be a w-harmonic map. If λ1(Lk(p), TQY ) ≥ β (> β) for
p ∈ X (0) and all Q ∈ Y , then α :=ord(p) ≥ √

β (>
√
β).

Proof Let σi → 0 so that fσi → f∗ : B1 → Y∗. From (1), we can fix λ so that

∫

∂Bλ

∣
∣
∣
∣
∂ fσi

∂τ

∣
∣
∣
∣

2

ds →
∫

∂Bλ

∣
∣
∣
∣
∂ f∗
∂τ

∣
∣
∣
∣

2

ds.

By [7, pp. 200–201], we have

0 	= α = lim
σ→0

σλE(σλ)
∫

∂Bσλ(p)
d2( f, Qσλ)ds

= lim
σ→0

σλE(σλ)
∫

∂Bσλ(p)
d2( f, f (0))ds

,

which then implies

lim
σ→0

∫

∂Bσλ(p)
d2( f, Qσλ)ds

∫

∂Bσλ(p)
d2( f, f (0))ds

= 1. (8)

Let Qi ∈ Y be the point so that
∫

∂Bσi λ(p)

d2( f, Qi )ds = inf
Q∈Y

∫

∂Bσi λ(p)

d2( f, Q)ds

and πi : Y → TQi Y be a projection map into the tangent cone of Y at Qi . By the previous
lemma,

∫

∂Bσi λ(p)

d2(πi ◦ f, 0)ds = inf
V ∈TQi Y

∫

∂Bλσi (p)

d2(πi ◦ f, V )ds. (9)

Additionally,

d2( f, Qi ) = |πi ◦ f |2 and

∣
∣
∣
∣
∂ f

∂τ

∣
∣
∣
∣ ≥

∣
∣
∣
∣
∂(πi ◦ f )

∂τ

∣
∣
∣
∣ (10)
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since πi is distance non-increasing. Thus, by (8) and (10),

lim
σi →0

λ2
∫

∂Bλ

∣
∣
∣
∂ fσi
∂τ

∣
∣
∣
2

ds

∫

∂Bλ

d2
σi
( fσi , fσi (0))ds

= lim
σi →0

(σiλ)
2

∫

∂Bσi λ

∣
∣
∣
∂ f
∂τ

∣
∣
∣
2

ds

∫

∂Bσi λ

d2( f, f (0))ds

= lim
σi →0

(σiλ)
2

∫

∂Bσi λ

∣
∣
∣
∂ f
∂τ

∣
∣
∣
2

ds

∫

∂Bσi λ

d2( f, Qi )ds

≥ lim
σi →0

(σiλ)
2

∫

∂Bσi λ

∣
∣
∣
∂(πi ◦ f )
∂τ

∣
∣
∣
2

ds

∫

∂Bσi λ

|πi ◦ f |2ds
.

By change of coordinates y = σiλx , (9) and Corollary 15,

(σiλ)
2

∫

y∈∂Bσi λ

∣
∣
∣
∂(πi ◦ f )
∂τ

(y)
∣
∣
∣
2

ds

∫

∂Bσi λ

|πi ◦ f (y)|2ds
=

∫

x∈∂B1

∣
∣
∣
∂(πi ◦ f ◦(σiλ))

∂τ
(x)

∣
∣
∣
2

ds

∫

x∈∂B1

|πi ◦ f ◦ (σiλ)(x)|2ds

y =

∫

x∈Lk(p)

∣
∣
∣
∂(πi ◦ f ◦(σiλ))

∂τ
(x)

∣
∣
∣
2

ds

∫

x∈Lk(p)
|πi ◦ f ◦ (σiλ)(x)|2ds

≥ λ1(Lk(v), TQi Y )

≥ β(> β).

Therefore,

R :=

∫

∂B1

y
∣
∣
∣
∂ f∗
∂τ

∣
∣
∣
2

ds

∫

∂B1

d2( f∗, f∗(0))ds

=
λ2

∫

∂Bλ

∣
∣
∣
∂ f∗
∂τ

∣
∣
∣
2

ds

∫

∂Bλ

d2( f∗, f∗(0))ds

= lim
σi →0

λ2
∫

∂Bλ

∣
∣
∣
∂ fσi
∂τ

∣
∣
∣
2

ds

∫

∂Bλ

d2
σi
( fσi , fσi (0))ds

≥ β(> β).

For y ∈ ∂B1, the homogeneity of f∗ implies

d( f∗(ry), f∗(0)) = rαd( f∗(y), f∗(0)),
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and hence

E f∗(1) =
∫

y∈∂B1

1∫

0

∣
∣
∣
∣
∂ f∗
∂r
(ry)

∣
∣
∣
∣

2

+ 1

r2

∣
∣
∣
∣
∂ f∗
∂τ
(ry)

∣
∣
∣
∣

2

rdrds

=
∫

y∈∂B1

1∫

0

α2r2α−1d2( f∗(y), f∗(0))+ r2α−1
∣
∣
∣
∣
∂ f∗
∂τ
(y)

∣
∣
∣
∣

2

drds

= α

2
y

∫

y∈∂B1

d2( f∗(y), f∗(0))+ 1

2α

∣
∣
∣
∣
∂ f∗
∂τ
(y)

∣
∣
∣
∣

2

drds.

Thus,

α = E f∗(1)

I f∗(1)
= α

2
+ 1

2α
R

and

α2 = R ≥ β(> β).

��

5 The fixed point and rigidity theorems

We can now record our main theorem.

Theorem 17 Let X be an admissible, Euclidean 2-complex with weight w and Y an NPC
space. Assume λ1(Lk(p), TQY ) ≥ 1 for all p ∈ X (0) and all Q ∈ Y . If f : X → Y
is a w-harmonic map, then f is totally geodesic on each 2-simplex F of X. If the curva-
ture of Y is strictly negative, f maps each 2-simplex into a geodesic of Y . Furthermore, if
λ1(Lk(p), TQY ) > 1 for all p ∈ X (0) and all Q ∈ Y , then f is constant.

Proof Follows immediately from Theorems 12–16. ��
An important example of NPC space is the Weil-Petersson completion T̄ of Teichmüller

space T marked genus g, n-punctured Riemann surfaces. Recently Wolpert showed that the
tangent cone of T̄ at a point in the boundary is isometric to the tangent cone of Rk≥0 × T ′,
where Rk≥0 is the half space in Rk and T ′ is a lower genus Teichmüller space (cf. [15]). We
can thus deduce the following theorem:

Theorem 18 Let X be a 2-dimensional admissible simplicial complex such thatλ1(Lk(p)) ≥
1 for all p ∈ X (0). Then any w-harmonic map to the Weil-Petersson completion of Teichmüller
space is totally geodesic on each simplex of X. Furthermore if λ1(Lk(p)) > 1 for all p ∈ X (0)

then f is constant.

Proof By the variational definition (6) and Sect. 4 of [5]

λ1(Lk(p), TQ T̄ ) = λ1(Lk(p),Rk≥0 × Rl)

≥ λ1(Lk(p),Rk+l)

= λ1(Lk(p),R).
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It follows that in this case the condition λ1(Lk(p), TQ T̄ ) ≥ 1 can be replaced by the
simpler condition λ1(Lk(p)) ≥ 1, which immediately yields the result. ��

As noted in the introduction, it follows from [5] that the condition λ1(Lk(p)) ≥ 1(> 1)
is equivalent to the combinatorial condition λcomb

1 (Lk(p)) ≥ 1/2(> 1/2) in the special case
when 2-simplices of X are isometric to equilateral triangles. Hence Theorem 18 immediately
implies the rigidity of representations of � = π1(X) into the mapping class group in the
case when the complex X satisfies the combinatorial condition λcomb

1 (Lk(p)) > 1/2 for all
p ∈ X (0) (cf. also [15]).

Appendix

Let R = [0, 1] × [0, 1] ⊂ R2 and f : R → Y be a Lipschitz energy minimizing map with
Lipschitz constant L so that the pull-back inner product π = (πi j ) is non-degenerate and
smooth in R. The purpose of the appendix is to show:

Theorem 19 The smooth Riemannian manifold (R, π) is a non-positively curved surface.

Remark Petrunin [11] claims a more general result. Namely, given any metric minimizing
map (which includes energy minimizing maps), he states that the pull back metric (see below)
defines a NPC space. Because many of the details are only sketched in his paper, we provide
a complete proof here for the specific case that we need (cf. Proof of Theorem 13) based on
the outline in his paper.

The rest of this section is devoted to its proof of Theorem 19. For any spaces �1 and �2,
a distance function d on �2 and a Lipschitz map g : �1 → (�2, d), we define two types of
pull backs of d . The pull back distance function ρg : �1 ×�1 → R+ is

ρg(z, w) = d(g(z), g(w))

and the pull back metric dg : �1 ×�1 → R+ is

dg(z, w) = inf
γ∈� length(g ◦ γ )

where � is the set of all Lipschitz curves γ : [0, 1] → R with γ (0) = z and γ (1) = w.
Generally, these are only pseudo-distance functions, but we will refer to them as distance
functions by an abuse terminology. Clearly, we have the inequality

ρg(z, w) ≤ dg(z, w), (11)

but, if g(�1) = �2 then

ρg(z, w) = dg(z, w). (12)

Let

R(n) =
{

zi j =
(

i

2n
,

j

2n

)

: i, j = 0, . . . , 2n
}

,

∂R(n) = R(n) ∩ ∂R and R′(n) = R(n) − ∂R(n). We let Ri j denote the box defined by

zi j , zi j+1, zi+1 j+1 and zi+1 j . Two points z, z′ ∈ R(n) are said to be adjacent if z =
(

i
2n ,

j
2n

)

and z′ =
(

i±1
2n ,

j
2n

)
or z′ =

(
i

2n ,
j±1
2n

)
. We will write this relationship by z ∗ z′.
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Since π is a smooth inner product, d f is equal to the distance function induced by π , i.e.

d f (z, w) = inf
γ∈�

1∫

0

√
π(γ ′(t), γ ′(t))dt.

The smoothness of π also implies that there exists κ so that the Gaussian curvature of R
is less that κ > 0. For n sufficiently large, there exists a convex quadrilateral Q̄i j in a
sphere of constant curvature κ with side lengths of Q̄i j equal to those of Ri j measured with
respect to d f . Construct a piecewise spherical space Sn by gluing together the edges of Q̄i j

in the obvious way and let d̄n be the natural distance function defined on Sn . Since d f is
smooth, there exists a Lipschitz homeomorphism αn : (R, d f ) → (Sn, d̄n) which takes Ri j

diffeomorphically to Q̄i j so that

dαn (z, w) ≤ d f (z, w)+ O(n)|z − w| (13)

for z, w ∈ R and where O(n) → 0 as n → ∞. Let {e1, e2} be the standard orthonormal
vectors in R and γ0(t) = z + tεei . Then

d f (z, z + εei ) ≤
1∫

0

√
π(γ ′

0(t), γ
′
0(t))dt ≤ ε sup

t∈[0,1]

√
πi i (γ0(t)).

By the smoothness of π , it follows that

lim
ε→0

d f (z, z + εei )
2

ε2 ≤ πi i (z). (14)

On the other hand, (11) implies

ραn (z, z + εei )
2

ε2 ≤ dα(z, z + εei )
2

ε2

and hence

|(αn)∗(ei )|2 ≤ lim
ε→0

dα(z, z + εei )
2

ε2 (15)

for a.e. z ∈ R by Lemma 1.9.4 of [9]. Combining (13)–(15), we obtain

Eαn ≤ E f + O(n).

Let Fn be a set of maps ψ : R(n) → Y so that

(i) ψ |∂R(n) = f |∂R(n)

and, for z, z′ ∈ R(n) with z ∗ z′,

(ii) d(ψ(z), ψ(z′)) ≤ d( f (z), f (z′)).

Define the step n discrete energy En : Fn → Y by setting

En(ψ) = 1

2

∑

z∈R′(n)

∑

z′∗z

d2(ψ(z), ψ(z′)).

Lemma 20 There exists ψn ∈ Fn so that En(ψn) = en := infψ En(ψ) where inf is taken
over all ψ ∈ Fn.
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Proof Since f |R(n) ∈ Fn , Fn is non-empty. Let ψ i ∈ Fn so that En(ψ
i ) → en . If ψ i j ∈ Fn

is defined so that ψ i j (z) is the midpoint on the geodesic between ψ i (z) and ψ j (z), then

d(ψ i j (z), ψ i j (w)) ≤ 1

2
d(ψ i (z), ψ i (w))+ 1

2
d(ψ j (z), ψ j (w))

−1

4
(d(ψ i (z), ψ j (z))− d(ψ i (w), ψ j (w)))2

and hence

en ≤ Eψ
i j

n ≤ 1

2
Eψ

i

n + 1

2
Eψ

j

n − 1

4

∑

z∈R′(n)
(d(ψ i (z), ψ j (z))− d(ψ i (z), ψ j (w)))2

Thus,

lim
i, j→∞

∑

z∈R′(x)
(d(ψ i (z), ψ j (z))− d(ψ i (z), ψ j (w)))2 = 0,

which says that {ψ i (z)} is a Cauchy sequence for each z ∈ R′(n) and hence ψ i (z) converge
to ψn(z) and En(ψn) = en by the continuity of the distance function. ��

Since Y is an NPC space, there exists a convex quadrilateral Qi j in the Euclidean plane
with side lengths of Ri j measured with respect to ρψn . We denote the vertices of Qi j cor-
responding to the vertices zi j , zi+1 j , zi+1 j+1, zi j+1 by qi j , qi+1 j , qi+1 j+1, qi j+1. Construct
a piecewise linear space Ln by gluing together the edges of Qi j in the obvious way and let
dn be the natural distance function defined on Ln . By condition (ii) and the fact that Sn is
piecewise spherical (of constant curvature κ) and Ln is piecewise Euclidean, there exists a
homeomorphism βn : Sn → (Ln, dn) which takes Q̄i j diffeomorphically to Qi j so that

dβn (p, q) ≤ d̄n(p, q)

for p, q ∈ Sn . Setting p = αn(z) and q = αn(w), this implies that

dβn◦αn (z, w) ≤ d f (z, w)+ O(n)|z − w|
for z, w ∈ R and

Eβn◦αn ≤ E f + O(n).

Connect the ordered points

ψn(qi j ), ψn(qi j+1), ψn(qi+1 j )andψn(qi+1 j+1)

by geodesics, except when the two consecutive points lie on the boundary of Ln in which
case we use the corresponding boundary value of f to connect them. The resulting quadri-
lateral in Y will be denoted by Qi j . (Note that this modification from geodesic lines to the
boundary value of f becomes irrelevant as n → ∞ in the sense the modified version or the
unmodified version become uniformly close as n → ∞.) From these geodesic quadrilaterals,
we construct a “ruled surface” (in the sense of Alexandrov [1]). This is constructed as fol-
lows. First, choose a pair of opposite edges in Qi j and give a constant speed parametrization
γ, σ : [0, 1] → Y of these edges so that γ (0) and σ(0) lie on one side of the quadrilateral.
Second, connect γ (t) and σ(t) by a geodesic for each t ∈ [0, 1]. We call this surface Qi j .
We define Rn as an abstract space made up of disjoint union of Qi j with the identification
along the adjacent boundaries. Note that Rn is similar to the piecewise linear space Ln but
with linear pieces replaced by ruled surfaces in Y .
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Lemma 21 The metric space Rn is NPC.

Proof By the result of Alexandrov, ruled surfaces in NPC spaces are NPC (cf. [1]). Thus,
R is a piecewise NPC surface. Therefore, we need only to check that the total angle at the
vertices, i.e p = ψn(z) for z ∈ R′(n)where four ruled surfaces meet, are ≥ 2π . Let geodesics
l1, l2, l3 and l4 be the interfaces of the four ruled surfaces meeting at p = ψn(z) for some
z ∈ R′(n). Denote the other endpoint of li by ψn(zi ) for zi ∗ z.

Since the distance measured along the surface is always greater or equal to the distance
measured in the ambient space, we need only check that the sum of the angle between li , li+1

(i = 1, 2, 3) and l4, l1 measured in terms of the distance function d on Y is ≥ 2π . So
suppose not. Let [Wi , ti ] be the endpoint of the geodesic π(li ) emanating from the origin
where π : Y → TpY is the projection map to the tangent cone at ψn(z) = p. Since π
is a non-expanding map, < Wi ,Wi+1 >≤ 	 (li , li+1). Since W1, . . . ,W4 are points in the
space of directions, SpY , which is a CAT(1) space, there exists a convex quadrilateral Q̄
in S2 with vertices W̄1, . . . , W̄4 preserving distances of W1, . . . ,W4 and a non-expanding
map r : Q̄ → SpY . Since Q̄ has length < 2π , we can assume Q̄ is compactly contained in
the upper hemisphere. Thus, if N is the north pole of S2, then < W̄i , N >< π

2 which then
implies < Wi , r(N ) ><

π
2 . Hence

d

dτ
d2

TP Y ([r(N ), τ ], [Wi , ti ]) = d

dτ
(τ 2 + t2

i − 2τ ti cos < Wi , r(N ) >)

= 2τ − 2ti cos < Wi , r(N ) >< 0

for small τ > 0 which then implies

τ �→
4∑

i=1

d2
TP Y ([r(N ), τ ], π ◦ ψn(zi ))

is a decreasing function for small τ > 0. On the other hand,ψn is a step n energy minimizing
map, which implies that 0 ∈ T f (z)Y is the center of mass ofπ ◦ψn(z1), π ◦ψn(z2), π ◦ψn(z3)

and π ◦ ψn(z4) (cf. [8]). This contradiction implies

	 (l1, l2)+ 	 (l2, l3)+ 	 (l3, l4)+ 	 (l4, l1) ≥ 2π (i mod 4)

which proves our assertion. ��
By a Theorem of Reshetnyak [12] (see also [9], Theorems 2.1.1 and 2.1.2), there exists

a non-expanding map γn : Ln → Rn with γn(qi j ) = ψn(zi j ), γn(qi j+1) = ψn(zi j+1), γn

(qi+1 j ) = ψn(zi+1 j ) and γn(qi+1 j+1) = ψn(zi+1 j+1). Thus,

dγn (r, s) ≤ dn(r, s)

for r, s ∈ Ln . We define

fn : R → Y, by fn = ιn ◦ γn ◦ βn ◦ αn,

where ιn : Rn → Y is a map which embeds each ruled surface Qi j into Y in the obvious
way. Set r = βn ◦ αn(z) and s = βn ◦ αn(w), we see that

d fn (z, w) ≤ d f (z, w)+ O(n)|z − w|.
and

E fn ≤ E f + O(n).
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Therefore, fn is a minimizing sequence converging uniformly in the pull back sense to f by
Theorem 3.11 of [10].

We set f̄n = γn ◦ βn ◦ αn , i.e. f̄n : R → Rn is fn viewed as a map with target Rn . Since
f̄n(R) = Rn , we have

d f̄n = ρ f̄n .

By construction, f̄n : R → Rn is a uniformly Lipschitz sequence of maps into NPC
spaces. Proposition 3.7 of [10] implies that there exists a subsequence (denoted again f̄n

by an abuse of notation) so that it converges locally uniformly in the pull back sense to a
map f̄∗ : R → R∗. In particular, this means that d f̄n = ρ f̄n converges uniformly to ρ f̄∗

which equals d f̄∗ by definition of Korevaar–Schoen limit (cf. [10]). Since ιn is a piecewise
isometry, we see that d fn = d f̄n and π fn and π f̄n (the pull back inner products of fn and f̄n

respectively) agree a.e.. Since π fn converges to π f and π f̄n converges to π f̄∗ , we see that
π f = π fn which immediately implies that d f = d f̄∗ by smoothness. In conclusion, we have
shown that d fn = d f̄n converges uniformly to d f .

Since Rn is an NPC space and f̄n(R) = Rn , d f̄n defines a NPC distance function on R
(after identifications of points of zero d f̄n distance). Thus, the uniform convergence of d f̄n

to d f implies that d f defines an NPC space. This shows that (R, π) is a smooth manifold of
non-positive curvature.
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