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3.3 The Uniform Boundedness Conjecture

Northcott's Theorem 3.12 says that a morphism PY — PV has only finitely
many K -rational preperiodic points. It is even effective in the sense that we can, in
principle, find an explicit constan(¢) in terms of the coefficients af such that
every pointP € PrePer(¢) satisfiesh(P) < C(¢). This also allows us to compute
an upper bound fo# PrePer(¢, PV (K)), but the bound grows extremely rapidly
as the coefficients op become large. A better bound, at least for periodic points,
may be derived from the local estimates in Chapter 2 as described in Corollary 2.26.
However, even that estimate depends on the coefficients sifice it is in terms of

the two smallest primes for which has good reduction. The following uniformity
conjecture says that there should be a bound for the siPecdfer(¢, PV (K)) that
depends in only a minimal fashion gnand K.

Conjecture 3.15. (Morton—Silverman [290]Fix integersd > 2, N > 1,andD > 1.
There is a constant’(d, N, D) such that for all number field&/Q of degree at
mostD and all finite morphisms : PV — PY of degreed defined overk,

# PrePer(¢, PV (K)) < C(d, N, D).

Remark3.16 There are many results in the literature giving explicit bounds for the
size of the set®rePer(¢, PV (K)) or Per(¢, PV (K)) in terms of¢, especially in

the caseV = 1. Some of these results use global methods, while others use a small
prime of good (or at least not too bad) reduction dofFor example, we used local
methods in Corollary 2.26 to give a weak bound fsiPer(¢, P*(K)). For further
results, see [47, 81, 84, 85, 92, 93, 126, 150, 158, 174, 175, 176, 177, 178, 206, 306,
243, 290, 302, 303, 305, 307, 327, 329, 332, 333, 335, 428].

Remark3.17. Very little is known about Conjecture 3.15. Indeed, it is not known
even in the simplest cagd, N, D) = (2,1, 1), that is, forQ-rational points and de-
gree 2 maps oR'. Specializing further, if we lep.. : P! — P! denote the quadratic
mapa¢.(z) = z2 + ¢, then the conjecture implies that

sup # Per (¢, P! (Q)) < oo,
ceQ

but the best known upper bounds f$Per(¢., P*(Q)) depend ore.

There are one-parameter families@e¥alues for whichy.(z) has aQ-rational
periodic point of exact period, 2, or 3, see Exercise 3.9 and Example 4.9, and
one can show that. cannot haveé)-rational periodic points of exact period 4 or 5,
see [158, 287]. Poonen has conjectured thatannot have an{)-rational periodic
points of period greater than 3. Assuming this conjecture, he gives a complete de-
scription of all possible rational preperiodic structuresdgprsee [335].

Remark3.18 Another interesting collection of rational maps is the family

b
Gap(z) =az+ Pt
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These maps have the symmetry propetty,(—z) = —¢,.(2), i.€., conjugation by

the mapf(z) = —=z leaves them invariant. It is known that there are one-parameter
families of these maps with@-rational periodic point of exact peridd(in addition

to the obvious fixed point af), 2, or 4, and that none of the mags (=) has aQ-
rational periodic point of exact periddl See [264] for details, and Examples 4.69
and 4.71 and Exercises 4.1, 4.40 and 4.41 for additional properties of these maps.

Remark3.19 Conjecture 3.15 is an extremely strong uniformity conjecture. For
example, if we consider only mags: P! — P! of degree 4 defined ovép, then
the assertion thag PrePer(¢, P1(Q)) < C for an absolute constaitimmediately
implies Mazur’s theorem [270] that the torsion subgroup of an elliptic cufy@
is bounded independently &f. To see this, we observe that Proposition 0.3 tells us
that

Eiors = PrePer([2], E),

and hence the associated lestmapp » described in Section 1.6.3 satisfies
x (Fiors) = PrePer((bE,g,}P’l).

Note thatp » has degree 4.

In a similar manner, Conjecture 3.15 for maps of degrem P! over number
fields implies Merel's Theorem [275] that the size of the torsion subgroup of an
elliptic curve over a number field is bounded solely in terms of the degree of the
number field. Turning this argument around, Merel’'s theorem implies the uniform
boundedness conjecture for Legtmaps, i.e., for rational maps associated to elliptic
curves, see Theorem 6.65. Ledtmaps are the only nontrivial family of rational maps
for which the uniform boundedness conjecture is currently known.

In higher dimension, Fakhruddin [150] has shown that Conjecture 3.15 implies
that there is a consta6t(V, D) such that if is a number field of degree at mdst
and if A/ K is an abelian variety of dimensia¥, then

#A(K)ors < C(N, D).

He also shows that if Conjecture 3.15 is true o{grthen it is true for all number
fields.

3.4 Canonical Heights and Dynamical Systems

It is obvious from the definition of the height that
h(a?) = dh(a)  foralla € Q. (3.11)

Notice that Theorem 3.11 applied to the particular migp) = =9 gives the less
precise statement
h(é(P)) = dh(P) + O(1). (3.12)

Clearly the exact formula (3.11) is more attractive than the approximation (3.12). It
would be nice if we could modify the heightin some way so that the general for-
mula (3.12) from Theorem 3.11 is true without #é1). It turns out that this can be
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done for each morphism. To create these special heights, we follow a construction
due originally to Tate.

Theorem 3.20. Let S be a set, letl > 1 be a real number, and let
¢p: 85— 8 and h:S—R
be functions satisfying
h(¢(P)) =dh(P)+O(1)  forall P e S.
Then the limit

h(P) = lim ih(w(P)) (3.13)

n—oo "
exists and satisfies
(@) h(P) = h(P)+ O(1).
(b) 2(4(P)) = dh(P).
The functior : § — R uniquely determined by the propertigg and (b).

Proof. We prove that the limit (3.13) exists by proving that the sequence is Cauchy.
Letn > m > 0 be integers. We are given that there is a constast that

h((Q)) —dh(Q)| <C  forallQ € S. (3.14)

We apply inequality (3.14) witlQ) = ¢*~(P) to the telescoping sum

n

O (P) = (" (P)| = Py = (o cpy) - dh<¢“<P>>)|
< 3 LIRS () - dn(e (P
1=m+1
" C = C C
<2 Fc 2 G- e O
i=m+1 i=m+1

The inequality (3.15) clearly implies that

1

1 n
(" (P) - -

h((bm(P))‘ —0 asm,n — 0o,

so the sequencé& "h(¢™(P)) is Cauchy and the limit (3.13) exists.
In order to prove (a), we take = 0 in (3.15), which yields

1 n
P = 1P| < 755

Next we letn — oo to obtain
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which is (a) with an explicit value for th@(1) constant.
The proof of (b) is a simple computation using the definitior of

ho(6(P)) = lim - h(6"(6(P) = Jm, dnd+1h(¢"+1<P>>) = dhy(P).

n—oo d"

Finally, to prove uniqueness, suppose that S — R also has properties (a)
and (b). Then the differenge= h — h’ satisfies

g(P)=0(1) and  g(¢(P)) =dg(P).
These formulae hold for all elemenfsc S, so
d"g(P) = g(¢™(P)) = O(1) foralln > 0.

In other words, the quantity”¢(P) is bounded as — oo, which can only happen
if g(P) = 0. This proves that(P) = '(P), soh is unique. O

Definition. Let¢ : PV — PY be a morphism of degree> 2. Thecanonical height
function(associated t@) is the unique function

he : PY(@Q) — R
satisfying

ho(P)=h(P)+0(1)  and  hy(6(P)) = dhy(P).
The existence and uniquenessﬁgffollows from Theorem 3.20 applied to the maps
¢:PY(Q) —PY(@Q and h:PY(Q) —R,
since Theorem 3.11 tells us thaandh satisfy
h(¢(P)) = dh(P)+0(1)  forall P € PY(Q).

Remark3.21 The definitionfi,(P) = lim, .. d-"h(¢"(P)) is not practical for
accurate numerical calculations. Thus evenffoe P*(Q), one would need to com-

pute the exact value ap”(P) whose coordinates hav@(d") digits. A practical
method for the numerical computation lb,;(P) to high accuracy uses the decom-
position of h¢ as a sum of local heights or Green functions. This decomposition
is described in Sections 3.5 and 5.9. See in particular Exercise 5.29 for a detailed
description of the algorithm.

The canonical height provides a useful arithmetic characterization of the prepe-
riodic points of¢.
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Theorem 3.22. Let¢ : PV — P be a morphism of degreg > 2 defined ovefQ
and letP € PV (Q). Then

P € PrePer(¢) ifandonlyif hy(P) = 0.

Proof. If P is preperiodic, then the quantity(¢™(P)) takes on only finitely many
values, so itis clear that "h(¢™(P)) — 0 asn — oo.

Now suppose thaﬁz¢(P) = 0. Let K be a number field containing the coor-
dinates ofP and the coefficients ab, i.e., P € PV (K) and¢ is defined overs.
Theorem 3.20 and the assumptng(P) = 0 imply that

h(¢™(P)) = hy(¢™(P)) + O(1) = d"hg(P) + O(1) = O(1) foralln > 0.
Thus the orbit
Oy(P) = {P,6(P),4*(P),$*(P),...} C PV(K)

is a set of bounded height, so it is finite from Theorem 3.7. Therdfdrea preperi-
odic point forg. O

Remark3.23 Further material on canonical heights in dynamics may be found in
Sections 3.5, 5.9, and 7.4, as well as [13, 18, 21, 34, 36, 37, 81, 82, 83, 135, 147,
207, 208, 210, 211, 212, 381, 384, 420, 427]

Theorem 3.22 is a generalization of Kronecker’s theorem (Theorem 3.8), which
says thath(«) = 0 if and only if « is a root of unity. Thus Kronecker's theorem
follows by applying Theorem 3.22 to th#'-power maps(z) = z¢ whose canonical
height is the ordinary heiglit.

The fact that only roots of unity have heightleads naturally to the question
of how small a nonzero height can be. If we take the relation?) = dh(a) and
substitute im = 2%/, we find that

h(2) = Th(z) = 222,

so the height can become arbitrarily small. However, this is only possible by taking
numbers lying in fields of higher and higher degree. For any algebraic numbetr

denote the degree of its minimal polynomial oggr

Conjecture 3.24. (Lehmer’s Conjecture [242])here is an absolute constamnt> 0
such that

h(@) 2 k/D(a)

for every nonzero algebraic numberthat is not a root of unity.
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There has been a great deal of work on Lehmer’s conjecture by many mathe-
maticians, see for example [87, 7, 6, 70, 242, 340, 396, 398, 419]. The best result
currently known, which is due to Dobrowolski [127], says that

K log log D()\®
> 5005 (M)

The smallest known nonzero value Bfa)h(«a) is
D(Bo)h(Bo) = 0.1623576. . .,

whereS, = 1.17628.. . . is a real root of

7 6

20+ 2% — 2" — b — S gt

— 224 r+1.

Theorem 3.22 tells us thézt(ﬁ(P) = 0 if and only if P is a preperiodic point
for ¢. This suggests a natural generalization of Lehmer’s conjecture to the dynamical
setting. (See [295] for an early version of this conjecture in a special case.)

Conjecture 3.25. (Dynamical Lehmer Conjecturelet ¢ : PV — ]P’Ni be a
morphism defined over a number field, and for any pointP € PV (K), let
D(P) = [K(P) : K]. Then there is a constant= (K, ¢) > 0 such that

forall P € PV (K) with P ¢ PrePer(¢).

There has been considerable work on this conjecture for majs: — P! that
are associated to groups as described in Section 1.6. For example, in the case that
is attached to an elliptic curvg, it is known that

D(P)31og® D(P)
ho(P) 2 { Dipe
K loglog D(P
D(P)< log D(P)

in general [269],

if (E) is nonintegral [185],

3
)> if £ has complex multiplication [241].

Aside from maps associated to groups, there does not appear to be a single example
where it is known thaﬁ¢(P) is always greater than a constant over a fixed power

of D(P). Using trivial estimates based on the number of points of bounded height
in projective space, it is easy to prove a lower bound that decreases faster than expo-
nentially in D(P), see Exercise 3.17.

Remarl3.26 The Lehmer conjecture involves a single ngapnd points from num-

ber fields of increasing size. Another natural question to ask about lower bounds for
the canonical height involves fixing the field and letting the map vary. For exam-

ple, consider quadratic polynomiats(z) = 22 + c asc varies overQ. Is it true that

ﬁ¢c () is uniformly bounded away frorf for all ¢ € @ and all nonpreperiodia.?

In other words, does there exist a constant 0 such that
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hg,(a) >k forallc e Qandalla ¢ PrePer(¢.)?

We might even ask that the lower bound growcdsecomes larger (in an arithmetic
sense). Thus is there a constant 0 so that

hg,(a) > kh(c) forallc e Qandalle ¢ PrePer(¢,)?

This is a dynamical analog of a conjecture for elliptic curve that is due to Serge Lang,
see [184], [232, page 92], or [385, VIII.9.9].

For the quadratic map? + ¢, the height of the parameterprovides a natural
measure of its size, but the situation for general rational m@ps < K (z) is more
complicated. We cannot simply use the height of the coefficients because the
canonical height is invariant under conjugation (see Exercise 3.11), while the height
of the coefficients is not conjugation invariant. We return to this question in Sec-
tion 4.11 after we have developed a way to measure the size of the conjugacy class
of a rational map.

3.5 Local Canonical Heights

The canonical heigh@ attached to a rational map is a useful tool in studying

the arithmetic dynamics af. For more refined analyses, it is helpful to decompose

the canonical height as a sum of local canonical heights, one for each absolute value

on K. In this section we briefly summarize the basic properties of local canonical

heights, but we defer the proofs until Section 5.9. The reader wishing to proceed

more rapidly to the main arithmetic results of this chapter may safely omit this sec-

tion on first reading, since the material covered is not used elsewhere in this book.
The construction of the canonical height relies on the fact that the ordinary height

satisfiesh(o¢(P)) = dh(P) + O(1), so itis “almost canonical.” The ordinary height

of a pointP = [, 1] is equal to the sum

h(P) = h(a) = Z 1y, log max{|aly, 1},

vEMEK

so for eachy € M itis natural to define a local height function
Ay (@) = log max{|al,, 1}.

We can understantl, geometrically by observing that ferc M %,
Av(@) = —log py(ev, 00),

where p, is the nonarchimedean chordal metric defined in Section 2.1. One says
that\, () is thelogarithmic distancdrom « to cc.
Unfortunately, the function,, does not transform canonically, sinkg(¢(«)) is
not equal talA, (o) + O(1). To see why, note that,(¢(«)) is large ifa is close to
a pole ofg, while \, () is large if« is close to the pointo € P*. (Here the word
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7.1 Dynamics Of Rational Maps On Projective Space

Recall that aational map¢ : PV — P is described by homogeneous polynomials
with no common factor, and thatis a morphismif the polynomials have no com-
mon root inPY (K). (See page 88 in Chapter 3 for the precise definition.) As noted
in the introduction to this chapter, height functions are a powerful tool for studying
the arithmetic of morphisms : PV — PV, The situation is considerably more com-
plicated if the mapy : PV — PV is only required to be a rational map. Notice that
we did not run into this situation when studying rational functigiis) € K (z) of

one variable, since every rational map P! — P! is automatically a morphism. But

in dimension® and higher, there are many rational maps that are not morphisms.

Example7.1 The rational map
¢ P? — P2, o([X,Y, Z]) = [X§, XoX1, X3], (7.1)

is not a morphism, since it is not defined at the pdintl, 0]. Notice that if we
discard[0, 1, 0], then¢ fixes every point on the lin&, = X5, and¢ sends every
point on the lineX, = 0 to the single poin{0, 0, 1]. This sort of behavior is not
possible for morphismg? — P2,

Continuing with this example, recall that i were a morphism, then Theo-
rem 3.11 would tell us that(¢(P)) = 2h(P) 4+ O(1) for all P € P?(Q). But this

is clearly false for the map (7.1), since for allb € Q* we have
¢([a,b, a]) = [a®, ab, a®] = [a, b, a].

Thus
h(¢(la,b,a])) = h([a, b, a)),

so we cannot use Theorem 3.7 to conclude ¢hhas only finitely manyQ-rational
periodic points. Of course, that’s good, since in fattas infinitely manyQ-rational
fixed points!

An initial difficulty in studying the dynamics of a rational map: PV — PV
arises from the fact that the orb@,(P) of a point may “terminate” if some it-
erate¢™ (P) arrives at a point where is not defined. This suggests looking first at
mapse for which there is a large uncomplicated (e.g., quasiprojective, or even affine)
subset/ C PV with the property that(U) C U and studying the dynamics gf
onU. As a further simplication, we might require thabe an automorphism d@f,
since quasiprojective varieties often allow interesting automorphisms.

7.1.1 Affine Morphisms and the Locus of Indeterminacy

In this section we study rational map§ — PV with the property that they induce
morphisms of affine spade™ — AY. Concretely, amffine morphism

¢ AN — AN

is a map of the form
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(b:(Fl,---,FN) with Fl,...,FNEK[Zl,...,ZN].

To avoid trivial cases, we generally assume that at least one df;tigenot theo-
polynomial.

Definition. The degree of a polynomial
F(z1,...,2n) = Z ail..‘iNzil zj\’,v € K[z1,...,2N]
is defined to be
deg F = max{il + IV Gy F O}.

In other words, the degree @ is the largest total degree of the monomials that
appear inF'. (By convention thé-polynomial is assigned degreex.) Thedegree
of a morphismp = (Fy,..., Fy) : AN — AV is defined to be

deg ¢ = max{deg F1,...,deg Fn}.

Homogenization of the coordinates of an affine morphismAY — AN of de-
greed yields a rational map : PV — PV of degreed. For each coordinate func-
tion F; of ¢, we let

X X X
Fz'(Xo,Xh...,XN):XgFZ_( 1 A2 N)'

Xio’yo7...770

Notice that eaclF; is a homogeneous polynomial of degregor the0-polynomial),
so the map B o B
6=[X¢ P, Fy, ..., Fy] PN PN

is a rational map of degraeé We call ¢ the rational map induced by. A rational
map need not be everywhere defined.

Definition. Let¢ : AN — AN be an affine morphism of degrdeand let
6=[X¢ Fr,...,Fy]: PN = PV
be the rational map that it induces. Tleeus of indeterminacy af is the set
Z(¢) ={P=1[0,21,...,an] €PN : F{(P) = .- = Fy(P) = 0}.

This is the set of points at whichis not defined. Notice that (¢) lies in the hyper-
planeH, = { X, = 0} atinfinity, sinceg is well-defined oM™,
The polynomialdl?, . .., Fy can be used to define a morphism
P ANFTL — ANFL ®= (X F,...,Fy).
The map® is called dift of ¢. If we let 7 be the natural projection map,

7 ANTE {0} — PV, (oy. - yxN) — [0y ..y TN,
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thenn, ®, and¢ fit together into the commutative diagram

ANFL {0} —2 ANFL {0}
I I
PN — PN
Example7.2 The map
¢ AT — AZ &(21, 22) = (2122, 23)
induces the rational map
¢:P?— P (X0, X1, Xo]) = [X§, X1X0, X7]

and has indeterminacy locuf¢) = {[0, 0, 1]} consisting of a single point.

7.1.2 Affine Automorphisms
Of particular interest are affine morphisms that admit an inverse.

Definition. An affine morphismy : AN — A% is anautomorphisnif it has an
inverse morphism. In other wordsg,is an affine automorphism if there is an affine
morphismg ="' : AN — AN such that

¢(¢_1(21,...,2N)) =(z1,...,2n) and ¢_1(¢(21,...,2N)) =(21,..-,2N)-

Somewhat surprisingly; and¢—! need not have the same degree, nor diegés™)
have to equaldeg ¢)™.

Example7.3. Consider the map(z,y) = (x,y + 2?). It has degre® and is an
automorphism, since it has the inverse! (z,y) = (z,y — 22). The composition)?
is

¢*(2,y) = o(a,y + 2%) = (x,y + 227),

sodeg(¢?) = 2 = deg(¢). More generallyp”(z,y) = (x,y + na?) has degree,
so the degree op™ does not grow. This contrasts sharply with what happens for
morphisms ofP?.

Example7.4. Leta € K* and letf(y) € K[y] be a polynomial of degre¢ > 2.
The map

¢:A? — A% o(a,y) = (y,ax + f(y),
is called aHenon maplt is an automorphism ah?, since one easily checks that it
has an inverse—! given by

o7 A — A% 9Tl (ay) = (aTly — a7 f2).2).

Hénon maps, especially those withg(f) = 2, have been extensively studied since
Hénon [182] introduced them as examples of m&3s— R? having strange at-
tractors. There are many open questions regarding the real and complex dynamics
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of Henon maps, see for example [122,9] or [193], as well as [194, 388] for a
compactification of the Bnon map.
The rational map®? — P2 induced byy and¢—! are
¢ ([Xo, X1, X5]) = [X§, X§~' X, aX§™ ' X1 + f(Xo, X5)],
¢ ([Xo, X1, X2]) = [X§, a ' X{ ' Xs — a7 f(Xo, X1), X§ ' X4],

where we writef (u,v) = u?f(v/u) for the homogenization of. It is easy to see
that the loci of indeterminacy af and¢—" are

Z(¢)={[0,1,01} and  Z(¢~")={[0,0,1]}.
In particular, the locus of indeterminacy ¢fis disjoint from the locus of indetermi-
nacy of¢—1. Maps with this property are calledgular, see Section 7.1.3.
Example7.5. Consider the very simple&hon map

o(z,y) = (y, —x + 7).

The extension = [X2, X0 X2, — X0 X1 + X2] of ¢ to P? has degree, but it is not
a morphism, since it is not defined at the pdintl, 0]. And just as in Example 7.2,
there is no height estimate of the formi¢(P)) = 2h(P) + O(1) for ¢. We can see
this by noting that

&([b,a,b]) = %, 6%, —ab + %] = [b,b, —a + b,

soifa,b, € Z with gcd(a,b) = 1 andb > a > 0, then[b, a, b] ande([b, a, b]) have
the same height. Hence for every- 0 even the weaker statement

h(¢(P)) > (1+e)h(P)+O(1)  forall P = (z,y) € A*(Q)
is false. It turns out thap has only finitely manyQ-rational periodic points (Theo-

rem 7.18), but the proof does not follow directly from a simple height argument.

Example7.6. More generally, ifp : AN — AY is an affine automorphism, then it is
not possible to have simultaneous estimates of the form

h(#(P)) > (1+ e)h(P)+ O(1),

h(¢~'(P)) = (1+ )h(P) + O(1), (7.2)

for somee > 0 and allP ¢ AV (K). To see this, suppose that (7.2) were true. Then
we would have for alP ¢ AV (K),

h(P) = h(6(67'(P))) = (1 +€e)h(¢™'(P)) + O(1) = (1+ €)*h(P) + O(1).

Thush(P) would be bounded, leading to the untenable conclusion4hatK) is
finite. So it is too much to require that bot{ P) and¢—!(P) have heights larger
than the height of”. However, as we shall see, it is often possible to show that some
combination ofh(¢(P)) andh(¢~'(P)) is large, which is then sufficent to prove
thatPer(¢) is a set of bounded height.
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We conclude this section with two useful geometric lemmas. The first relates the
locus of indetermincay of an affine automorphism and its inverse, and the second
characterizes when the degree of a composition is smaller than the product of the
degrees.

Lemma 7.7. Letg : AN — AN be an affine automorphism of degree at leaand
denote the hyperplane at infinity BY, = { X, = 0} = P¥ < AN. Then

¢(Ho~ Z(¢)) C Z(¢™ ).
Proof. Let

P = (Xg,Fl’F27...7FN) and ¢! = (Xg,él,ég,...,GN)

be the lifts of and¢ ", respectively. The fact that and¢~—! are inverses of one
another implies that there is a homogeneous polynofnidldegreele — 1 with the
property that

(@' o®)(Xo,....XN)=(f Xo, f-X1,....f-Xn).
But the first coordinate of the compositionXg/¢, so we see that = Xgefl. Thus
(@1 o®)(Xo,..., Xn) = (X XJ1 X, XXy, o X X ),
or equivalently,
Gi(X$,Fy,...,Fy) = XX, foralll1<j<N. (7.3)

Now letP = [0,y,...,2n] € Ho \ Z(¢), S0¢(P) = 0, Fi(P),...,Fn(P)]
with at least oné";(P) # 0. From (7.3) we see that

G;(®(P)) = G;(0, Fy(P),...,Fx(P)) =0%"'z; =0 foralll <j < N.
Hence

>~ (®(P)) = (0,G1(®(P)), G2 (®(P)),...,Gn (®(P)) = (0,0,0,...,0),
so¢~ 1! is not defined aty(P). Thereforep(P) € Z(¢~1). O

Lemma 7.8. Let¢ : AN — AN andy : AY — AN be affine morphisms, and
let Hy = { X, = 0} = PV . AV be the usual hyperplane at infinity. Then

deg (v 0 ¢) < deg(y) deg(¢) ifandonlyif ¢(Ho\ Z(¢)) C Z(v).

Proof. Let d = deg(¢), lete = deg(s)), and let® and ¥ be lifts of ¢ and 1,
respectively. We writ@ explicitly as

®= (X4, P, Fy,...,Fy).

The composition? o ® has the form
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Vod= (Xge,El,EQ,...7EN),

whereFE, ..., E are homogeneous polynomials of degieeThe degree of o ¢
will be strictly less thanle if and only if there is some cancellation in the coordinate
polynomials of¥ o ®. Since the first coordinate i¥§¢, this shows that

deg(p o ¢) < deg(p) deg(¢) <= X, dividesE; for everyl < j < N.

Suppose now thaX | E; for every;j and letP = [0, 21, ...,2n] € Ho \ Z(¢).
Sinceg is defined atP, some coordinate of

®(P) = (0, F1(P),...,Fx(P))
is nonzero. On the other hand, the assumption 3hat; implies that
(¥ o ®)(P) = (0, E1(®(P)), E2(®(P)), ..., En(®(P))) = (0,0,0,...,0).

Hencey is not defined at(P), so¢(P) € Z(¢). This completes the proof that
if deg(t) 0 ¢) < de, theng(Hy \ Z(¢)) C Z(v).

For the other direction, suppose thetH, ~ Z(¢)) C Z (). This implies that
for (almost all) points of the fornf0, =1, ..., xx), the mapy is not defined at the
point$([0,z1,...,zn]). Hence

U(®(0, X1, Xa,..., X)) = (0,0,0,...,0),
s0E;(0, X1, Xa,...,Xn) = 0forall j. ThereforeX,|E; for all ;. O

Example?.9. Let ¢ be the maw(x,y) = (z,y+22) that we studied in Example 7.3.
Dehomogenizing yields

o([Xo, X1, Xo]) = [X§, XoX1, XoXa + X7,

so the locus of indeterminacy faris Z(¢) = {[0,0,1] }. Notice that
¢([0, X1, X)) = [0,0,X7] =[0,0,1] € Z(¢).

Henceg(Ho \ Z(¢)) = Z(¢), so Lemma 7.8 tells us thdeg(¢?) < deg(¢)?. This

is in agreement with Example 7.3, where we computeddhats?) = 2.

7.1.3 The Geometry of Regular Automorphisms ofA"

In this section we briefly discuss the geometric properties of an important class of
affine automorphisms.

Definition. An affine automorphismp : AN — A" is said to beregular if the
indeterminacy loci ofy and¢—! have no points in common,

Z(@)NZ(¢™") =0.
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The following theorem summarizes some of the geometric properties enjoyed
by regular automorphisms @f"V. We sketch the proof of (a) and refer the reader
to [376] for (b) and (c).

Theorem 7.10. Let¢ : AN — AN be a regular affine automorphism.
(@) Foralln > 1,

o™ is regular, Z(o™) = Z(9), and deg(¢") = deg(o)™.
(b) Let
dy =deg¢, dy=degop™t, (1 =dimZ(¢)+1, fly=dimZ(¢ )+1.
Then

(i+06=N and d& =db.

(c) Foralln > 1the set ofi-periodic pointPer,, (¢) is a discrete subset af¥ (C).
Counted with appropriate multiplicities,

#Peryn, (o) = dgan = d?Nn.
Proof. (a) We first prove by induction on that
Z(¢™) C Z(¢p) and Z(¢p ") C Z(¢p~') foralln > 1.

This is trivally true forn = 1, so assume now that itis true for- 1. Let P € Z(¢™),
so in particularP € Hy. Suppose thaP ¢ Z(¢). The induction hypothesis tells us
thatP ¢ Z(¢"~ 1), so applying Lemma 7.7 to the mag—!, we deduce that

¢" "N (P) € ¢" " (Ho ~ Z(¢" 1)) € Z(¢~ V) C Z(p7H).

(For the last equality we have again used the induction hypothesis.) On the other
hand, we have that"~! is defined atP and¢™ is not defined aP, which implies
that " ~1(P) € Z(¢). This proves thap"~1(P) is in both Z(¢~!) and Z(¢),
contradicting the assumption thatis regular. Hence® € Z(¢), which completes
the proof thatZ (¢™) C Z(¢). Similarly, we find thatZ (¢=") C Z(¢~1).

Having shown thaZ (¢") C Z(¢) andZ(¢~") C Z(¢~ 1), the regularity ofp
implies that

Z(@")NZe™") C Z(e)NZ(p7") =0,
so¢™ is also regular.

Next suppose thateg(¢™) < deg(¢)™ for somen > 2. We taken to be the
smallest value for which this is true, so in particuliag(¢" 1) = deg(¢)"~ !, and
hence

deg(¢") < deg(¢" ") deg(¢).

We apply Lemma 7.8 withy = ¢"~! to conclude that
¢(Ho~ Z(9)) C Z(¢"™ 1) C Z(9),
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where the last inclusion was proven earlier. On the other hand, Lemma 7.7 says that
¢(Ho ~ Z(¢)) C Z(¢~1). Hence

¢(Ho~ Z(¢)) € Z(¢)N Z(¢™") = 0.

This is a contradiction, which completes the proof tiag(¢™) = deg(¢)™.
It remains to show thaf (¢) C Z(¢™). Let

o ANTL —— ANTL @ = (X, 1, Py, ... Fy),
be a lift of ¢, so
Z(¢) = {P € Hy: Fi(P)=---= Fy(P) :O}.

By a slight abuse of notation, we say thate Z(¢) if and only if &(P) = 0. (To be
precise, we should lifP to ANV+1))

We proved thatleg(¢™) = deg(¢), which implies that the coordinate functions
of ®” have no common factor. Thug' can be computed by evaluatidg and map-
ping down taP? . Hence just as above we hakec Z(¢") if and only if " (P) = 0.
Therefore

PeZ(¢) = ®P)=0 = & (P)=0 = P e Z(¢").

This proves thaZ (¢) C Z(¢™) and completes the proof of (a).
(b) See[376, Proposition 2.3.2].
(¢c) See[376, Theorem 2.3.4]. O

Remark7.11 If ¢ : A2 — A? is a regular automorphism of the affine plane, then
Theorem 7.10(b) tells us thét = ¢5 = 1 (which is clear anyway since the indeter-
minacy locus of a rational map has codimension at I8pand thatd; = d,. Thus
planar regular automorphisms satigy (¢) = deg(¢ ). In the opposite direction,

if di = ds, then Theorem 7.10(b) says that= /5, and hence thalv = ¢, + /5

is even. In other words, a regular automorphismA® — AN with N odd always
satisfiesleg(¢) # deg(¢~1).

Example7.12 Let¢ : A3 — A2 be given by
o,y 2) = (y, 2+ y? x + 22).
One can check that the inversegofs
¢ N2,y 2) = (2 — (y — 2w,y — 2?).
Homogenizingr = X1 /Xy, y = X2/ Xo, 2 = X3/X0, we have the formulae

Q_S = [ng XOXQ; XOX3 +X22, XOX1 +X§L
¢ =[Xg, Xg X3 — (XoXo — X7)?, Xg X1, XgXo — X5X7],

from which it is easy to check that
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Z(¢) = {Xo = Xo = X3 =0} = {[0,1,0,0]},
Z(¢™) ={Xo = X1 =0} = {[0,0,u,v]}.

Thus Z(¢) consists of a single point, whil&(¢~!) is a line. In the notation of
Theorem 7.10, we hawy = 3 and

di = deg¢ = 2, dy = degop™t =4,
(6 =dimZ(¢)+1=1, lo=dimZ(¢p~ ") =1=2.

The mapy is regular, sinceZ(¢) N Z (¢~ 1) = 0.

Remark7.13 Let¢ : AN — A" be an affine morphism and Iét: AN+1 — AN+!
be a lift of . The mapyp is calledalgebraically stablef

" ({Xo=0}) #{0} foralln>1.

In other words,¢ is algebraically stable if for every, > 1, some coordinate

of ®"(Xy,...,Xy) is not divisible by X,. Since the first coordinate ¢b” is a
power of X, this implies that there can be no cancellation among the coordinates,
so an algebraically stable maysatisfies

deg(¢™) = deg(o)™.
Further, an adaptation of the proof of Theorem 7.10(a) shows that
Z(@") C Z(¢™) foralln < m.

Regular automorphisms are algebraically stable, but there are algebraically stable
automorphisms that are not regular. For a discussion of the complex dynamics of
algebraically stable maps, see [161, 170, 376].
For arbitrary morphisme : AN — AN, we define thelynamical degree af to
be the quantity
dyndeg(¢) = lim deg(¢")"/™.

The dynamical degree provides a coarse measure of the stable complexity of the
map¢, and presumably it has an impact on the arithmetic properties $ée [268]

for an indication of this effect in certain cases. One can show that the dynamical
degree is in fact the infimum afeg(¢™)'/™. The dynamical degree need not be an
integer, nor even a rational number, see Exercise 7.4 for an example.

7.1.4 A Height Bound for Jointly Regular Affine Morphisms

In this section we prove a nontrivial lower bound for the height of points under
regular affine automorphisms. The theorem is an amalgamation of results due to
Denis [121], Kawaguchi [210, 207], Marcello [265, 266, 267, 268] and Silver-
man [388, 393]. Before stating the theorem, we need to define what is meant by
the height of a point in affine space.
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Definition. The heighth(P) of a pointP = (z1,...,zx) € AY(Q) in affine space
is defined to be the height of the associated point in projective space using the natural
embeddingAN — PV,

h(P) = h([l,.’I}l,... ,LI,‘N]).

Eventually we will apply the following height estimate to a regular affine auto-
morphisme and its inverses—!, but it is no harder to prove the result for any pair
of jointly regular maps, and working in a general setting helps clarify the underlying
structure of the proof.

Theorem 7.14. Let¢; : AN — AN and¢, : AV — AV be affine morphisms with
the property that

Z(p1) N Z(¢) = 0.
(We say that); and ¢, arejointly regular) Let

dy = deg ¢1 and dy = deg ¢2.

There is a constar® = C(¢1, ¢2) so that for allP € AN (Q),

1

dTh<¢1 (P)) + —=h(#2(P)) > h(P) - C. (7.4)
Remark7.15 We recall that the upper bound

h(y(P)) < (deg¥)h(P) + O(1) (7.5)

is valid even for rational mapg : PN — PV (see Theorem 3.11), since the proof
of (7.5) uses only the triangle inequality. Thus Theorem 7.14 may be viewed as
providing a nontrivial lower bound complementary to the elementary upper bound

dilh(qbl(P)) + d%h(qbg(P)) < 21(P) + O(1).

Proof of Theoren7.14 Write the rational function® — P¥ induced by¢,
andg, as

&QZ[XOdl,Fl,F27...,FN] and (EQZ[Xg2aélvé27"'7GN]’

where theF; are homogeneous polynomials of degreeand theG; are homoge-
neous polynomials of degre&. The loci of indeterminacy op,; and¢- are given

by

Z(p1) ={Xo=F1 == Fy =0},
Z(¢2) ={Xo=G1=---=Gyn =0}

We define a rational map : P2V — P2V of degreed; d, by
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w:[Xgldz,ﬁfz,...fgz,éfg...,é;@ .
The locus of indeterminacy af is the set
ZW)={Xo=F = =Fy=G = =Gy =0} = Z(¢1) N Z(2) =,

since by assumptio# (¢,) and Z(¢,) are disjoint. Hence) is a morphism, so we
can apply the fundamental height estimate for morphisms (Theorem 3.11) to deduce
that

h(y(P)) = did2h(P) +O(1)  forall P € P*N(Q). (7.6)

The following lemma will give us an upper bound for the height,0P).
Lemma 7.16. Letu,ay,...,an,b1,...,by € Qwithu # 0. Then

h([u,a1,...,an,b1,...,bn]) < h([u,a1,...,an]) + h([u, b, ..., bN]).
Proof. Leta; = a;/uandg; = b;/ufor 1 <4 < N. Then for any absolute value

we have the trivial estimate

max{l, ‘Oé]|v, ey ‘O[N|va |ﬁ1‘v; ceey |6N‘v}
< max{l, |a1|v,...,|aN|v} ~max{1, |ﬁ1\v,...,|ﬁN\U}.

Raising to an appropriate power, multiplying over all absolute values, and taking
logarithms yields

h([laala"'7O‘N3517"'7ﬂND S h([l,oq,...,aND +h([17ﬂlaaﬂN])

This is the desired result, since the height does not depend on the choice of homoge-
neous coordinates of a point. O

We apply Lemma 7.16 to the point
Y(P) = [Xo(P)1®2 F(P)®,... Fx(P)"2,Gi(P)",...,Gn(P)"]
with P € AN (Q), which ensures thaX(P) # 0. The lemma tells us that
h(¥(P)) < b ([Xo(P)" %, Fy(P)®, ... Fn(P)"])
+h ([Xo(P)"%, G (P)",...,Gn(P)"])
= dah ([Xo(P)", FL(P),...,Fn(P)])
+ dih ([Xo(P)®2,G1(P),...,Gn(P)])
= dah(¢1(P)) + dih(¢2(P)).
We combine this with (7.6) to obtain
didsh(P) + O(1) = h(p(P)) < dah(¢1(P)) + dih(pa(P)).

Dividing both sides byl; d, completes the proof of Theorem 7.14. O
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For regular affine automorphism, it is conjectured that the height inequality (7.4)
in Theorem 7.14 may be replaced by a stronger estimate.

Conjecture 7.17. Letp : AV — AN be a regular affine automorphism. Then there
is a constantC = C(¢) so that for allP € AV (Q),

1 1 1
—h(¢(P)) + —h(¢ 1 (P)) > 1+ — | h(P) — C. (7.7)
d; do dids

Kawaguchi [210] proves Conjecture 7.17 in dimensiome., for regular affine
automorphisms : A2 — A2, see also [388]. However, for general jointly regular
affine morphisms, it is easy to see that (7.4) cannot be improved, see Exercise 7.8.

Kawaguchi also constructs canonical heights for maps that satisfy (7.7), see [210]
and Exercises 7.17-7.22.

7.1.5 Boundedness of Periodic Points for Regular
Automorphisms of AV

Theorem 7.14 applied to a regular affine automorphisand its inverse implies that

at least one ofy(P) and¢~!(P) has reasonably large height. This suffices to prove
that the periodic points af form a set of bounded height, a result first demonstrated
by Marcello [265, 266] (see also [121, 393]) using a height bound slightly weaker
than the one in Theorem 7.14.

Theorem 7.18. (Marcello) Let ¢ : AN — AN be aregular affine automorphism of
degree at leas? defined ovefQ. ThenPer(¢) is a set of bounded height i (Q).
In particular,

Per(¢) N AN (K) is finite for all number fieldsy'.

Proof. Let
dy = deg ¢ and dy = deg o™t

Applying Theorem 7.14 withp, = ¢ andg, = ¢! yields the basic inequality

1 1 _
d—lh(qﬁ(P)) + d—Qh(gb '(P)) > MP) - C, (7.8)
whereC is a constant depending en but not onP € AN (Q).

We prove the theorem initially under the assumption that, > 4. Define a
function

(7.9)

a—17

where the real number > 1 will be specified later. Thelf satisfies
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1

f(¢(P))—af(P)—< w(o(P) - - npy - ¢ )

dy ady a-1
—a (dllh(P) - aidzh(qb—l(P)) - 051)
_ (Clllh(qs(p)) n d12h(<b_1(P))> = (z + a;) h(P)+ C
> (1 - dﬁl - a;) h(P)  from (7.8).

Hence if we take

o — dids + +/ (d1d2)2 — 4dqds

2ds
then
a 1
1 J N —
d1 O[dQ ’

and our assumption thatd, > 4 ensures thatv > 1, so for this choice ofx we
conclude that

f(o(P)) > af(P)  forall P e AN(Q).

Applying this estimate to the pointB, ¢(P), ¢*(P),...,¢"~*(P), we obtain the
fundamental inequality

f(¢™(P)) = a"f(P)  forall P e AN(Q)andalln > 0. (7.10)

Similarly, we define
(7.11)

and take
. dids + (d1d2)2 — 4dyds

p 2d;

Then an analogous calculation, which we leave to the reader, showsdatsfies
g(e(P)) = Bg(P)  forall P € AN(Q),
from which we deduce that
g(¢7™(P)) = B"g(P)  forall P e AN(Q)andalln > 0. (7.12)

We compute
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a " f(¢"tH(P)) + B "g(o " H(P))
> f(4(P)) +g(¢~'(P))  from (7.10) and (7.12),
1 1 C
= (dh(¢(P)) - —h(P) - )

a—1
1 _1 1 c
+ (h(gf) (P)) — mh(P) — ﬁ—l)
from the definition (7.9) and (7.11) gfandg,
1 1 1 1

Using the definition off andg and rearranging the terms, we have proven the in-
equality

h(¢™+1(P)) n h(¢~""1(P)) (a8 -1)C
ad, B7ds (a—1)(6-1)
h(¢™(P))  h(67"(P))
>(1— — — — . (7.
= (]‘ adg ﬁdl) h(P) + ()én+1d2 + ﬂn—‘rldl (7 13)
Now suppose thaf> € AY(Q) is a periodic point forg. Thenh(¢*(P)) is
bounded independently &f so lettingn — oo in (7.13) yields
(af—1)C ( 1 1 )
— = > (1-— — — ) h(P),
(Ot — 1)(5 — 1) - Oédg ﬂdl ( )
where we are using the fact that> 1 andg > 1. Our assumption that;ds > 4
also ensures that

1 LA
ads Bdy B dydy

so the height ofP is bounded by a constant depending onlygorThis completes
the proof of the first assertion of Theorem 7.18 under the assumptiod;ifiat> 4,
and the second is immediate from Theorem 7.28(f), which says that for any given
number field PV (K) contains only finitely many points of bounded height.

In order to deal with the casgd, < 4, i.e.,d; = dy = 2, we use Theorem 7.10,
which tells us thap? is regular and has degrég. Similarly deg(¢—2) = d3. Hence
from what we have already proven, the periodic pointsform a set of bounded
height, and since it is easy to see tRat(¢) = Per(¢?), this completes the proof in
all cases. O

>0,

Remark7.19 We observe that Theorem 7.18 applies only to regular maps. It cannot
be true for all affine automorphisms, since there are affine automorphisms whose
fixed (or periodic) points include components of positive dimension. For example,
the affine automorphism(z,y) = (z,y + f(z)) fixes all points of the forma, b)
satisfying f(a) = 0. Of course, this map is not regular, since one easily checks
that
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Definition. Let¢ : V' — V be a morphism of a (not necessarily projective) vari-
ety V. A point P € Per(¢) is isolatedif P is not in the closure oPer, (¢) ~ {P}

for all n > 0. In particular, ifPer,, (¢) is finite for all n, then every periodic point is
isolated.

Conjecture 7.20. Let¢ : AN — AN be an affine automorphism of degree at lehst
defined ove@. Then the set of isolated periodic points/ds a set of bounded height
in AN(Q).

A classification theorem of Friedland and Milnor [162] says that every automor-
phisme : A2 — A? of the affine plane is conjugate to a composition of elementary

maps and Enon maps. Using this classification, Denis [121] proved Conjecture 7.20
in dimension 2. (See also [265, 266].)

7.2 Primer on Algebraic Geometry

In this section we summarize basic material from algebraic geometry, primarily hav-
ing to do with the theory of divisors, linear equivalence, and the divisor class group
(Picard group). This theory is used to describe the geometry of algebraic varieties
and the geometry of the maps between them. We assume that the reader is familiar
with basic material on algebraic varieties as may be found in any standard textbook,
such as [169, 180, 181, 187].

This section deals with geometry, so we work over an algebraically closed field.
Let

K = an algebraically closed field,
V' = anonsingular irreducible projective variety defined oker
K (V') = the field of rational functions oW.

7.2.1 Divisors, Linear Equivalence and the Picard Group

In this section we recall the theory of divisors, linear equivalence, and the divisor
class group (Picard group).

Definition. A prime divisoron V' is an irreducible subvarietyy’ V' of codimen-
sion 1. Thedivisor group of V, denotediv(V), is the free abelian group generated
by the prime divisors of. ThusDiv (V") consists of all formal sums

ZnWW,
w

where the sum is over prime divisoig8 C V/, the coefficients:y, are integers, and
only finitely manyny, are nonzero. Theupportof a divisorD = > ny W is

D= |J W

W with
nw 750



