NTRUSign: Digital Signatures Using the NTRU
Lattice

Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher,
Joseph H. Silverman, William Whyte

NTRU Cryptosystems,
5 Burlington Woods,
Burlington, MA 02144

{jhoffstein,nhowgravegraham, jpipher, jsilverman,wwhyte}@ntru.com

Abstract. In this paper we introduce NTRUSIGN, a new family of sig-
nature schemes based on solving the approximate closest vector problem
(APPR-CVP) in NTRU-type lattices. We explore the properties of gen-
eral APPR-CVP based signature schemes (e.g. GGH) and show that they
are not immune to transcript attacks even in the random oracle model.
We then introduce the idea of using carefully chosen perturbations to
limit the information that is obtainable from an analysis of a large sig-
nature transcript. In the case of NTRUSIGN this can be achieved while
maintaining attractive efficiency properties.

1 Introduction

Lattices have been studied by cryptographers for quite some time, both in the
field of cryptanalysis (see for example [18-20]) and as a source of hard prob-
lems on which to build encryption schemes (see [1, 8, 10]). Interestingly, though,
research about building secure and efficient signature schemes using the theory
of lattices is extremely sparse in the cryptographic literature. An early scheme
is due to Goldreich, Goldwasser and Halevi [8], who proposed that one could
sign a message by demonstrating the ability to solve the approximate closest
vector problem (APPR-CVP) reasonably well for a point in space (hereafter re-
ferred to as the message digest point) generated from a hash of the message, and
verify by checking that the “close lattice point” returned was indeed a lattice
point and that it was close enough to the message digest point to make forgeries
impractical. However, this idea was not analyzed in detail by its authors.
Another public-key cryptosystem, NTRUENCRYPT [10], was proposed at
roughly the same time as [8]. One of the (several) ways that NTRUENCRYPT
can be viewed is as a lattice cryptosystem based on a particularly efficient class
of convolution modular lattices, which we will refer to as NTRU lattices. In this
paper we study signature schemes based on solving APPR-CVP in the special
class of NTRU lattices. A private key for the NTRUENCRYPT encryption scheme
consists of a good basis for an N-dimensional sublattice of a 2N-dimensional
NTRU lattice, but in order to solve APPR-CVP efficiently for arbitrary message



digest points one must know a full good basis for the lattice. A major contribution
of this paper is given in section 4.1 where we detail an efficient technique to
generate a full basis from knowledge of the small half-basis, thereby validating
this approach.

A second major undertaking of this paper concerns the security of signature
algorithms based on APPR-CVP. Such algorithms do not give a zero-knowledge
scheme, because a transcript of signatures leaks information about the private
key. In section 5.2 we therefore introduce perturbation techniques as a general
way to reduce the effectiveness of transcript analysis in APPR-CVP-based signa-
ture schemes. In the case of NTRUSIGN (section 5.3), the use of perturbations
guarantees that the number of signatures required to extract useful information
far exceeds any practical requirements.

A third idea proposed in this paper is to consider a slightly different class
of convolution modular lattices, which we refer to as transpose NTRU lattices.
These lattices allow for more efficient signing than the standard NTRU lattices,
but have slightly different security considerations. See section 4.3 for details.

We now describe the organization of this paper. In section 2 we explain the
basic operations behind NTRUSIGN in practical engineering terms. In sections 3
and 4 we describe the mathematics underlying the NTRU technology. We begin
by describing the NTRU lattice! as a module of rank 2 over certain algebraic
rings. We then explain how we can still perform standard lattice tasks, such as
completing bases and solving APPR-CVP, by working over these rings.

Next, we turn to the security of NTRUSIGN. Due to page limitations, we
have been forced to considerably condense this analysis. A far more detailed
presentation can be found at [11]. We first consider an adversary who does not
use any signatures generated by the private key. In section 6 we show that
the underlying lattice problems are infeasible to attack (using the best known
methods) when N is suitably large.

We then turn our attention to an attacker who has access to a transcript
of signatures. In section 7 we show that any signature scheme based on solving
APPR-CVP using a (secret) short basis is vulnerable to a transcript attack af-
ter some finite number of signatures have been obtained, even in the random
oracle model. This has implications for both the GGH signature scheme [8] and
NTRUSIGN. In section 7.2 we specifically concentrate on the information leaked
by NTRUSIGN signatures, including discussion of the effectiveness of the per-
turbations of sections 5.2-5.3 as a countermeasure.

Further technical details are described in the appendices. Appendix A com-
pletes the proof of a theorem in section 4.1 and a lemma in section 4.2. Appen-
dices B and C extend the analyses of sections 6 and 7 respectively. Appendix D
details the requirement on the hash function used with NTRUSIGN. Appendix E
gives preliminary performance figures.

It should be noted that there have been several other attempts to create a
signature scheme using the mathematics underlying the NTRUENCRYPT cryp-
tosystem [12], but they succumbed to successful cryptanalysis in [6] and most

! Strictly speaking, the “NTRU module,” but we will continue to call it a lattice.



recently in [7]. The downfall of these approaches was that without knowledge of a
full basis of an NTRU lattice, additional structure needed to be added to the sig-
nature scheme. An attacker could exploit this structure, leading to both forgery
of individual signatures and key recovery. These attacks on previous signature
schemes either do not apply to NTRUSIGN or require an infeasible number of
signed messages to be effective; see section 7 for details.

2 NTRUSign: An Engineering Specification

In this section we outline the basic operations of NTRUSIGN. For engineering
purposes, NTRUSIGN is defined in terms of operations on the set R of poly-
nomials of degree (strictly) less than N and having integer coefficients. (The
parameter N is fixed.) The basic operations on these polynomials are addition
and convolution multiplication. Convolution multiplication * of two polynomi-
als f and g is defined by taking the coefficient of X* in f % g to equal

(f*9)h = > firg;  (O<k<N).

i+j=k (mod N)

In more mathematical terms, R is the quotient ring R = Z[X]/(X" —1). If one
of the polynomials has all coefficients chosen from the set {0,1} we will refer to
the convolution as being binary. If coefficients of the polynomials are reduced
modulo ¢ for some ¢, we will refer to the convolution as being modular.

We will also need to round numbers to the nearest integer and to take their
fractional parts. For any a € Q, let |a] denote the integer closest to a, and define
{a} = a— |a]. If A is a polynomial with rational (or real) coefficients, let | A]
and {A} be A with the indicated operation applied to each coefficient.

The basic operations of NTRUSIGN are as follows:

Key Generation — requires a source of (pseudo)random bits.

1. INPUT: Integers IV, q, d¢, dg, B > 0, and the string ¢ = “standard” or “transpose”.

2. GENERATE B PRIVATE LATTICE BASES AND ONE PUBLIC LATTICE BASIS:
Set 1 = B. While 7 > 0:
(a) Randomly choose f,g € R to be binary with dy, d, ones, respectively.
(b) Find small F,G € R such that f *x G — F x g = q. Sections 3 to 4.2 give
more detail on this process.
(c) If t = “standard”, set f; = f and f] = F. If t = “transpose”, set f; = f
and f! =g. Set h; = f7' % f mod ¢. Set i =i — 1.
3. PuBLic ouTPUT: The input parameters and h = hg = fgl * f§ mod q.
4. PRIVATE OUTPUT: The public output and the set {f;, f{, h;} fori =0...B.

Signing — requires a hash function H : D — R on a digital document space
D. The properties required of this hash function are explored in appendix D.
Signing also requires a norm function ||.|| : R — R and a “norm bound” N €

R. For (s,t) € R? we define ||(s mod ¢,7 mod ¢)|| to be the minimal value of
[|(s + k1q,7 + k2q)|| for kyi, ks € R.



1. InpuT: A digital document D € D and the private key {f;, f{, h;} for i =
0...B.
2. Set r = 0.
3. Set s = 0. Set i = B. Encode r as a bit string. Set mo = H(D||r), where
“||” denotes concatenation. Set m = my.
4. PERTURB THE POINT USING THE PRIVATE LATTICES: While 7 > 1:
(a) Set z = |~ (1/qym * 1], y = |(1/qym s fil, si =2 % fi +y = /1
(b) Set m = s; * (h; — hj—1) mod q.
(c) Set s =s+s;. Set i =i — 1.
5. SIGN THE PERTURBED POINT USING THE PUBLIC LATTICE:
Set x = |—(1/g)m = fol, y = [(1/@)m * fol, so = x * fo +y * fo, s = s + so.
6. CHECK THE SIGNATURE:
(a) Set b =||(s,s* h —mgmod q))]|.
(b) Ifb> N, set r =7+ 1 and go to step 3.
7. OutpuT: The triplet (D, r,s).

Verification — requires the same hash function H, norm function ||.|| and “norm
bound” N € R.

1. INpPUT: A signed document(D,r, s) and the public key h.
2. Encode r as a bit string. Set m = H(D||r).

3. Set b= ||(s,s* h —m mod q))]|

4. OUTPUT: valid if b < NV, invalid otherwise.

Remark 1. The recommended parameters
(N,q,ds.dy, B, t,N') = (251,128,73,71,1, “transpose”, 310),

where ||.|| is the centered Euclidean norm (section 3) appear to give a practical
and efficient signature scheme with 289 security. We henceforth use d = 72 to
denote the case where dy ~ d, ~ 72.

3 A View of NTRU: Background Mathematics

Underlying NTRU is the ring R = Z[X]/(X" — 1). There is a natural lattice of
dimension N associated with any element r = Zf;o r;X* € R, namely the one
generated by the rows of the following matrix:

To 71 ...TN—-1

It is easily checked that if M, and M are the matrices corresponding to r, s € R
then the matrix corresponding to r x s € R is given by M, M,; i.e. this matrix
mapping is a ring isomorphism since it respects both addition and multiplication.



For each q € Z and h € R, the set My, , = {(u,v) € R*|v =ux*h (mod q)} is
an R-module of rank 2. (Notice M}, 4 is also a lattice of dimension 2N.) Every
element of R has a unique representation as a polynomial r = Eﬁgl ri X%
Then a natural measure of size in R is the centered Euglidean norm of the
vector of coefficients [|r||2 = YN o' 72 — (1/N) (Zfi_ol ri) . The norm imposed
on elements of My 4, or more generally on (u,v) € R?, is the component-wise
Euclidean norm: ||(u, v)||? = ||u||* + ||v||?.

The element h € R is chosen so that (f,g) € M, for some f and g of
a special form. Assuming that f is invertible in R/qR, the lattice M} , will
contain (f,g) if we set h = f~! x gmod q. The specified form of f and g is
that they be binary elements of R in the sense that dy of the coefficients of f
(respectively d, of the coefficients of g) are set to 1 and the rest are 0. Thus the
norms of f,g € R and the norm of (f,g) € My, C R? are given by

Il =1/ds A =ds/N), gl = \/dg (L = dy/N), ||(f:9)ll = VIIFII* + llall*.

There is an obvious R-basis for M}, 4, namely {(1, h), (0, q)}. Since we know
that (f,g) € My, it is natural to ask if we can find another vector (F,G) € M, ,
so that the pair {(f, g), (F,G)} is also an R-basis for Mj, 4. This is possible if (and
only if) ged(resultant(f, X — 1), resultant(g, XV — 1)) = 1 — see section 4.1. A
supplemental paper to this one will explain how this condition can be relaxed.

4 NTRUSign Key Generation

4.1 Completing the Basis

The general strategy for completing the basis of M}, , is to project f and g down
to Z via the resultant mapping, which respects multiplication. The definition of
the resultant of f with XN — 1, Ry, is the product of f evaluated at all the
complex roots of X — 1. For basic properties of resultants, see for example [3,
Chapter 3]. We here use the fact that

N-1
Ry = H f(z") mod & € Z,
i=1

where #(X) = YN ' X' € R. Therefore we define p; = [[," f(z!) mod &,
and p, similarly. We then know that for some k¢, k, € Z[X],

prf + k(XN —1) = Ry = resultant(f, X" — 1) mod &,

peg + ky(XN — 1) = R, = resultant(g, X" — 1) mod &.
Assuming that Ry and R, are coprime over the integers, we can now use the

extended Euclidean algorithm to find a, € Z such that aRy + SR, = 1, in
which case we have

(aps)f + (Bpg)g =1+ k(XN —1).



Thus if we set F' = —gBp, and G = qapy, then
fxG—gxF =q. (1)

Theorem 1. Let f,g,F,G € R satisfy (1), leth = f~'xg (mod q), and let M}, ,
be the NTRU R-module generated by {(1,h), (0,q)}.

(a) {(f,9),(F,G)} form a basis for My, 4.
(b) If F',G' € R also satisfy f xG' — gx F' = q, then there is an element ¢ € R
sothat ' =F+c¢xf and G =G +cxg.

Proof. Elementary linear algebra. For details, see Theorem 2 in Appendix A.

If we view M}, 4 is as a matrix of generating rows, the above theorem can be
seen to be a unimodular change of basis.

<f g) _ <f (g—f*h)/q> <1h>
FG F(G—-Fxh)/q) \0q
With this notation we can define the discriminant of the R-module to be the
determinant of the matrix, which can be seen to be an invariant modulo multi-
plication by a unit of R.

Although the F" and G generated as in Theorem 1 complete a basis for M, 4,
they typically have very large coefficients. However, we can clearly remove any

R-multiple of the vector (f,g) from (F,G) and still have an R-basis. In the next
section we discuss how to find a good R-multiple by which to reduce.

4.2 Finding a Good Second Half for the Basis

We first discuss what we mean by APPR-CVP in the context of an R-module.

Definition 1. Let L be a R-module of rank r, and let m be an arbitrary element
m € (RX]/(XN —1))". A vector v € L is said to be a solution of APPR-CVP
if [[v—x|| < N for some suitably small N € R.

In this paper the most common instance of APPR-CVP that will be con-
sidered is the case when the rank is » = 2, and the point m will actually be
restricted to lie in m € R? C (R[X]/(XY — 1))2. It is important to note that
if v is a close vector to m then v + w is equally close to the vector m + w for
any w € My, ,. Thus if one is given an arbitrary point (mq,m2) € R? then it
suffices to find a close vector (wq,ws) € M}, 4 to the point (0, ms —mq *h) € R?.
For this reason we will only consider solving APPR-CVP on points of the form
(0,m) where m € R.

The approach we use to solve APPR-CVP in R-modules is equivalent to
Babai’s “inverting and rounding” approach [2] in lattices, i.e. we find the exact
rational coordinates to solve the problem, and then round the coefficients to
integers to obtain an R-module point.

For example, we can use this technique to reduce the (F,G) vector obtained
in section 4.1 from completing the basis of M}, 4. In Appendix A we show that



reducing the first coordinate F' will also usefully reduce the second coordinate
G. Therefore it suffices to find a k € R such that F,.q = ||F — k * f|| is small.
We know f~1 = (1/Ry)py € Q[X]/(XY —1), and if we could take k to be equal
tol=Fxf1eQX]/(XN —1), Freq would be 0. To obtain a k € R, we take
k = |11, the rounding of I to the nearest integer.>

Since we know F —Ilx f =F — ([l +{l})x f=0,1ie. F—kx f = {l}* f we
can use the following lemma to estimate the norm of the resulting vector.

Lemma 1. Let X4,...,Xn be independent continuous random wvariables that
are uniformly distributed in the range [~B/2,B/2], and let Y = X7 + -+ X%
Then the mean and standard deviation of Y are given by the formulas

NB? B? |N
wlY) = T and oY) = s V5

The proof of this lemma is left to appendix A, but we see that with B = 1 this
lemma implies that the expected Euclidean norm of [ is \/N/12 (the centered
norm will be very marginally smaller), and so using the pseudo-multiplicative
property ||[F — k = f|| = /N/12||f|| = /Nd;/18. Once we have reduced F
in this fashion we can simply set G = h * F'mod ¢ in the range (—q/2,q/2],
since we know G will also be small. One can further reduce the vector (F,G) by
performing weak reduction (i.e. taking dot products) with rotations of the (f, g)
vector, but in practice this appears not to be necessary. This therefore completes
the description of “good” basis completion in the NTRU lattice.

Finally, we note that the APPR-CVP technique extends naturally to R-
modules of higher dimension. For example in the case of M} , we are trying
to find z,y € R such that = * (f,9) +y * (F,G) =~ (0,m). Over Q[X]/(XYN —1)
the exact solutions are given by

-1
N fyg 1 G —g\ _[(—mxF mxf
(m,y)—(O,m) <FG> _E(O’m)<—F f>_< q 3 q )
thus we take z = |2'] and y = |y'] in which case

10,m) =% (f.9) =y x (FQ)| = [z} (f,9) + {y} = (RO ~ L{sﬁf’

assuming (F, @) is as above (i.e. after reduction by (f,g)).

4.3 The Transpose NTRU Lattice

The NTRU R-module is characterized by h = f~! x g mod ¢, where f and g are
binary elements of R. However, once we have obtained a collection of vectors

2 By the mapping between elements of R and N-dimensional lattices described in
section 3, we see that this is exactly equivalent to solving a simple N-dimensional
APPR-CVP lattice problem using Babai’s inverting and rounding approach. The
reason that the lattice corresponding to the matrix My is well reduced (which is
essential for Babai’s technique) is that f is a relatively sparse binary element of R
and thus highly orthogonal to its rotations.



f,g9, F,G such that f xG — F x g = q we can exchange the roles of F' and g, and
consider the R-module generated by the rows of the following matrix:

FE\ _(fFE=fxi)/q) (1N
<g G) a (F (G—g*h’)/q> <0 q) ’
where b/ = f~! * F mod q. We call the R-module generated by these rows the
transpose NTRU lattice. In the transpose lattice, the shortest known vector is
of the form (f,F) (i.e. with very small first coordinate, and reasonably small
second coordinate) rather than (f,g) (i.e. both coordinates very small), so the
lattice is significantly more efficient for signing operations, which now involve
only multiplications of m with binary elements of R.

For verification, we could define any norm we like in this R-module, but there
appears to be no advantage to changing from the standard centered Euclidean
norm. However, the fact that one coordinate of the signature will be much smaller
than the other affects transcript analysis; this is analyzed in section 7.

5 Signing and Verification Reviewed

5.1 The Case of No Perturbations (B = 0)

With the above mathematical background, we can see that, when B = 0, the
specification in section 2 is simply a description of solving APPR-CVP within the
norm bound N for the R-module M}, ,. The only “trick” is that in the NTRU
lattice it is sufficient to just give the first module coordinate s as the signature,
since all such module points are of the form (s,h * s + kq) and the k which
makes this as close to (0, m) as possible can be trivially obtained by a modulo ¢
reduction.

For NTRUSIGN with the parameters (N, q,d, N, B) = (251,128,72,310,0),
the typical experimental size of a signature is about 210.

5.2 Perturbation Techniques

In section 7 it is shown that general lattice based APPR-CVP signing algorithms
are not zero knowledge, and that an attacker can average a finite transcript
to obtain the private information. Section 7 shows that the averages involved
converge quite fast for a signing algorithm based on APPR-CVP alone. To make
these schemes practical, we must increase the length of transcript required.

For general ApPR-CVP signing algorithms, we propose that the signer first
hashes the digital document D to obtain a point m, and then “perturbs” this
point to m’ = m + € by adding a point e. € is different for each message and not
known to the verifier. The signer then signs m’; if € is small enough, a signature
on m’ will also be a valid signature for m.

At a minimum, this will slow down the convergence of any transcript averages.
However, for full effectiveness, we would like it to be impossible for an attacker



to distinguish between those parts of the averages due to the perturbations and
those parts due to the “true” signatures.

Therefore, in APPR-CVP signing algorithms, we propose that the perturba-
tions be generated using a signing process in one or more secret, lattices of similar
geometry to the public lattice. In the case of GGH, each signer would know a
good basis by for an entirely secret lattice. To sign, the document would be
hashed to a point m, then “signed” using b; to obtain my;, a point in the secret
lattice. Then m; would be signed with the good basis b of the public lattice.
If the signer knew B secret lattices, the good basis of each would be applied in
turn to the result of signing in the previous lattice.

This process will clearly multiply the average norm of signatures by VB,
and there is a limit to the number of perturbations that can be applied before a
validly-generated signature will in general exceed N. Designers of APPR-CVP-
based systems should ensure that N is sufficiently large, if possible, to allow the
use of at least one secret lattice.

5.3 NTRUSign with Perturbations

In the case of NTRUSIGN the use of perturbations is already specified in sec-
tion 2. Here, we start from a digest point (0,m) and find a close point (sg,tg)
to this in the lattice generated by {(1,hs), (0,q)}. We only need to find the first
coordinate, since tg = s * hp mod q.

For subsequent bases B; we now want to find the closest point (s;,t;) to
(Si+1,ti+1) in the lattice generated by {(1, h;), (0,q)}. Again, we can transform
(sB,tB) by a lattice vector to a point (0,m’), with

m' =tp — sp* hp_; mod q
= sp(hp — hp_1) mod ¢,

as in steps 4a and 4b of the signing process in section 2.

If we consider the first coordinate only, then the difference between the Bgiven
point and the lattice point is s; for each i = B,...,0. Thus we define s = .” ; s;,
and the final signature point is (s, hg * s mod q).

Perturbations increase signing time in two ways: first, by requiring the solu-
tion of APPR-CVP in several lattices; second, because they increase the average
norm of signatures and therefore the chance that the norm of a validly-generated
signature will exceed . The variable 7 used in signing allows us to recover when
a validly generated signature is too large. So long as the average norm of a validly
generated signature is less than N, no more than k attempts are needed to give
a chance of 1 —27% of successfully signing a message. We can therefore bound 7
above by 256 for practical purposes, and encode it in a single byte.

6 Security against a Transcriptless Adversary

6.1 Security of Private Keys

If the adversary is forced to work without the knowledge of any signed messages,
key recovery from the public information is equivalent to finding small vectors in



the NTRU lattice. This is the long standing hard problem that NTRUENCRYPT
is based on. In the transpose lattice the situation is even harder for the adversary
since the target small vectors (even after weighting) are considerably nearer the
Gaussian heuristic of the lattice (and hence harder to find in practice by lattice
reduction techniques). Of course any well reduced basis could be used for signing,
but finding such a basis is a very hard problem for large N.

The measurements of [10,11,17] imply that for the parameters (N, q,d) =
(251,128, 72), a lattice attack on the private key requires about 6.6+ 10*2 MIPS-
years. This corresponds to the strength of an 80-bit symmetric cipher [15].

6.2 Security against Forgery

We now consider the difficulty of forging a specific signature without knowledge
of the private key. The typical way to attack this [6] is to use a combination of
setting some coordinates and using lattice techniques to find others.

Consider a forger who picks a small s, with the hope that m — sh mod ¢ will
have all small coefficients too. On average these coefficients will be more-or-less
random modulo ¢, so using lemma 1 the average norm of an attempted forgery
will be g4/N/12. Since the asymptotic value of g is O(N), the forgery will have
norm O(N3/?), which is the same order of magnitude as the (good) signature
norm given at the end of section 4.2. For NTRUSIGN with no perturbations and
the parameters (N, q,d) = (251,128, 72), experimentally generated signatures
have an average norm of about 210. The average forgery norm can be calculated
to be 585.40. Thus the security of NTRUSIGN appears to lie in the relative
constants involved.

A more refined measure of the difficulty of forging a signature via this method
is reflected by the number of standard deviations between an average forgery
norm and the average norm of a true signature. Again using lemma 1 we find

2y _ - 12
p(|[Forgery|®) — p(||Good Sig|[*) /5N (1_ Nd> ~ 0.87VN

o (|[Forgeryl|?) V4 6q°

for the parameters in question. So for a fixed ratio of Nd/(6¢*) < 1, the number
of standard deviations from an average forgery to a true signature grows like
O(VN).

Further information on the security against forgery, e.g. when the above
techniques are used in conjunction with lattice reduction, is given in appendix B.

7 Transcript Leakage

7.1 The Security of appr-CVP Based Signature Schemes

In this section we consider the information available to an attacker who can
obtain a large number of signatures generated by the same key.

First, consider general signature schemes based on solving APPR-CVP, such
as GGH [8] and NTRUSIGN. Let us denote the private basis B = {by,...,b,},



and let B be the matrix with rows corresponding to these vectors. If H is the
matrix with rows corresponding to the public basis, then we know B = UH for
some unimodular matrix U € GL,(Z).

Any APPR-CVP-type signature constructed using B has the form s —m =
e1by + ...+ e,by,, where €y, ..., €, are (essentially) uniformly distributed in the
interval (—1/2,1/2). (This follows from the fact that s is is obtained from m by
a process of rounding. The distribution of the es is constrained by the fact that
the coordinates of (s —m) must be integers; however, experimentally, this distri-
bution proves to be indistinguishable from the uniform distribution.) Therefore,
a transcript is a random collection of points in a (centered) fundamental domain
for the lattice spanned by the basis vectors 5.

Thus we can view s as a vector valued random variable, and each signature in
the transcript is a sample value of that random variable. The question becomes
how to extract information about the basis from a transcript of signatures. Take
an arbitrary bilinear form F' : R”® x R” — R. We can compute the expectation
of F(s,s) as

n

E(F(s,s)) = Y E(eic;)F(b;,b;) o ZF b, by)

4,j=1

since E(ejej) = 1/12 if i = j and 0 otherwise.

The values E(F'(s,s)) are second moments, since F is a form of degree 2.
Thus an attacker can use a sufficiently long transcript to recover the second
moment values E(F'(s,s)) for every bilinear form.

However, the space of bilinear forms is itself a vector space of dimension n?,
i.e. every bilinear form F'is a linear combination of the bilinear forms F;; defined
by E;;j(x,y) = x;y;, so the maximum amount of information that an attacker
can obtain from second moments is the set of n? values E(Fj;(s,s)). We have

E(Fij(sas 12 ZFz] bkabk 12 Zbklbk]a

and these sums give 1/12 times the coordinates of the Gram matrix BB?.

As shown in [7] if the bases B and H have integral entries, then this leaks
the information UU? where U is the unimodular transformation matrix. This
contains essentially all the information about the basis U of Z™; indeed this
is effectively the internal information that the LLL lattice reduction algorithm
uses when reducing. So if lattice reduction techniques could reduce this basis
fully to the orthogonal basis Z™ then the implied transformation matrix would
leak U itself, and hence B. It is a fascinating open problem to find any results
about reducing lattices for which there is known to exist a completely orthog-
onal basis. Such lattices have been conjectured to be easier, but no results are
known. However, we do not wish the security of NTRUSIGN to rest on the con-
jectured hardness of this problem. This is discussed in the next section, as is the
generalization of the above computations to moments of higher order.



7.2 Transcript Leakage by NTRUSign

For NTRUSIGN without perturbations (B = 0), second moment information
reveals the entries of an associated 2N by 2N Gram matrix. As noted, the
problem of using this information to an attacker’s advantage remains unsolved.
Fourth moment information reveals the private key in polynomial time by a
combination of simple algebra and a method of Gentry and Szydlo [7].

Experiments have determined that for the usual NTRU lattice second mo-
ment information can be obtained with transcripts on the order of 10,000 signa-
tures. At least 100 million signatures are required to obtain the fourth moment,
if a certain associated square root problem can be solved. If the square root
problem is not solved, then the number of signatures required is increased con-
siderably beyond 100 million. In the transpose lattice, the signatures are smaller
and the moments converge faster to the appropriate integer values.

However, the use of correctly chosen perturbations adds two additional un-
known basis vectors which must be eliminated by an attacker, postponing private
key leakage until the next two even moments have converged. For example, with
NTRUSIGN parameters (N,q,d, B) = (251,128,72,1) (one private basis), we
find that obtaining the Gram matrix requires 6th moment convergence. The
transcript length needed for this appears to be at least 10'® signatures.

We would like to thank Craig Gentry and Mike Szydlo for pointing out that
the fourth moment analysis needed to be extended and included in the present
discussion. See appendix C for more details.

8 Conclusions and Open Problems

A fascinating open problem is to build an (efficient) lattice based signature
scheme that leaks no useful transcript information to an adversary (e.g. provably
zero knowledge). Note that such a scheme need not necessarily be based on the
closest vector problem.

Another fundamental research question to do with NTRU lattices, is to try
to utilize the factorization of N — 1. At present there is no evidence to suggest
that this has an influence on security. The fact that none of the subrings of Z[(],
other than Z, are Euclidean domains seems to be a serious obstacle.

A third fascinating problem is to devise a lattice reduction algorithm that
efficiently finds an orthogonal basis of a lattice when one exists, even in high
dimensions. This too seems a hard problem, since the ordering of the vectors is
critical to such an algorithm. Note however that with the use of perturbation
techniques the security of NTRUSIGN does not need to rest on the hardness of
this problem.

See appendix E for practical timing results of NTRUSIGN.
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A Further Analysis of NTRU Algebra

In this appendix we cover the pieces of mathematics that were a little too detailed
for the main report. We start by giving a a more detailed version of Theorem 1.

Theorem 2. Let f,g € R, let h= f~' % g (mod q), and let My, be the NTRU
R-module generated by {(1,h),(0,q)}.

(a) Suppose that F,G € R satisfy f *G — g F = q. Then {(f,9),(F,G)} also
form a basis for My, q.

(b) Suppose that F',G' € R also satisfy f « G' — g F' = q. Then there is an
elementc€ R sothat F' = F +cx f and G' =G + ¢ x g.

Proof. (a) It suffices to check that the following change-of-basis matrix B has
coefficients in R and has determinant equal to a unit in R:

B - ((1) Z) (1{: g) ! ((1) Z) (—GF —fg) _ ((G ~F /g <—g+§*h>/q>

The congruence h = f~! x g (mod q) ensures that (—g + f * h)/q € R, and the
equation f * G — g* F = q implies that F~' + G = f~! x g (mod q), so we also
get that (G — F x h)/q € R. This proves that B has coefficients in R, and one
easily calculates that det(B) = (f*G — Fxg)/q=1,s0 B! also has coefficients
in R. Therefore {(1,h),(0,q)} and {(f,g), (F,G)} generate the same R-module.
(b) First observe that F' « G = F « G’ (mod q), since F~' «G = F'"' « @' =
flxg=h (mod q). Set c = (F' * G —G' * F)/q. Then

F’*G*f—G’*F*f_F+F’*(q+g*F)—F*(q+g*F’)
q q

F4cxf =F+ =F"

Similarly, G + ¢ x ¢ = G, which completes the proof of the theorem.



We next give the proof of Lemma 1.

Proof. Let X be a random variable uniformly distributed in [-B/2, B/2]. Then

p(Y) = Nu(X?) = = o* dr =

Similarly,

o?(Y) = No?(X?) = N (u(X*) - u(X?)?)

2
N B2 1 [B/2 NB*
:—/ ztde — N —/ ?de| = .
B J_g) B J_p) 180
To see why it is sufficient to just reduce the first coordinate of (F, G) by (f, g)
in key generation, one should observe that f xG — g+ F = ¢q, so

|Gxg™t = Fx i = llalfe) ] ~

4
A1~ Nl

For the parameter set (N,q,d) = (251,128,72) this quantity is equal to 2.49,
which means that on average, corresponding coefficients of G * g~ ! and F % f 1
differ by only 0.157. Therefore, one obtains almost the same result whether one
rounds G * g~ ' or Fx f~1.

In practice however one obtains a smaller result by treating the two com-
ponents together. This corresponds to the standard lattice paradigm of mul-
tiplying a non-square basis by its transpose in order to be able to perform
Babai’s inverting and rounding technique. In this context the optimal k& to reduce
I(F,G) — kx (f,g) is

p— {f*FJrg*Gw
fxf+gxg |’
where f(z) = f(1/x) mod X" — 1 and similarly for g.

B Security against Forgeries

As mentioned in section 6 a forger could use lattice reduction to aid a preselection
process. Specifically, he could preselect somewhat fewer than NV coordinates and
use lattice reduction techniques to find the remaining coordinates. Thus suppose
that a forger preselects aN coordinates of s and ¢ for some choice of 0 < a < 1.
He then reduces a lattice of dimension (2 — a)N and determinant ¢Vt to
make the remaining (1 — a)N coordinates as small as possible.®> As « increases,
the fundamental ratio I%

% gt/ (2-0)

3 Notice that a = 0 corresponds to pure lattice reduction and a = 1 corresponds to
pure exhaustive search.



decreases, and when it passes below 1, the Gaussian heuristic says that it is very
unlikely for any solutions to exist.

The case N' = 310 gives a cut off point of o = 0.3835, which corresponds to
a lattice of dimension 407. Thus a lattice reduction attack cannot hope to be
reduced below dimension 407 (down from 502). At dimension 502, with a = 0,
experiments suggest a breaking time of greater than 103 MIPS years. Further, as
the dimension is reduced towards 407, the advantage gained from the reduction
in dimension is offset by the decrease in the Gaussian ratio, causing predicted
breaking time to increase.

C Further Transcript Analysis Experiments

In the particular case of NTRUSIGN without perturbations (B = 0), the sig-
nature description given in Section 7.1 translates into a collection of pairs of
polynomials

e1xf+exF e xg+exG

where the coefficients of €; and €5 are more-or-less randomly distributed in the
interval [-1/2,1/2].

Taking a simple average of a collection of signatures is not useful, since the
average will be zero (or some other simple expression that reveals no useful
information). However, there are other ways to take averages that introduce
higher moments. The subject of moment averaging attacks was discussed in [12-
14], and briefly mentioned in Section 7.1. Here we give more details.

Our tool here is the reversal ¢(X) := ¢(X~!) of a polynomial ¢(X). The
product ¢(X) = ¢(X) xc(X 1) of a polynomial with its reversal will often have a
nontrivial average. The coefficients of ¢(X) involve products ¢;¢;t, so the poly-
nomial é(X) is known as a second moment polynomial. Similarly, its square ¢(X)?2
is a fourth moment polynomial.

First, we look at the average of the second moment polynomials 5 from a
transcript of signatures s. These are equal to

S=(a*xfH+exF)x(E *xf+e&xF)
=6k f+é&xF+exéxfxF+exé*fxF.

As the number of signatures in the transcript goes to infinity, €; and €5 (es-
sentially) approach constants, and the cross terms (essentially) average out to
zero. Hence by averaging the second moment polynomials over a sufficiently long
transcript, an attacker may be able to recover the quantity

f—}—ﬁ’:f*f—}—F*F,

along with the remaining entries in the Gram matrix described in Section 7.1.
Experiments indicate that in order to reconstruct this value, it is necessary to
average a transcript consisting of on the order of 10,000 signatures.

The security of NTRUSIGN with no perturbations and transcripts of moder-
ate length thus depends on the Gram matrix problem being hard. If an attacker



cannot solve the Gram matrix problem efficiently, they need a longer signa-
ture transcript — as observed by [7] (and earlier, in a different context, [13]), a
transcript long enough to yield accurate limiting averages of the fourth power
moments should contain enough information to compromise the private key. In
fact, an average of 42 eventually converges to a linear combination of the three
quantities f2, F2, and f * F. If this limiting value can be determined sufficiently
accurately, then it can be combined with the second moment information to
recover f. Finally, the attacker would apply a method of Gentry and Szydlo [7]
to f and f* h to recover f in polynomial time.

Note that the averages required for this attack to proceed will converge quite
slowly. It has previously been noted [13], and extensive experiments in the present
case have confirmed, that a practical attack would require more than 100 million
signatures — possibly much more, if an attacker cannot solve an N-dimensional
square-rooting problem described in [11].

We would like to thank Craig Gentry and Mike Szydlo for emphasising the
importance of the fourth moment analysis. They also suggested some possible
variations on second moment attacks by restricting to subtranscripts where the
norms (or coefficients) of signatures meet certain boundary conditions. We have
investigated this approach; it appears to require transcripts of at least similar
length to fourth moment based attacks.

D Hash Function Considerations

When signing, we map a digital document D to a message representative (0,m).
This mapping is actually a two stage process. First a standard secure hash
function H; is applied to D to give -bit output H; (D). Next a (public) function

H, : (Z/22)° — (Z./qZ)N

is applied to Hy(D) to yield the message digest m = Hy(H;(D)). We require
that the mapping Hs is “reasonably” uniform into the the set of ¢*~ possible

ms. For example, one possible instantiation of Hy, Hy for N = 251, ¢ = 128 is
given in [5]. Here H; is SHA-1. H, is defined by taking

D' = SHA-L(H, (D)[0) || SHA-1(H, (D)|[1) ...,

where D’ is at least N bytes long. Each coefficient of m is then generated by
taking the low-order log,(q) bits of the corresponding byte of D’.

We identify two potential attacks related to this mapping. First, if two digital
documents D and D' map to two message representatives m and m' which are
very close together, and a signer can be induced to sign both of them, then
there the difference of the signatures might be a small element of the underlying
lattice, and could reveal the private key [16]. Such a pair of documents would
endanger all NTRUSIGN implementations using a common mapping H.

Alternatively, an attacker can attempt direct forgery by generating lattice
points of the form (u,uh mod q) for arbitrary (small) w. In this case, the at-
tacker generates a large set £ of lattice points and a large set M of message



representatives, and checks to see if one of the lattice points in £ signs one of
the message representatives in M.

Both of these problems are analyzed in detail in [11]. For the key recovery
attack, we find that for (NV,q) = (251,128), an attacker will have to generate
2205 distinct messages before there is a 50% chance of finding two message rep-
resentatives within B, = 10 of each other.

For the collision attack, we note that each lattice point generated signs all
points within a radius NV. An attacker who generates n lattice points can sign at

1+N/2)
standard birthday paradox type argument shows that if the attacker generates n
points and k messages, her chance of getting a collision is 50% when kn ~ 1/C.
Thus, for the parameters (N, q, ') = (251,128,310), an attacker will have to
generate 280 lattice points and 28° message representatives to have a 50% chance
of forging a signature by this method.

. . NJ2 N N
most a fraction n - C' of all potential messages, where C' = F(’Ti (7) A

E Performance

Table 1 compares the performance of NTRUSIGN, ECDSA and RSA on an
800 MHz Pentium machine. RSA times are from [4] and were obtained on the
same machine as the NTRUSIGN times. ECDSA times are from [9] and were
scaled relative to the clock speed of the machine used in that paper. NTRUSIGN
figures are obtained in the standard lattice with no perturbations; the figures
for transpose lattice with one perturbation will, however, be comparable.

NTRUSIGN-251 ECDSA-163|RSA-1024
Keygen (us) 180,000 1424 500,000
Sign (1s) 500 1424 9090
Verify (us) 303 2183 781

Table 1. Comparison of NTRUSIGN, ECDSA, RSA



