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Background on ∞-category theory. My reserach lies within the field of homotopy theory, with
an especial focus on problems with an ∞-categorical flavor. Homotopy theory is the branch of
mathematics concerned with structures arising from and applications of invariants which do not
distinguish between “weakly equivalent” objects of some species – classically, topological spaces, as
homotopy theory emerged from the field of algebraic topology. It is almost always desirable that
structure-preserving functions between objects of interest induce corresponding functions between
invariants – that is to say, in the language of category theory, that the invariants be functorial –
and it was to formalize this behavior that category theory was introduced.

Because the weak equivalences which appear in homotopy theory are not in general isomorphisms
in the 1-categorical sense but rather a proper generalization thereof, it can be useful to keep track
of data relating the composite of a pair of “weakly inverse” morphisms to the respective identity
morphisms – witnessing the fact that the pair were “weakly inverse” – and this leads directly to
the eponymous homotopies between morphisms, to be conceptualized as “paths” connecting two
morphisms. In fact, there arise further homotopies between homotopies and so on, all of which
it is fruitful to keep track of. Grothendieck’s celebrated homotopy hypothesis postulates that the
correct structure for recording this data is a space, whether in the guise of a topological space, a
simplicial set, or some other model, and categories in which the collections of parallel morphism
carry this spatial structure are called ∞-categories in reference to the existence of homotopies
between homotopies and so on.

The first technology for working with categories equipped with this homotopical structure was
Quillen’s model categories, introduced in [23], and an extremely robust theory thereof was devel-
oped in books such as [15], [16], and others. Beginning in the 1970s with Boardman and Vogt’s
“weak Kan complexes”, introduced in [6], and especially since the beginning of the 21st century
with, for example, [25] and [5], other technologies have been developed and compared to work with
∞-categories. These definitions have a reputation for abstruseness, but they have the payoff of
significantly streamlining many proofs, and – once the foundations have been dealt with – largely
succeed in restoring to ∞-category theory the sleekness enjoyed by many 1-category-theoretic ar-
guments, and a great deal of ∞-category theory has been fleshed out in works such as [19], [18],
[20], [26], [10], and others.

Background on representation stability and functor calculus. My dissertation research
introduces a new flavor of functor calculus which is an extension of representation stability to
stable ∞-category theory (note that the term “stable” regrettably has two distinct meanings here).

Denote by FI the category of finite sets and injections and by QVect the category of rational
vector spaces. A functor FI → QVect, called an FI-module, determines a sequence of representa-
tions of the symmetric groups Sn by restricting the functor to automorphisms. Representation
stability is a phenomenon enjoyed by many FI-modules of interest – especially including the coho-
mology of many moduli spaces and configuration spaces – which ensures that the representations
determined by the FI-module eventually follow a certain predictable pattern. The theory has its
origins in [8], was articulated in the language of FI-modules in [7], and in [9] the authors show that
over Noetherian rings, an FI-module is representation stable and objectwise finite-dimensional if
and only if it is finitely generated.

On the other hand, functor calculus refers to a family of techniques within homotopy theory
concerned with approximating functors between certain categories by other, more well-behaved
“polynomial” or “n-excisive” functors. The criterion for a “well-behaved” functor is always that
it send certain diagrams in the domain category to limit diagrams. By far the most prominent
member of this family of techniques is Goodwillie calculus, originally develped by Tom Goodwillie
in [11], [12], and [13]. In its modern incarnation, captured in [18] and [4], Goodwillie calculus
is concerned with functors between “differentiable” ∞-categories. Today, Goodwillie calculus has
developed into a vast and fruitful subfield of homotopy theory with an array of important results
and applications too numerous to list here.

Other flavors of functor calculus include orthogonal calculus, introduced by Michael Weiss in [29]
and dealing with functors from the category of Euclidean spaces to topological spaces; embedding
calculus, developed by Tom Goodwillie and Michael Weiss and introduced in [28] and dealing
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with space-valued presheaves on categories of manifolds and embeddings; and cotriple calculus,
introduced by Brenda Johnson and Randy McCarthy in [17] and dealing with functors from pointed
categories to abelian categories. It is to orthogonal calculus that my FI-calculus is most similar.

FI-calculus. Fix V a stable, presentable ∞-category. A stable ∞-category is the ∞-categorical
analog of an abelian category, and presentability is a (co)completeness condition together with a
set-theoretic tameness condition. I define a standard n-cube to be a diagram in FI, determined by
a pair of sets S ⊆ S′ such that |S′ \S| = n and consisting of all intermediate sets S ⊆ T ⊆ S′ along
with the inclusion morphisms. I call a functor FI → V an “FI-object” and denote the ∞-category
of FI-objects FIV. I define an n-excisive FI-object to be one sending all standard n + 1-cubes to
limit diagrams (also called “cartesian cubes”) and denote the ∞-category of n-excisive FI-objects
ExcnV. I say that an FI-object E is excisive if there exists some n ∈ N such that E ∈ ExcnV1. I
show, in analogy to representation stability, that an FI-object is n-excisive if and only if it is left
Kan extended from FI≤n, the full subcategory of FI spanned by sets of cardinality at most n.

As in other flavors of functor calculus, there is a “Taylor tower” of universal n-excisive approx-
imations PnE under a given FI-object E. I call an FI-object E n-homogeneous if E is n-excisive
and Pn−1E ∼= 0 and prove an equivalence

HomgnV ' SnV
between the ∞-categories of n-homogeneous FI-objects and of Sn-objects in V – a result with
direct analogs in orthogonal calculus and in Goodwilllie calculus. The layers of the Taylor tower
of a given E ∈ FIV, the FI-objects

DnE
def
= fibPnE → Pn−1E

are n-homogeneous and hence determine Sn-objects, which I call the Taylor coefficients CnE of
E.

Surprisingly, there exist natural transformations between the Taylor coefficients of an FI-object
making those coefficients – a priori only a symmetric sequence – into an FI-object themselves.
The first main question of my dissertation is to establish how much information can be recovered
from these Taylor coefficients along with their FI-object structure. To address this question in full
generality, I introduce the ∞-category

ExSeqV def
= lim · · · Pn−→ ExcnV

Pn−1−→ · · · P0−→ Exc0V
of “formal Taylor towers,” which I call excision sequences. ExSeqV is the natural domain of
the aggregate Taylor coefficient functor C, and I prove that C determines an equivalence of ∞-
categories

C : ExSeqV ' FIV
I also prove that any FI-object that is an iterated limit of excisive FI-objects is the limit of its own
Taylor tower, and I call such FI-objects analytic and denote the ∞-category of these FIVAnly. I
obtain a restricted equivalence

C : FIVAnly ' FIVTors

where FIVTors consists of those FI-objects which are colimits of finitely supported FI-objects.
My second main result deals with the specialization to the case V = SpQ of functors from FI to

the ∞-category of rational chain complexes and establishes FI-calculus as a direct generalization
of representation stability to the setting of stable ∞-categories. I show that if an FI-chain complex
E is n-excisive for some n ∈ N, then its homology is representation stable, that if an FI-module
E : FI → QVect is representation stable, then there exists n ∈ N such that, when E is considered
as a discrete FI-chain complex, E agrees with PnE outside of a finite range, and finally that
the Sn-representations appearing in the stable range of the homology of an n-excisive FI-chain
complex E can be directly read off from the homology of the coefficient FI-chain complex CE.
These results largely follow from an explicit computation of DnFn, where Fn

def
= Q[FI(n,−)], in

terms of a combinatorially defined poset.

1This conflcts with some literature in which “excisive” is a synonym for “1-excisive”.
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Relation to other work. In [27], Steven Sam and Andrew Snowden prove an equivalence between
the derived categories of tails of finitely generated rational FI-modules and of finite-dimensional,
finitely supported rational FI-modules. In [22], Peter Patzt and John Wiltshire-Gordon develop
new invariants which form a category FJ and show that for any commutative ring R, the category
of tails of representation stable FI-R-modules is equivalent to the category of finitely supported FJ-
R-modules. Patzt and Wiltshire-Gordon’s work generalizes that of Sam and Snowden by dropping
the finiteness condition, allowing for Q to be repalced by any commutative ring, and establishing
an equivalence not of derived categories but of abelian categories. This comes at the cost of using
the category FJ, which is much significantly more complicated than FI.

My result that
C : FIVAnly ' FIVTors

is a direct generalization of that of Sam and Snowden, who seem to construct the coefficient func-
tor in a different guise. My result can also be viewed as a strengthening of that of Patzt and
Wiltshire-Gordon, although it is not a direct generalization, because Patzt and Wiltshire-Gordon’s
tail invariants are different from my Taylor coefficients. Like Patzt and Wiltshire-Gordon, my result
generalizes that of Sam and Snowden by removing the finiteness requirements, considering functors
from FI to categories other than QVect, and lifting an equivalence of derived categories to an equiv-
alence of ∞-categories (Patzt and Wiltshire-Gordon do not use ∞-categories, but their equivalence
of abelian categories yields an equivalence of ∞-categories of chain complexes). Also like Patzt and
Wiltshire-Gordon, I prove an explicit dictionary translating between Sn-representations appear-
ing in the stable range of an FI-module and its FI-module of coefficients (FJ-module of invariants,
respectively).

My result also extends that of Patzt and Wiltshire-Gordon by considering not just excisive
FI-objects (which are essentially generalizations of representation stable FI-modules) but analytic
ones and by allowing for FI-objects which take values not just in ∞-categories of chain compexes
but in ∞-categories of spectra or in any other presentable stable ∞-category, thereby facilitating
applications involving extraordinary cohomology theories. My result also benefits from using a
much simpler category of invariants – FI – than that used by Patzt and Wiltshire-Gordon – FJ.

The extension from excisive FI-objects to analytic FI-objects in particular is significant because
every FI-object whatsoever admits a universal approximation by an analytic FI-object, which can in
turn be fully described by its FI-object of Taylor coefficients. This means that the technology of my
FI-calculus can be applied to any FI-object – even one whose homology never satisfies representation
stability – to describe its long-term representation-theoretic behavior.

Moreover, it is usually of interest to give explicit bounds on the stable range of a representation
stable FI-module and sometimes also to calculate the behavior of a representation stable FI-module
outside of its stable range. An FI-object that is n-excisive may have a stable range in the sense
of representation stability that does not begin until 2n. But such FI-objects should nonetheless
be considered as “stable” as can be, and their behavior before their “stable range” can still be
determined from their Taylor coefficients. This suggests that in addition to calculating the stable
ranges of the homology of an FI-chain complex or FI-spectrum that it may be useful to consider
the discrepancy between an FI-object and its analytic approximation. It may be the case that
some FI-objects of interest are much more well-behaved in the sense of agreeing with their analytic
approxmations (and therefore being well-described by their Taylor coefficients) than can be seen
just by considering the stable ranges of their homology FI-modules. This approach represents
a generalization of the “higher-order representation stability” introduced by Jeremy Miller and
Jennifer Wilson in [21].

Future directions. Another of the chief benefits of the ∞-categorical perspective on representa-
tion stability is the wide range of new avenues it opens up for further research. To start, FI-calculus
is merely the terminal example in a vast family of functor calculi which can be set up using my
methods. Given any Cartesian fibration

ϖ : D → FI
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it is possible to define standard n-cubes in D, giving rise to n-excisive functors, Taylor towers, and
Taylor coefficients

CnE : ϖ−1 (Sn) → V
Examples include ∞-categories of totally ordered finite sets, partially ordered finite sets, cyclically
ordered finite sets, and directed or undirected graphs, as well as more involved examples: e.g. given
a manifold M , the ∞-category MBraid with objects finite sets of distinct marked points in M
and morphisms given by braids from one set of points to another. When M = R2, this recovers
the category of braids which is captured as an example by Oscar Randal-Williams and Natalie
Wahl in [24]. Further, when ϖ has a symmetric monoidal structure compatible with its Cartesian
structure, we can refine our notion of excision so that degrees of excisiveness are indexed not just
by natural numbers but by sets of objects of D. I am eager to investigate the structure carried
by the generalized Taylor coefficients that arise in these settings and to determine to what extent
these generalized Taylor coefficients succeed in describing analytic functors D → V .

The ∞-categorical perspective on representation stability also invites investigation of the in-
teractions between representation stability and Goodwillie calculus. In [3], David Barnes and
Rosona Eldred investigate the interaction between orthogonal calculus and Goodwillie calculus by
composing functors of interest in Goodwillie calculus with the functor

V 7→ SV : J → S
sending a vector space to its one-point compactification, where J is the ∞-category of Euclidean
spaces and S is the ∞-category of topological spaces. I am interested in similar questions: given
stable presentable ∞-categories V and W and functors

E : FI → V
and

F : V → W
how do the Taylor coefficients of E and F (in the FI and Goodwillie sense respectively) relate to
the coefficients of F ◦E? Is there some sort of chain rule that describes their relationship? Is there
any relationship between such a chain rule and that described by Greg Arone and Michael Ching
in [2]? Going in the other direction, given a functor

G : FI → W
we can ask what the Taylor coefficients of E and G tell us about the Goodwillie tower of LanE G.

Another approach to blending FI-calculus with Goodwillie calculus is to replace the condition
that the codomain category V be stable with the requirement that it be n-excisive for some n ∈ N in
the sense of Heuts in [14]. As n increases, this allows for us to approach the general, unstable case
while retaining enough tameness in the codomain category that much of the technology developed
in my dissertation will still apply. When V is an ∞-topos (also called an ∞-logos in this context),
I strongly expect that FI-calculus fits into the framework of “generalized Goodwillie towers” de-
veloped by Mathieu Anel, Georg Biedermann, Eric Finster, and Andre Joyal in forthcoming work.
This would immediately establish that the ∞-categories HomgnV are not-necessarily-pointed sta-
ble ∞-categories, and one would hope to establish a reconstruction theorem analogous to that of
Arone and Ching in [1].

I plan to carry out the research outlined above in the immediate future. Ideally, each phase
will integrate the last, so that I ultimately obtain a functor calculus for functors D → V for V
not necessarily stable along with theorems relating this functor calculus to Goodwillie calculus.
Furthermore, as previously discussed, FI-calculus is highly analogous to Weiss’ orthogonal calculus
– a somewhat fanciful interpretation is that FI-calculus is orthogonal calculus with the field R of the
rationals replaced by F1, the speculative field with one element. In my dissertation, I prove results
which do not have known analogs in orthogonal calculus, but which could plausibly be extended
to that setting. I intend to explore these possibilities in the hopes of deepending the theory of
orthogonal calculus with insights and inspirations from FI-calculus.
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