
MATH 285y TROPICAL GEOMETRY SPRING 2013
PROBLEM SET 2, DUE TUESDAY MARCH 5

1. Let

A =


1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1


be a matrix over K = C{{t}} and let M be the matroid of A, with ground set {0, 1, 2, 3, 4, 5}
corresponding to the columns of A.

(a) As in class, let J be the homogeneous linear ideal in K[x0, . . . , x5] whose projective variety
is the rowspan of A in P5. Compute J . List the circuits of J and of M , respectively.

(b) Draw the Hasse diagram of the lattice of flats of M , and show that the flats of M are in
correspondence with partitions of the set {1, 2, 3, 4}.

(c) Sidenote: given the lattice of flats of a matroid M , how would you recover the data of its
circuits; its independent sets; its bases?

(d) As in class, let I be the image of J |x0=1 in K[x±1 , . . . , x
±
5 ]. Draw the tropical variety of I as

well as you can; prove that it is homeomorphic to a cone over the Petersen graph.

(e) For each i = 0, . . . , 5, let Hi be the plane in P3
K with normal vector ai, where ai denotes the

ith column of A. Let X = P3
K \ ∪Hi be the complement. Show that the map X → (K∗)5

sending
x = (x0 : x1 : x2 : x3) 7→ (a0 · x : · · · : a5 · x) ∈ (K∗)6/K∗ = (K∗)5

is injective, and identify its image with V (I). Check that the collection of intersections of
the hyperplanes Hi, ordered by inclusion, form a partially ordered set that is dual to the
lattice of flats of M(A). (Thus the tropical variety records the combinatorics of “what’s
missing” from X.)

2. We saw in class that G2,4 modulo its lineality space is a 1-dimensional complex consisting of
1 vertex and 3 rays, corresponding to the four different ways that a tropical Plücker vector
(P12, . . . , P34) ∈ R6 can achieve the minimum among

{P12 + P34, P13 + P24, P14 + P23}
at least twice.

For each of these four combinatorial types, give an example of a 2 × 4 matrix whose tropical
Plücker vector achieves this type, and draw a picture of the corresponding tropicalized line
in R3.

To draw these pictures, it could possibly help to note that the circuits of any linear ideal form a
tropical basis. We proved this in the case of valuation 0 coefficients; see 4.2 of Speyer’s “Tropical
linear spaces” for the general case. Alternatively, now is a great time to familiarize yourself with
Anders Jensen’s software gfan, whose basic functionality can be accessed through sage.

3. Given finitely many polynomials f1, . . . , fs ∈ Q[x1, . . . , xn], how would you compute whether the
ideal I = 〈f1, . . . , fs〉 contains a monomial? Your description should be specific enough that it
could be implemented in a computational algebra package like Macaulay2.
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4. Extend tropical Bézout’s theorem to stable intersections as follows.

(a) Prove that the stable intersection C ∩stab D = limε→0C ∩ (D + εv) of two tropical plane
curves is well-defined, i.e. independent of the choice of a generic vector v.

(b) Define the multiplicity of a point p in the stable intersection of two tropical plane curves
C ∩stab D; ensure that your definition is independent of any choice of perturbation. Try
your definition on each of the intersections below.

H0,0L

H0,0L H1,0L
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(c) Deduce immediately, using last week’s homework, that two plane tropical curves C and D
of degrees c and d stably intersect in c · d points, counted with multiplicity.

5. Given a (trivially valued) field K, a polynomial f =
∑
cux

u ∈ K[x±1 , . . . , x
±
n ], and w ∈ Rn, recall

that inw(f) =
∑
cuix

ui , where the sum is over all ui ∈ Zn such that w · ui is minimal. This
exercise outlines how to compute inw(I).

(a) Given any monomial ordering ≺, show that in≺ inw I = in≺w I.

(b) Show that if {g1, . . . , gs} is a Gröbner basis for I with respect to ≺w, then inw gi is a Gröbner
basis for inw I with respect to ≺.

(c) Conclude that inw I = 〈inw g1, . . . , inw gs〉.

2


