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1. Vector Field Handwaving

We first make some thoroughly non-rigorous and nonstandard definitions.

Definition 1.1. Let X be a smooth manifold. A vector field is a smooth assignment of a vector

to each point. A vector bundle is a module of vector fields, with the coefficient ring being the

smooth functions.

We think of a vector bundle as a rule for what vectors we’re allowed to assign to points.

Example 1.2. The tangent bundle of X consists of all vector fields for which the vector at each

point is tangent to X.

Example 1.3. Consider R2. We can take our rule to be the assignment of a vector in Rn to each

point. When n = 2, we get the familiar vector fields on R2 of calculus. Something interesting

happens when n = 1: the information of a vector field is exactly that of a smooth function, so

our module is C∞(R2) as a module over itself.

Definition 1.4. When the vector fields of a vector bundle have one dimension of vectors allowed

at each point, we call the vector bundle a line bundle. When the definitions are rigorously set

up, it is immediate that being a line bundle is equivalent to the following property: for any

small enough open set, the information of a vector field on that open set formed according to

the rules of our bundle is exactly the information of a smooth function.

Example 1.5. When we consider the circle S1, there are two line bundles to keep in mind. The

first is the tangent bundle. The second can be obtained as follows: stick S1 into a Mobius band,

running around the middle.
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We let the vector fields consist of a choice of vector that points along the mobius band

perpendicular to the circle. See the illustration (stolen off the internet) - the vectors are allowed

to go in the directions of the black lines. We will call the resulting module MT .

Because of the twisting of the vector bundle, no vector field associated with this bundle avoids

having a zero vector. On the other hand, if we consider a smaller open set of the circle, with

the same rule, we can ‘untwist’ and see that vector fields on this smaller open set are equivalent

to smooth functions.

Example 1.6. A more sophisticated pair of examples are given by considering projective n-space

Pn
R. We obtain Pn

R by collapsing each line through the origin in Rn+1 to a point. There is thus

a natural line bundle called O(−1), the tautological bundle, defined by the rule that to each

point in Pn
R we may assign a vector lying in the line that was collapsed to it. Alternatively, we

can require that to each point we assign a linear functional on the line corresponding to that

point - that is, to each point, we assign a dual vector (we will not address the question of what

a ‘smooth choice of dual vectors’ actually means). This is referred to as O(1).

2. On Affine Schemes

Here, we follow Eisenbud.

Modules over a ring R serve the role of generalized vector bundles on SpecR. Some are more

like vector bundles than others. Those that are analogous to line bundles are called (in the

parlance of Eisenbud - this terminology is not widespread) invertible modules.
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Definition 2.1. A finite R-module I is called invertible if for every prime P of R, we have an

isomorphism of RP modules IP ∼= RP .

To see the analogy with line bundles, remember that RP is the collection of functions near

the point P in SpecR.

Definition 2.2. For any R-module M , let M∗ := HomR(M,R).

While MT failed to be isomorphic to the module of smooth functions, it turns out there is a

good way to ‘untwist’ it, or any line bundle. An analogue of the following theorem is usually

proven purely geometrically, in the much more general context of locally ringed spaces, from

which the algebraic result here follows as a corollary.

Theorem 2.3. Let R be a Noetherian ring. An R-module I is invertible if and only if the map

µ : I∗ ⊗ I → R with ϕ⊗m 7→ ϕ(m) is an isomorphism.

Proof. Recall that a map of modules is injective (or surjective) if and only if it is locally injective

(or surjective): for each prime P it is injective (or surjective) after localizing at P .

Suppose that I is invertible. Pick any prime P and let ι : RP → IP be an isomorphism.

Since localization distributes across tensor products, we have (I∗ ⊗ I)P = I∗P ⊗ IP . Then we

have the following sequence of isomorphisms.

I∗P ⊗ IP R∗P ⊗RP RP ⊗RP RP

ϕ⊗m (ϕι)⊗ ι−1(m) (ϕι(1))⊗ ι−1(m) ι−1(m) ·ϕ(ι(1))

∼ ∼ ∼

Since ι−1(m) ·ϕ(ι(1)) = ϕ(ι(ι−1(m)) = ϕ(m), the composition is exactly µ, so µ is an isomor-

phism.

Conversely, suppose that µ is an isomorphism. We wish to exhibit an isomorphism IP ∼= RP

for each P , and then show that I is finitely generated. Let 1 = µ(
∑

i ϕi ⊗ ai). Since 1 6∈ P ,

we must have that some ϕi(ai) 6∈ P . Letting a ∈ IP be (1/ϕi(ai)) · ai, we have ϕi(a) = 1,

from which it is immediate that ϕi is surjective. Letting σ : IP → RP be evaluation at a, that

σ(ϕi) = 1 shows σ is surjective, so we obtain two short exact sequences.

0→ kerϕi → IP → RP → 0

0→ kerσ → I∗P → RP → 0

Splitting the first sequence by 1 7→ a and the second by 1 7→ ϕi demonstrates that we have

decompositions IP = kerϕi ⊕RP · a and I∗P = RP ·ϕi ⊕ kerσ. Thus

I∗P ⊗ IP ∼= (RPϕi)⊗ kerϕi ⊕ (RPϕi)⊗ (RPa)⊕ kerσ ⊗ kerϕi ⊕ kerσ ⊗ (RPa)
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Now µ vanishes on the elements of (RPϕ)⊗ kerϕ ∼= RP ⊗ kerϕi
∼= kerϕ, but µ is an isomor-

phism, so kerϕi = 0, demonstrating that ϕi is injective, and therefore an isomorphism.

Finally, let ι : (a1, . . . , an) ↪→ I be the inclusion map. Pick any P . Since IP ∼= RP via a

map taking some ai to a generator of RP , that ai generates IP , so ιP is surjective. Since P was

arbitrary, ι is surjective. �

Line bundles, and therefore invertible modules, are critical in the theory of schemes, in

part because there is a tight connection between line bundles and maps into projective space

(alternatively, one could argue that projective space is important in algebraic geometry because

of its connection to line bundles). We will see a key example in Sam’s presentation on Kahler

differentials. On a calculational level, we see from this that the isomorphism classes of invertible

modules of a Noetherian ring R form an abelian group, with identity R.

Definition 2.4. Let R be a ring, with S its set of non-zero divisors. We define K(R), the total

fraction ring of R, to be S−1R.

Definition 2.5. We call a finitely generated submodule of K(R) a fractional ideal of R.

The following theorem, which we will not prove, suggests another way of thinking of invertible

modules: they have something to do with restrictions on zeros and poles.

Theorem 2.6. Let R be a Noetherian ring and I be an invertible module. Then there is some

fractional ideal Q so that I ∼= Q.

A quick and dirty estimate of the correct intuition is that the ‘numerator part’ corresponds

to requiring that functions have zeroes of specified orders on codimension one subsets, while

the ‘denominator part’ corresponds to allowing functions to have poles of specified orders on

codimension one subsets.


