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This closely follows Chapter 7 of Stanley’s Enumerative Combinatorics.

1 Introduction

Let f(x1, x2, . . . , xn) ∈ R[x1, x2, . . . , xn] be a polynomial with coefficients in some ring R.
We say f is a symmetric polynomial if for all permutations σ ∈ Sn, f(x1, x2, . . . , xn) =
f(xσ(1), xσ(2), . . . , xσ(n)).

Symmetric polynomials are an important part of mathematics: they come up in Galois
theory, since the coefficients of a polynomial are a symmetric polynomial evaluated at the
roots of the polynomial, for example.

In that case, the symmetric polynomials all have the same number of variables. How-
ever, for all n ≥ 2, if e1(x1, x2, . . . , xn) =

∑n
i=1 xi, e2(x1, x2, . . . , xn) =

∑
1≤i<j≤n xixj, and

p2(x1, x2, . . . , xn) =
∑n

i=1 x
2
i , we have the identity

(e1(x1, x2, . . . , xn))2 = p2(x1, x2, . . . , xn) + e2(x1, x2, . . . , xn).

This suggests that there is something to these polynomials that doesn’t depend too much on
the number of variables, providing some motivation for considering the ring of formal power
series in countably many variables, R[[x1, x2, . . .]].

We let the set of homogeneous symmetric functions of degree n, Λn
R ⊂ R[[x1, x2, . . .]], be

the set consisting of all formal power series f such that the degree of each monomial of f is
n and f is invariant under any permutation of the natural numbers, that is, f(x1, x2, . . .) =
f(xσ(1), xσ(2), . . .).

As a matter of notation, given a (possibly infinite) tuple of integers which add up to n,
α = (α1, α2, . . .), we write xα to mean xα1

1 x
α2
2 · · · .

Then, we define the ring of symmetric functions as ΛR =
⊕∞

n=1 Λn
R. Note that this implies

that symmetric functions have bounded degree. In addition, ΛR has a R-algebra structure,
since symmetric functions can be multiplied. From now on, we’ll be working over Q, so we’ll
just write Λ for ΛQ. In this case, Λ is a vector space.
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2 Monomial Symmetric Functions

One important aspect of symmetric function theory is finding bases for Λ. To do this, we
have to talk a bit about partitions.

We say a nonincreasing sequence λ = (λ1, λ2, . . . , λk) is a partition of n ∈ N if λi ∈ N for
all i and

∑
i λi = n. We’ll often write a partition omitting the parentheses and commas, like

λ = λ1λ2 . . . λk. We abbreviate the sentence “λ partitions n” using the symbols λ ` n.
Each partition λ has a Young tableau associated to it, which is perhaps best illustrated

with an example. Given the partition 743321 of 20, the associated Young tableau has 7
boxes in the top row, 4 in the second, 3 in the third, and so on.

Partitions are important to the study of Λ because bases of Λ are often indexed by the set
of all partitions of all natural numbers.

One basis of Λ indexed by partitions is the set of monomial symmetric functions. We
define mλ =

∑
α x

α, where λ ` n for some n, and α ranges over all distinct permutations of
λ.

Let M = {mλ} be the set of monomial symmetric functions. To see that M spans Λ as a
Q-vector space, note that if a homogeneous symmetric function of degree n contains a term
cαx

α, it must also contain cαx
β, where β is a permutation of α. Additionally, for a given n,

none of the {mλ : λ ` n} is a linear combination of any others, since their monomials are all
different.

Finally, recall that Λ = Q ⊕ Λ1 ⊕ Λ2 ⊕ · · · , so every symmetric function can be written
uniquely as a linear combination of elements of Λn, which can also be written uniquely as a
linear combination of elements of {mλ : λ ` n}. Therefore, M is a basis for Λ.

3 Elementary, My Dear Watson

Now we’re in a position to define the elementary symmetric functions. Given some k ∈ N,
let ek =

∑
i1<i2<···<ik xi1xi2 · · ·xik . This should align with the idea of elementary symmetric

polynomials. Now, given a partition λ = λ1 · · ·λk, define eλ = eλ1 · · · eλk . Let E = {eλ} be
the set of elementary symmetric functions.

It is a fact known as the fundamental theorem of symmetric functions that E is a basis for
Λ, but we will not prove this here, since it requires us to talk about orderings on partitions.

We can, however, say something about the coefficients of the mλ in the expansion of an
element of E in terms of M .

If λ ` n, and eλ =
∑

µ`n cλµmµ, where cλµ ∈ Q, then cλµ is equal to the number of infinite
matrices whose only entries are 0’s and finitely 1’s such that the sequence of row sums is λ
and the sequence of column sums is α, where α is any permutation of µ.
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To prove this, consider the matrix
x1 x2 x3 · · ·
x1 x2 x3 · · ·
x1 x2

. . .
...

...

 .

Recall that eλ = eλ1eλ2 · · · eλk . Thus, a term of eλ is the product of λi choices from row
i for each i ≤ k. If xα is the term, then we have chosen αj copies of xj from column j.
Now, if we mark the entries we chose with a 1, leaving all the other to be 0, we obtain a
matrix whose sequence of row sums is λ, since there are λi 1’s in row i, and whose sequence
of column sums is α, since there are αj 1’s in column j.

Given such a matrix, we can use it to choose variables to create a term of eλ. Therefore,
the number of appearances of a term xα, where α is a permutation of µ, is the number of
such matrices. Since the number of appearances of a term xα is the coefficient of mµ, we
have what we wanted.

Hopefully this example gives the sense that symmetric functions, and especially the coef-
ficients of transformations between bases, can have nice combinatorial properties.
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