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First, some motivation from number theory. One subject of interest in number theory is determining
integral points on an elliptic curve, i.e. solutions (x, y) ∈ Z2 of an equation of the form

y2 = x3 +Ax+B,

where A and B are integers.
Now, if the right hand side factored over Z, this would be fairly straightforward, as we would have

something like
y2 = (x− a)(x− b)(x− c)

with everything integers. Depending on whether the terms on the right hand side are coprime, we could
determine that some of them are squares, and we could study solutions modulo various primes to get more
information and eventually determine the possible values of x and y.

Unfortunately, it is rare in practice that such an equation would factor in Z. However, we do know that
there will be a finite extension of Q, namely Q(a, b, c) in which the right hand side does split. If we are still
interested in integer solutions, it might make sense to look at this equation in Z[a, b, c], but the problem is
that such a ring is not in general a UFD or PID, which is what in principle makes the previous special case
easy to hand.

(one can check that in Z[
√
−5], 2 ∗ 3 = (1 +

√
−5)(1 −

√
−5), that all those values are irreducible, but

that these factorizations do not just differ by a unit)
This means we cannot really make use of GCDs and other tricks to figure out if various components of

the product must be squares or to put other constraints on the problem.
Fortunately, there is a sort of “second best” available to us in this setting. Notice that in the above

factorization, a, b, and c are algebraic integers, so Z is integral over Z[a, b, c] which we saw leads to a number
of useful results relating the primes of Z[a, b, c] to the primes of Z (e.g. going up and going down). It turns
out we will get much more mileage by considering not just Z[a, b, c], but the whole integral closure of Z in
Q(a, b, c). If K = Q(a, b, c), that integral closure is called the ring of integers of K and denoted OK .

(small note: even these smaller rings, there is a lot of useful data, and often the same results hold but
with exceptions involving the primes which divide the index of Z[a, b, c] in OK)

It turns out that the ring OK is what is called a dedekind domain, a ring in which every nonzero proper
ideal factors uniquely as a product of maximal ideals (up to rearranging). So while OK is not in general a
UFD, which has unique factorization of elements themselves, we can study the relation of ideals

(y)2 = (x− a)(x− b)(x− c)

So, for instance, of all of the ideals on the right are pairwise coprime, we know they must be squares of
coprime ideals in OK . When we know enough about OK , an analysis of this factorization can allow us to
determine all the possible solutions or show that none exist.

Here is another useful application: it is possible to prove Fermat’s Last Theorem in a various special
cases with this technique. Recall that Fermat’s last theorem claims that the equation

xn + yn = zn

Has no nontrivial integer solutions (x, y, z) for any exponent n ≥ 3. One can immediately reduce this
to showing the result for n = 4 and all odd primes and (x, y, z) relatively prime. The case of n = 4 can be
treated by elementary methods, and is the only case Fermat is known to have been able to prove of “his”
theorem. Then if p is an odd prime and ζ = ζp, the left hand side of the equation factors into

(x+ y)(x+ ζy)(x+ ζ2y)...(x+ ζp−1y) = zp

One can prove that for K = Q(ζ), OK = Z[ζ] but the latter is a UFD for only finitely many primes.
However, we can still treat this as an equation in ideals, and if we are lucky and know enough about the
ideals in Z[ζ] it is possible to show that this has no solutions for what are called “regular primes”, though
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to discuss that in detail involves developing much more machinery from algebraic number theory. For those
with such a background, Keith Conrad has a good exposition on his website.

In fact, even for the case n = 2, where it is well-known that x2 + y2 = z2 has solutions (pythagorean
triple) it is possible to employ these techniques to determine all the solutions. To do this, one works in the
ring Q(i), where it can be shown that OK = Z[i]. The latter ring is well-known to be a UFD, and in fact a
PID, the factorization

(x− iy)(x+ iy) = z2

quickly leads to a great deal of information; it will turn out that there are two cases, depending on the GCD
of the two terms on the left and that by studying these carefully one can classify all the solutions of this
equation. More details are presented in the first chapter of Marcus’s Number Fields (partly in the exercises;
other sources may have the full details).

So now our goal is to more carefully state what a Dedekind domain is, verify the useful property mentioned
above (unique factorization of ideals into products of prime ideals), and then give examples of two kinds of
dedekind domain.

Essentially, Dedekind domains should generalize PIDs (or UFDs) by weakening factorization of elements
to factorization of ideals. In fact, one definition of a dedekind domain is essentially a ring that is locally
a PID. This means that all of the nice properties enjoyed by PIDs which happen to also be local hold for
dedekind domains. Even for properties which are not local in general, they sometimes lift or have useful
analogs in dedekind domains. In some cases, these are enough to make up for the deficiencies of these rings
relative to PIDs and UFDs.

Definition. A dedekind domain is an integral domain A which satisfies one of the following:

DD1) Every nonzero proper ideal factors uniquely into a product of maximal ideals

DD2) A is noetherian, and the localization at each maximal ideal is a DVR

DD3) A is noetherian, integrally closed, and dimension 1

Showing these are equivalent is a difficult task, and we will work from easiest to most difficult. The
equivalence of DD2 and DD3 boils down to Prop 9.2 in A&M. That DD2 implies DD1 should be highly
plausible, and its proof even follows our intuition: the factorization of ideals in A behaves extremely well
locally, given what we know about DVRs, and so we can patch this together into good factorizations globally.

Showing DD1 implies DD2 or DD3 is much more difficult - it is not at all clear why simply the existence
of a factorization of any ideal into primes would imply noetherianity or the other properties in DD2 or
DD3. This is not done in A&M or even the algebraic number theory books I looked at, but there is a good
exposition in Zariski-Samuel.

Here is a summary of the main algebraic facts:

Lemma. The following are true:

1) if (A,m) is a noetherian local domain of dimension 1, then A is integrally closed if and only if A is
a DVR.

2) if A is a domain and for each maximal ideal m we identify Am with its natural inclusion in Frac(A),
then

A =
⋂

m max.

Am.

3) given a multiplicatively closed set S, there is a 1-1 correspondence between prime ideals of A not
meeting S, and prime ideals of S−1A.

4) if A is a DVR then A has dimension 1.
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5) if p is a prime ideal and p ⊇
∏

ai or p ⊇ ∩ai for some finite collection of ideals ai, then p ⊇ aj for
some j.

6) given a multiplicatively closed set S, there is a 1-1 correspondence between primary ideals of A not
meeting S, and primary ideals of S−1A.

7) given a map φ : M → N of A-modules, φ is surjective if the localized map φm : Mm → Nm is
surjective for all maximal m.

8) If an ideal a is contained in a union of finitely many prime ideals, then a is contained in one of those
prime ideals.

Proof.

1) Prop 9.2 in A&M.

2) Well, by construction it is clear that A ⊆ Am for each maximal ideal m, so A ⊆ ∩Am. To see this
cannot be proper, suppose that x/y ∈ K − A, so we seek a maximal ideal m such that x/y 6∈ Am.
Consider the colon ideal (y : x) = {a ∈ A | bx ∈ (y)}; it must be proper, because if 1 ∈ (y : x) then
x ∈ (y) meaning we can write x = ay then x/y = ay/y = a/1 ∈ A, contradiction.

So there exists a maximal ideal m containing (y : x). By construction, x/y 6∈ Am, because if we could
write

x

y
=
a

b
b 6∈ m

then we would have
xb = ay

which is to say bx ∈ (y) and hence b ∈ (y : x), contrary to our choice of m.

3) Prop 3.11(iv) in A&M.

4) This is shown in the remarks preceeding 9.2 in A&M.

5) Prop 1.11(ii) in A&M. As stated it only applies to intersections, but it is clear from the proof that
the result holds for products as well.

6) Prop 4.8(ii) in A&M.

7) Prop 3.9(iii), surjective version, in A&M.

8) Prop 1.11(i) in A&M.

Showing that DD3 implies DD2 is essentially the content of Prop 9.2 in A&M, so it requires only (1)
from the Lemma. The converse needs both Prop 9.2, via (1) and (4), and a few facts which enable us to lift
information from the localizations to A, from (2) and (3).

Theorem. DD2 is equivalent to DD3

Proof. First, DD2 implies DD3. Noetherian: already part of DD2
Dimension 1: For all maximal ideals m, Am is a DVR, which by (4) has dimension 1. By lifting back

a chain of length 1 in any such localization, using (3), we see that dimA ≥ 1. Conversely, if dimA > 1,
we can find some primes p0 ( p1 ⊆ p2, but then take a maximal ideal m containing p2, and by the
dimension constraint on Am, we see that in the local ring, p0 = p1 or p1 = p2, so again by (3) we have
p0 = p1 or p1 = p2 in A, contradiction. Thus A has dimension 1

Integrally closed: Am is a DVR, hence integrally closed by (1). Integral closure is preserved by
intersection, and hence by (2), A = ∩Am is integrally closed.
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Then DD3 implies DD2. Observe that, because A is a domain of dimension 1, for any maximal
ideal m, the chain 0 ⊆ m is the largest possible chain containing m. Localizing this, we see that Am has
dimension 1. Noetherianity, being an integral domain, and integral closure are preserved by localizing,
while we know Am is local, and so by (1) we see that Am is a DVR.

To show DD2 implies DD1, we just follow our intuition that the local factorizations of an ideal (which
will be powers of some maximal ideal, since Am is a DVR) can be put together to give a factorization in the
original ring. From this, we can already guess that we will need (6), since it tells us that powers of primes
behave well under localization, while (7) shows us how we can glue the local information together. It turns
out (5) will be important as well, but one only sees this during the proof; essentially, (7) will ask that we
combine all local factorizations, which a priori could involve infinitely many ideals in the factorization, but it
is not possible to take a product of infinitely many ideals. However, combining (5) with the fact that every
ideal contains a product of prime ideals in a noetherian ring will allow us to conclude that only finitely many
primes are actually involved.

Theorem. DD2 implies DD1

Proof. Since we have assumed A is a DVR, it has dimension 1 by (4).
Let I be a nonzero ideal of A. By noetherianity, I contains a product

∏r
i=1 p

ei
i of nonzero prime

ideals pi. From this, we can see that I is contained in only finitely many maximal ideals, because if we
had a maximal ideal m with

m ⊇ I ⊇
r∏

i=1

pfii ,

then m ⊇ pfii for some i by (5), and taking radicals we get m ⊇ pi, but pi is a nonzero prime ideal
and hence maximal because A has dimension 1, so m = pi.

Now for m an arbitrary prime ideal, consider Im in Am; by DD2, Am is a DVR and hence we can
write Im = mfm

m for a nonnegative integer em (the notation leaves something to desired). Then we have

I ⊆ Iec ⊆ (mfm
m )c = mfm .

The last equality is (6), the correspondence for primary ideals. Thus we have an inclusion

I →
⋂

m max.

mfm .

But by choice, the inclusion is surjective when localized at all maximal ideals. Thus by (7), the
inclusion itself is a surjection.

By the earlier remarks, I is contained in only finitely many maximal ideals, say mi, 1 ≤ i ≤ s and
so for any other m, fm must be zero, meaning the above intersection is actually finite:

I =

s⋂
i=1

m
fmi
i .

As all the ideals are maximal, they are also coprime. Hence, by the chinese remainder theorem, we
may replace the intersection by the product, which gives the desired factorization of I as a product of
maximal ideals,

I =

s∏
i=1

m
fmi
i .

This is clearly unique, since if we had any other factorization, pick a maximal ideal m where they
differ and localize both at m to obtain a contradiction.

The most difficult direction is DD1 implies DD2 or DD3. In particular, it is difficult to see how one
might extract noetherianity simply from the existence of a factorization for each ideal. One clue that such a
ring could be noetherian is that a decomposition of an ideal as a product of maximal ideals is the same as a
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primary decomposition, and we know that ideals of noetherian rings always admit primary decompositions.
In fact, a much weaker version DD1* of DD1 would suffice: if A is a domain for which each nonzero ideal

can be written as a product of prime ideals, A is a dedekind domain in one of the sense described above. It
requires substantially more work to prove this. Not only do we weaken the factorization from maximal ideals
to prime ideals, but we also lose the uniqueness statement, which we will see later is crucial. For all the
cases I know of, one DD1 or DD1* are viewed as corrolaries of DD2/DD3, even though they are equivalent;
dedekind domains show up often in number theory, but in the number theory textbooks I checked, none
included the converse. Zariski-Samuel contains a complete proof that DD1* implies DD3 (Vol. 1, Ch. V,
Theorem 13, pg 275).

Theorem. DD1 implies DD2

Proof. DVR: recall that every ideal of a localized ring S−1A is of the form S−1I where I is an ideal
of A. So let Im be a nonzero ideal of Am. By hypothesis, we can factor

I =

r∏
i=1

mei
i .

Now, if mi 6= m, then mi becomes the unit ideal when we localize at m, so after localizing

Im = mk
m,

for some k (e.g. if m = m1 then k = e1, and if m doesn’t equal any mi then Im = Am). This allows us
to define a valuation on Am by v(x) = k when (x) = mk

m.
Noetherity: it suffices to prove this for the nonzero prime ideals, since a product of finitely generated

ideals is again finitely generated. Let m be some nonzero prime.
Notice that mm 6= m2

m in Am because in that setting, the mm is finitely generated and hence
Nakayama’s lemma applies. Then by the correspondence for primary ideals, m 6= m2. Let x ∈ m−m2.
Factoring the ideal (x), by prime ideals, this means we must have

(x) = m

r∏
i=1

mei
i ,

where mi 6= m for any i, by considering (x) in Am.
By (8), m is not contained in ∪mi, since then we would have m ⊇ mj for some j, and hence m = mj

by maximality, a contradiction. So let y ∈ m− ∪mi.
Claim: m = (x, y). It is clear that m contains (x, y), but in fact no other maximal ideal contains

(x, y). If we had such a maximal ideal m′, then since m′ ⊇ (x), but is not m, it contains, and thus equals,
some mj . But by construction, no such mj contains y, and so m′ does not exist. Then in consideration
of the factorization of (x, y), it must be a power mk, but because it contains x, k must equal 1.

(in fact, it is true that any ideal in a dedekind domain is generated by at most two elements, and the
proof is quite similar to the one above, but working just with the maximal ideals simplifies it slightly)
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With these characterizations of dedekind domains, our next goal is to study a small application of
dedekind domains in algebraic number theory. We will show that the integral closure of a dedekind domain
in a finite extension of fields is again a dedekind domain.

Theorem. Let A be a dedekind domain with fraction field K and L a finite separable extension of K.
Then the integral closure B of A in L is a dedekind domain.

Proof. It is easiest to verify DD3.
Noetherianity: By Prop 5.17, B a submodule of a finitely generated A-module, so B noetherian

A-module by Prop 6.2, thus a fortiori a noetherian B-module (or apply Prop 7.8 with B = C).
Integral closure: Nothing to prove by construction of B.
Dimension: Let p be a nonzero prime ideal in B. From Cor 5.8, it will be maximal if A∩p is maximal;

since the latter is always prime, it is enough to know that it is nonzero since A has dimension 1 by
assumption. Taking any nonzero x ∈ p, apply the integrality of B over A to find a monic polynomial it
satisfies,

xn + an−1x
n−1 + ...+ a1x+ a0 = 0.

We may refine this polynomial so that the constant term is not zero - simply factor out and cancel
x (as it is nonzero) until this is the case. Then such a polynomial gives a relation

xn + an−1x
n−1 + ...+ a1x = −a0.

Everything on the LHS is in (x), so −a0 ∈ (x) ⊆ (p) is a nonzero element of A in p, which is all we
needed to verify the dimension claim.

From which we obtain two classes of dedekind domains, one arising in number theory, and another in
geometry.

Corollary. The integral closure of Z in a finite extension of Q is a dedekind domain. Given a field k
and indeterminate x, the integral closure of k[x] in a finite extension of k(x) is a dedekind domain

Proof. Both Z and k[x] are clearly dedekind domains under any of the above definitions. This follows
in both cases from the fact that these rings are PIDs.

DD1: Any ideal I is of the form (x), and we know that x can be factored uniquely into a product of
irreducibles, which induces a factorization of (x) = I. Further, since these rings are PIDs, irreducible
elements generate maximal ideals.

DD2: Take any maximal ideal m = (m), and we can see that Am is the valuation ring induced by
the valuation sending each element to the power of m which divides it (which is unique because A is a
PID, hence UFD).

DD3: They are both PIDs, hence noetherian, and we’ve seen previously that they are integrally
closed in their respective fields of fractions. Moreover, we know that in a PID, all nonzero primes are
maximal, so they have dimension 1.
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