Math 2520
Professor Melody Chan
Mona Khoshnevis
Stanley-Reisner Rings

Definition 1. Simplicial Complex Δ on $V=\left\{x_{1}, \ldots, x_{n}\right\}$ is a collection of subsets of V such that if $F \in \Delta$ and $G \subseteq \Delta$, then $G \in \Delta$. The members of Δ are called faces or simplices, and a face of Δ which is not properly contained in another face of Δ is called a facet. If all the facets of Δ have the same cardinality, then Δ is called pure.

Definition 2. The dimension of a face $A \in \Delta$ is one less than the cardinality of A. dimension of Δ is also defined as the maximum dimension of faces of Δ, in other words, $\operatorname{dim} \Delta=$ $M a x_{F \in \Delta} \operatorname{dim}(F)=d-1$, where d is the cardinality of the facet of Δ with the largest cardinality.
Also, f-vector of Δ is vector $f(\Delta)=\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{d-1}\right)$, where f_{i} is the number of faces of Δ with dimension i. So $f_{-1}=1$ when Δ is not void, and $f_{0}=n$.

Example 1. $n=5, \Delta$ is all subsets of $\{1,2,3\},\{2,4\},\{3,4\},\{5\}$. (See Figure 1.) The f-vector of Δ is $(1,5,5,1)$.

Figure 1. Simplicial Complex.

Example 2. Fix some l. If $l \leq k$, the convex hull of $k+1$ points in general position in \mathbb{R}^{l} is a geometric k-simplex. In general, a collection Δ of geometric simplices in \mathbb{R}^{l} is a geometric simplicial complex, if $\sigma \cap \epsilon$ is a geometric simplex in Δ for any $\sigma, \epsilon \in \Delta$. It is a basic fact from combinatorial topology that every simplicial complex has a geometric realization.

Definition 3. Let k be a field, and $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. I_{Δ} is the ideal of R generated by the monomials $x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}}$, such that $\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right\}$ is not a face of Δ. So I_{Δ} is a homogeneous ideal.

Example 3. In the example 1 above,

$$
I_{\Delta}=\left(x_{1} x_{5}, x_{2} x_{5}, x_{3} x_{5}, x_{4} x_{5}, x_{1} x_{4}, x_{2} x_{3} x_{4}\right)
$$

Definition 4. Let F be a face of a simplicial complex $\Delta . P_{F}$ denotes the prime ideal of R generated by the indeterminates not in F. We call P_{F} the face ideal of F.
proposition 1 . The primary decomposition of I_{Δ} is given by $I_{\Delta}=P_{F_{1}} \cap P_{F_{2}} \cap \ldots \cap P_{F_{m}}$, where $F_{1}, F_{2}, \ldots, F_{m}$ are facets of $\Delta .\left(m=f_{d-1}\right.$ if Δ is pure. $)$

Proof. Let J be any ideal generated by monomials of R, and a and b be relatively prime monomials. Then it is easily seen that $(a b, J)=(a, J) \cap(b, J)$. By using this equation successively we see that I is an intersection of ideals generated by subsets of $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Now suppose $I_{\Delta} \subseteq\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right)$. Now consider the set $\sigma=V \backslash\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right\}$. Note
that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}}$ cannot be in I_{Δ} (since it is not in $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right)$), So $\sigma \in \Delta$, hence $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right)=P_{\sigma}$.
Conversely, if $F \in \Delta$, then $I_{\Delta} \in P_{F}$. Because any generator monomials of I_{Δ} are in P_{F}. To see it is true, Consider any monomial $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right) \in I_{\Delta}$ such that $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right) \notin P_{F}$, so no $x_{i_{j}}$ is in $V \backslash F$, hence $\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right\} \subseteq F$, means that $\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right\} \in \Delta$.
Therefore $I_{\Delta}=\cap_{F \in \Delta} P_{F}$. And since $F \subseteq G$ implies $P_{G} \mid P_{F}$, we have $I_{\Delta}=\cap_{F f a c e t ~ o f ~}{ }^{\text {P } P_{F}}$.
Example 4. In the example 1 above,
$I_{\Delta}=\left(x_{1} x_{5}, x_{2} x_{5}, x_{3} x_{5}, x_{4} x_{5}, x_{1} x_{4}, x_{2} x_{3} x_{4}\right)=\left(x_{4}, x_{5}\right) \cap\left(x_{1}, x_{2}, x_{5}\right) \cap\left(x_{1}, x_{3}, x_{5}\right),\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
Definition 5. The Stanley-Reisner Ring associated to Δ is $A_{\Delta}=k\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$. Since I_{Δ} is homogeneous ideal, there is grading of $A_{\Delta}:\left(A_{\Delta}\right)_{i}=R_{i} /\left(I_{\Delta}\right)_{i}$. This is also standard grading: $\operatorname{deg}\left(x_{i}\right)=1$ for all i.
proposition 2. For any simplicial complex Δ,

$$
\operatorname{dim} A_{\Delta}=\operatorname{dim} \Delta+1
$$

Proof. By the last homework, Hilbert function of Δ is:

$$
H\left(A_{\Delta}, m\right)=\operatorname{dim}_{k}\left(A_{\Delta}\right)_{m}=\sum_{i=0}^{d-1} f_{i}\binom{m-1}{i}
$$

Since dimension over k is an additive function, and the grading is standard, for sufficiently large m , Hilbert function of A_{Δ} is a polynomial in m of $\operatorname{degree} \operatorname{dim} A_{\Delta}-1$. On the other hand, $\sum_{i=0}^{d-1} f_{i}\binom{m-1}{i}$ is a polynomial in m of degree $d-1$, so $d-1=\operatorname{dim} A_{\Delta}-1$. Hence $d=\operatorname{dim} A_{\Delta}$.

This is the second proof:
Proof. For Noetherian local ring $(\mathrm{A}, \mathrm{m}), \operatorname{dim}(A)$ is the maximum number of algebrically independent elements of A over field k. It can be easily seen that $\operatorname{dim}(A)$ is the maximum number of algebrically independent set of $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{j}}$ over field k. For $r>d$, any r vertices $\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right\}$ is not a face of Δ, so $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}=0$ in A_{Δ}. Now consider $f\left(x_{1}, \ldots, x_{r}\right)=x_{1} x_{2} \ldots x_{r}$, then f is not zero polynomial, but $f\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right)=0$. So there is no r algebrically independent set of $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{j}}$ over field k when $r>d$.
Now it suffices to show that there is indeed d algebrically independent set of $x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{d}}$. Consider facet $\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{d}}\right\}$ of Δ. Suppose $f\left(x_{i_{1}}, \ldots, x_{i_{d}}\right)=0$. So $f\left(x_{i_{1}}, \ldots, x_{i_{d}}\right) \in$ I_{Δ}. So for each monomial of $f\left(x_{i_{1}}, \ldots, x_{i_{d}}\right)$, there is a monomial $x_{s_{1}} x_{s_{2}} \ldots x_{s_{t}}$ of I_{Δ} that divides it. Therefore, the set of indeterminates of each monomial of $f\left(x_{i_{1}}, \ldots, x_{i_{d}}\right)$ contains $\left\{x_{s_{1}}, x_{s_{2}}, \ldots, x_{s_{t}}\right\}$, hence is not in Δ as well, which means that any monomial of $f\left(x_{i_{1}}, \ldots, x_{i_{d}}\right)$ is zero in A_{Δ}. So $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{d}}$ is an algebrically independent set over k.

References:

1) R. P. Stanley, (1996). Combinatorics and Commutative Algebra, second edition
2) Christopher A. Francisco,Jefferey Mermin, and Jey Schewing, A survey of Stanley-Reisner Theory. https://math.okstate.edu/people/jayjs/survey-submit.pdf
3) R. P. Stanley, (1975). The upper bound conjecture and Cohen-Macaulay rings, studies in Applied Math, 54, 135-142. http://www-math.mit.edu/ rstan/pubs/pubfiles/27.pdf
