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1 Background

This is a continuation of Tracy Chin’s presentation on Gröbner bases, which
provides motivation for the construction and develops some initial results.
We’ll focus here on computational aspects of Gröbner bases, such as how to
compute them and their applications to computer science. Recall that our
setting is R = k[x1, . . . , xn] for k a field, with I ⊆ R an ideal. Further recall
that lt(f) denotes the leading term of a polynomial f ∈ R, which is defined
with respect to a monomial ordering >.

2 Preliminaries

We’ll begin with some notation, motivated by the division algorithm in mul-
tivariate polynomial rings.

Definition 2.1. Given a family of polynomials f1, . . . , fs ∈ R, then for every
f ∈ R, there exist q1, . . . , qs, r ∈ R by the division algorithm such that:

f = f1q1 + . . .+ fsqs + r

where no term of r is divisible by lt(f1), . . . , lt(fs). We call r := fF the
remainder where F = {f1, . . . , fs}.

We’ll also recall the following theorems from the previous proposition.

Theorem 2.2. Given I ⊆ R an ideal, then:

• There exists a Gröbner basis G = {g1, . . . , gm}.

• The ideal is generated as follows: I = (g1, . . . , gm).

• Given g ∈ R, then g ∈ I iff gG = 0.
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Finally, we’ll define the notion of an S-Polynomial, which is intended to
cancel the leading terms of its constituent polynomials.

Definition 2.3. Given two polynomials P1, P2 ∈ R, we define the S-Polynomial:

S(P1, P2) =
lcm(lt(P1), lt(P2))

lt(P1)
· P1 −

lcm(lt(P1), lt(P2))

lt(P2)
· P2

Example 2.4. To illustrate, we’ll compute the S-Polynomial of the following
polynomials with lexicographic ordering x > y:

• P1 = x4y − x2y + x

• P2 = x2y2 − y2

where lt(P1) = x4y and lt(P2) = x2y2. Therefore, lcm(lt(P1), lt(P2)) =
x4y2, so computation proceeds as follows:

S(P1, P2) =
x4y2

x4y
·
(
x4y − x2y + x

)
− x4y2

x2y2
·
(
x2y2 − y2

)
= (y) ·

(
x4y − x2y + x

)
−
(
x2

)
·
(
x2y2 − y2

)
=

(
x4y2 − x2y2 + xy

)
−
(
x4y2 − x2y2

)
= xy

which cancels the leading terms of both polynomials as desired.

3 Computing Gröbner Bases

Now that we’ve established some preliminary notions, we will explain how
to calculate them with Buchberger’s algorithm. But first, we’ll present the
following theorem without proof:

Theorem 3.1. Given a set of polynomials F = {f1, . . . , fs} ⊂ R with ideal
I = (f1, . . . , fs), then F is a Gröbner basis iff for any 1 ≤ i 6= j ≤ s, then
the remainder S(fi, fj)F = 0.

We’ll now describe Buchberger’s algorithm. Begin with F = {f1, . . . , fs} ⊂ R
family of nonzero polynomials and I = (f1, . . . , fs) generated ideal. Then:

• List pairs R := {{fi, fj} | fi 6= fj}

• While nonempty R 6= {}:
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– Choose arbitrary {P1, P2} ∈ R
– Remove pair R := R \ {P1, P2}
– Calculate remainder r := S(P1, P2)

F

– If nonzero remainder r 6= 0:
∗ Add remainder to set F := F ∪ {r}
∗ Add corresponding pairs R := {{f, r} | f ∈ F}

• F is a Gröbner basis.

This algorithm does not necessarily produce the smallest Gröbner basis and
there are more efficient computational alternatives. However, we will briefly
show that it works.

Theorem 3.2. Buchberger’s algorithm produces a Gröbner basis.

Proof. It suffices to show that Buchberger’s algorithm terminates and that
the resultant F is a Gröbner basis. The latter claim follows from Theorem
3.1, so we will focus on the algorithm’s termination. Indeed, for each loop,
let us notate the family of polynomials as Fi such that:

F ( F1 ( F2 ( F3 ( · · ·

is an ascending chain. But because we defined the remainder r such that it
is not divisible by lt(f1), . . . , lt(fs), then we can write another ascending
chain as follows:

lt(F ) ( lt(F1) ( lt(F2) ( lt(F3) ( · · ·

where lt(Fi) denotes the ideal generated by the leading terms of polynomials
in Fi. But because these ideals exist in R which is Noetherian, then this
sequence must stabilize, meaning that the algorithm terminates.

4 Application to Integer Programming

Now that we’ve seen how to calculate Gröbner bases, we’ll show an appli-
cation to computer science. Consider the problem of optimizing a function
of multiple variables subject to various inequalities and a constraint on the
integrality of these variables. For example:

maximize 11x1 + 15x2

subject to 4x1 + 5x2 ≤ 37

2x1 + 3x2 ≤ 20

x1, x2 ∈ Z+ ∪ {0}

3



We’ll give a high-level sketch of how Gröbner bases may be used to solve
such problems without proof. This divides into two problems: (1) finding
feasible solutions to satisfy the inequalities and (2) finding the maximal such
solution in terms of the objective function.

4.1 Feasible Solutions

Continuing with the above example, we’ll begin by adding some “slack” vari-
ables which allow us to convert our inequalities to equalities:

maximize 11x1 + 15x2 + 0x3 + 0x4

subject to 4x1 + 5x2 + x3 = 37

2x1 + 3x2 + x4 = 20

x1, x2, x3, x4 ≥ 0

Next, we’ll define a ring homomorphism φ according to these variables:

φ : k[w1, w2, w3, w4]→ k[z1, z2]

w1 7→ z41z
2
2

w2 7→ z51z
4
2

w3 7→ z1

w4 7→ z2

and we’ll claim that values (x1, x2, x3, x4) = (A,B,C,D) are in the feasible
region defined by our inequalities iff φ(wA

1 w
B
2 w

C
3 w

D
4 ) = z371 z

20
2 . Indeed,

expanding this equation as defined above gives:

φ(wA
1 w

B
2 w

C
3 w

D
4 ) = z4A+5B+C

1 z2A+3B+D
2

which holds iff 4A+5B+C = 37 and 2A+3B+D = 20 as desired. Therefore,
any solution to our system of equations may be expressed as a monomial
wA
1 w

B
2 w

C
3 w

D
4 ∈ k[w1, w2, w3, w4]. Note that this requires x1, x2 ≥ 0, and

Laurent polynomials may be used to extend this method to all integers. [2]

4.2 Optimal Solutions

We’ll use the algorithm of Conti and Traverso [1] to find an optimal solution.
Consider the following ideal:

I =
(
z41z

2
2 − w1, z

5
1z

3
2 − w2, z1 − w3, z2 − w4

)
⊆ k[z1, z2, w1, w2, w3, w4]
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Calculate the Gröbner basis of I and call it G. Then take f = z371 z
20
2

and g = fG. By a result in [3], g is a monomial of form wA
1 w

B
2 w

C
3 w

D
4

and therefore denotes a feasible solution. This remainder corresponds to an
optimal solution (A,B,C,D) if the following conditions are met.

Definition 4.1. Given an objective function in k[w1, . . . , wk] and values
A = (A1, . . . , Ak) and B = (B1, . . . , Bk), then define l(A) > l(B) iff the
objective function returns a higher value for A than for B.

Definition 4.2. The adapted monomial ordering on k[z1, . . . , w1, . . . , wk] is
defined according to the following rules:

• Monomials containing zi are greater than those containing only wi

• If there exists A = (A1, . . . , Ak) and B = (B1, . . . , Bk) with

φ(A1, . . . , Ak) = φ(B1, . . . , Bk)

and objective valuations l(A) > l(B), then wA1
1 · · ·w

Ak
k > wB1

1 · · ·w
Bk
k .

Theorem 4.3 (Conti and Traverso). The remainder g = fG corresponds to
an optimal solution if > is an adapted monomial ordering.

In this way, we can compute optimal solutions to systems of linear integral
equations such as the one shown above. For more information and related
examples, see the references below.
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