MATH 2520 ALGEBRA

SHIYUE LI

FI-MODULES

FI-modules naturally arise when we analyze sequence of algebraic objects indexed by the non-negative integers. This presentation follows the treatment of [2]. Interested audience may refer to the seminal paper on FI-modules by Church, Ellenberg and Farb [1].

Definition. The category FI consists of the following data:

- Objects: Finite sets;
- Morphisms: Injective (set) maps.

Example. The sets $[n] := \{1, ..., n\}$ for $n \in \mathbb{Z}_{\geq 0}$ are objects in FI.

Example. The injective set maps $[n] \hookrightarrow [m]$ for $n \le m$ are morphisms in FI.

Let \mathcal{F} be the category where objects are $[n] := \{1, \ldots, n\}$ for any $n \in \mathbb{Z}_{\geq 0}$ and morphisms are injective maps $[n] \hookrightarrow [m]$ for $n \leq m$. It is a subcategory of FI.

Proposition. *The inclusion functor* $I : \mathcal{F} \to FI$ *is an equivalence of categories.*

Proposition. The subcategory \mathcal{F} of FI is a skeleton (i.e. an equivalent category where no two distinct objects are isomorphic) of FI.

Fact. The morphisms in \mathcal{F} can be generated by inclusions and endomorphisms of [n] for all $n \in \mathbb{Z}_{>0}$.

By studying the skeleton \mathcal{F} of FI, we can gain structural information about FI.

Proposition. The endomorphisms of [n] in FI is symmetric group S_n .

Proof. Since injection of a finite set to itself is surjective, all endomorphisms of [n] are bijections from [n] to itself. These are precisely permutations on n set elements and they form a group under composition. Hence $\text{End}_{FI}([n]) \cong S_n$.

Definition. Let R be a commutative ring. An FI-module is a functor $V : FI \rightarrow R$ -mod.

Slogan: The image of an FI-module V is determined by the image of the skeleton \mathcal{F} up to isomorphism. To describe a FI-module V, we only need to specify the image of [n], inclusion maps and endomorphisms, namely S_n -actions, under V.

Denote V([n]) by V_n for all $n \in \mathbb{Z}_{\geq 0}$ and let $i_{n,m}$ be the inclusion maps $[n] \hookrightarrow [m]$ for $n \leq m$.

Example. Let $R = \mathbb{Z}$. The functor $V : FI \to Ab$ defined by $V_n = \mathbb{Z}$ and V(f) = id for all $f \in Mor(\mathcal{F})$ is an FI-module.

SHIYUE LI

Example. Let $R = \mathbb{Z}$. The functor $V : FI \to Ab$ defined by $V_n = \mathbb{Z}[x_1, \ldots, x_n]$ and $V(i_{n,m})$ being natural inclusions, is a FI-module. The symmetric group acts by permuting the variables.

Example. The functor $V : FI \to Ab$ defined by $V_n = \mathbb{Z}[S_n]$ and $V(i_{n,m})$ being natural inclusions, where S_n acts by conjugation, is an FI-module.

Non-example. The map $V : FI \to Ab$ defined by $V_n = \mathbb{Z}[S_n]$ and $V(i_{n,m})$ are natural inclusions, where S_n acts by left-multiplication, is not an FI-module.

REFERENCES

- [1] Jordan S. Ellenberg Thomas Church and Benson Farb. Fi-modules and stability for representations of symmetric groups. URL: https://arxiv.org/pdf/1204.4533.pdf.
- [2] Jenny Wilson. An introduction to fi-modules and their generalizations. URL: http://www.math.lsa.umich.edu/~jchw/FILectures.pdf.