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Motivation.

A variety over C, or a complex algebraic variety, means a locally ringed1 topological space
X, such that each point P ∈ X has an open neighborhood U with U ∼= SpecA, where A =
C[x1, . . . , xn]/I is a finitely generated C-algebra which is also a domain, i.e. I is taken to be a
prime ideal; we also require X to be Hausdorff when we view it with the analytic topology.2 Good
examples are affine varieties (i.e. X = SpecA with A as above), which we’ve dealt with exten-
sively in 2520; the first non-affine examples are the complex projective space Pn

C and its irreducible
Zariski closed subsets, cut out by homogeneous prime ideals of C[x0, . . . , xn] provide a large class of
examples, called complex projective varieties. For an introduction to projective varieties from the
classical perspective of homogeneous coordinates, see [Rei90]. For scheme theory and the modern
perspective on varieties, see [Har10].

It’s natural to wonder how a variety X might fail to be a manifold, when we view X with the
analytic (as opposed to Zariski) topology. The issue is that varieties may have singularities, which,
in the analytic topology, are points that do not have neighborhoods homeomorphic to Cn.

Definition 1. Let X be a variety. Then P ∈ X is nonsingular point if for any open affine
neighborhood SpecA of P in X, we have that AP is a regular local ring. Otherwise P is singular.

For an example, consider the nodal cubic C = Spec C[x, y]/(y2 − x3 − x2). Then we’ve seen
that the origin (0, 0), corresponding to m = (x, y) ∈ C, is a singular point of C, because m is not
principally generated in the localization (C[x, y]/(y2 − x3 − x2))m, while dim(C[x, y]/(y2 − x3 −
x2))m = 1. Another example is given by the cone Spec C[x, y, z]/(x2 + y2− z2) ⊆ A3. This variety
is singular at the origin (0, 0, 0), since the maximal ideal m = (x, y, z) cannot be generated by 2
elements in the localization (C[x, y, z]/(x2 + y2 − z2))m, but dim(C[x, y, z]/(x2 + y2 − z2))m = 2.
In general, the minimal number of generators of a maximal ideal mP of a point P ∈ X is equal
to the dimension of the Zariski cotangent space mP /m

2
P by Nakayama’s lemma, so AP is regular

if and only if dimCmP /m
2
P = dimAP = dimX, so geometrically, singular points are those where

the tangent space has the wrong dimension.

Figure 1: A conical singularity Spec C[x, y, z]/(x2 + y2 − z2)

As it turns out, “most points” of a variety X will not be singular, in the sense that the set of
singular points is Zariski closed:

1A ringed topological space is a space X together with a sheaf of rings OX : every open subset U gets a ring
OX(U), thought of as a ring of functions on U . There are some additional conditions that abstract our notions
of how functions on a space should behave with respect to open covers. Saying locally ringed means that we are
requiring that for any P ∈ X, the ring of germs of functions at P is a local ring. A good motivating example of a
locally ringed space is that of a manifold together with its sheaf of differentiable functions: the stalk at a point P
really is the ring of germs of functions at P ; this is local with maximal ideal consisting of functions vanishing at P .

2This definition is meant to evoke that of complex manifolds, but in more precise language, we want X to be an
integral scheme which is separated and locally of finite type over SpecC.



Proposition 1. Let X be a variety. The set Xsing of singular points of X forms a Zariski closed
subset of X.

For complex varieties, Zariski closed subsets will have Lebesgue measure 0; this can be proven
using e.g. Sard’s theorem. Therefore, any complex variety is a measure 0 subset away from being
a smooth complex manifold: just delete the singular locus Xsing and you are left with a manifold.
In a sense, however, this is a “geometrically trivial” solution to the problem of replacing X by a
manifold: for example, if Xsing is nonempty, then X \ Xsing will never be compact, nor will the
map X \Xsing → X be a surjection. In algebraic geometry, we make the question of replacing X
by a manifold X̃ more interesting by requiring that the map X̃ → X be proper, which means it
pulls back compact subsets to compact subsets.

Definition 2. Let X be a variety. A resolution of singularities for X is a nonsingular variety
X̃ together with a proper morphism f : X̃ → X which is an isomorphism away from the singular
locus: f : X̃ \ f−1Xsing → X \Xsing is an isomorphism.

Indeed, one can verify that properness, together with our assumption that X is irreducible, will
imply that the map X̃ → X is surjective. A major result of algebraic geometry is that resolutions
of singularities exist over algebraically closed fields of characteristic 0:

Theorem 1 (Hironaka [Hir64]). Let X be a variety over an algebraically closed field k of charac-
teristic 0 (e.g. k = C). Then there exists a resolution of singularities f : X̃ → X.

The main operation used to resolve singularities is blowing-up, which is a particular geometric
surgery operation one can do on varieties. In fact, Hironaka’s theorem is proven by showing that X̃
is obtained from X via a finite sequence of blow-ups. It’s worth mentioning that the above remains
a major open problem when k is a field of characteristic p.

Blowing-up via universal property.

Blowing-up is a universal surgery operation on varieties. Before we define it via the universal
property that it satisfies, we need to define a hypersurface. All results and definitions in this section
are reformulations of those found in Chapter II of [Har10].

Definition 3. An irreducible divisor D in a variety X is a codimension one subvariety which
is locally cut out by one equation: for an affine open SpecA ⊆ X, D ∩ SpecA = SpecA/(f) for
some irreducible f ∈ A. A hypersurface H in X is a finite union of irreducible divisors, possibly
with multiplicity, so H ∩ SpecA = SpecA/(fa11 · · · f

ak
k ) where fi are irreducible and ai ≥ 1.

In the language of scheme theory, D as above is an irreducible Cartier divisor and H is an
effective Cartier divisor. These definitions may seem a little opaque; it might seem more natural
to just define a hypersurface to be a codimension one subvariety. Indeed, these notions coincide on
a smooth variety.

Proposition 2. Suppose X is a smooth variety. Then every irreducible codimension one subvariety
is a hypersurface, i.e. locally cut out by a single equation.

This proposition shows that the existence of codimension one subvarieties which are not locally
principal (cut out by one equation) is an indication that our variety has singularities. The converse
is not true, however; it may well be the case that a variety has all of its codimension one subvari-
eties as hypersurfaces, but still has singularities. But,in both of our singular examples above, we



are able to find codimension one subvarieties which are not locally principal. On the nodal cubic
C = SpecR where R = C[x, y]/(y2 − x3 − x2), the origin O is a codimension one subvariety. It is
given by the intersection of C with (x = 0) and (y = 0), i.e. O = SpecR/(x, y). But the maximal
ideal m = (x, y) of the local ring (C[x, y]/(y2 − x3 − x2))m is not principally generated, so there is
no neighborhood SpecRf of O where it is cut out by only one equation. However, the subvariety
2O = SpecR/(x2, y) is a hypersurface, because the ideal (x2, y) of R can be principally generated
by x2. This is the statement that any polynomial in R vanishing only on O must vanish with
multiplicity. Similarly, one can show that there are lines in the cone Spec C[x, y, z]/(x2 + y2 − z2)
which cannot be cut out by one equation.

Given input data (X,Z) where X is a variety and Z is a subvariety, the blowing-up BlZ X
should be thought of as the canonical way of replacing Z with a hypersurface, in the sense that it
satisfies an appropriate universal property.

Definition 4. Let X be a variety and Z a subvariety. The blowing-up of X along Z, if it exists,
is a variety BlZ X together with a morphism π : BlZ X → X, such that (a) π−1Z is a hypersurface
and (b) BlZ X → X is final with respect to this property. The subvariety Z is called the center of
the blow-up.

Since we defined it via a universal property, the blow-up, if it exists, is unique up to unique
isomorphism. While we won’t prove it, the blow-up in fact exists for any pair of input data (X,Z):

Proposition 3. Let X be a variety and Z a subvariety. Then the blow-up BlZ X → X exists.

In fact, blow-ups apply in much greater generality; one can blow-up any subscheme of a Noethe-
rian scheme. We will say something about the construction of the blow-up in the next section, but
for now we collect some nice properties that it satisfies. We can see from the universal property
that if we take Z to be a hypersurface, then BlZ X = X, since X together with the identity
map X → X clearly satisfies the universal property. So for example, without getting our hands
dirty with any constructions, we know a lot of trivial blow-ups. Strangely, we know that the
blow-up of the nodal cubic C at the origin O will be nontrivial, while the blow-up at 2O will
be trivial. In fact, a dense affine chart of the blow-up BlO C is isomorphic to the normalization
Spec C[x, y, z]/(y2 − x3 − x2, zx− y).

In our other running example, if one puts P = (0, 0, 0) in affine 3-space, and takes X =
Spec C[x, y, z]/(x2 + y2 − z2) to be the cone, one sees that a dense affine chart of BlP (X) is iso-
morphic to Spec C[X,Y, Z]/(X2 + Y 2 − 1), which is the cylinder, and that the inverse image of P
in this chart is the circle Spec C[X,Y, Z]/(X2 + Y 2 − 1, Z). See [Hau] for the details behind this
particular example and [EH09] for many more examples of blow-ups.

BlPX

P
X

π−1P

The above figure is somewhat impressionistic (for example, it’s a two dimensional slice of some-
thing that has four dimensions), but indicates that the blow-up is “the same” as X \ P outside



of π−1P ; indeed if one subtracts the circle from the cylinder, one obtains a variety isomorphic to
X \ P . This is not an accident, as the first part of the following proposition implies.

Proposition 4 (Cool properties of the blow-up). Let (X,Z) be a pair consisting of a variety and
a subvariety. Then the blow-up π : BlZ X → X satisfies the following:

(i) π restricts to an isomorphism BlZ X \ π−1Z ∼= X \ Z;

(ii) π is a proper morphism;

(iii) if Y ⊆ X is another subvariety, then BlY ∩Z Y = π−1(Y \ Z) ⊆ BlZ(X); in particular BlY ∩Z Y
is a closed subvariety of BlZ(X);

(iv) if X and Z are both nonsingular, then π−1Z ∼= P(N∨Z⊂X), the projectivization of the conormal
bundle of Z in X.

As part (i) indicates, the blow-up leaves X unchanged outside Z, so we are justified in calling it
a surgery operation; what we get at the end is “mostly the same as X,” or the same outside some
measure zero subset in the complex case, as remarked earlier. Part (ii) implies the following: if we
blow-up a singular X and get nonsingular X ′, then X ′ counts as a resolution of singularities in the
sense of Definition 2. So both the nodal cubic and the conical singularity above were resolved by
one blow-up.

Part (iii) gives us a way of understanding some blow-ups in terms of others. For example,
if we can compute the blow-up BlP An of An at a point P , then we can compute the blow-up of
any affine variety X containing P by taking the closure π−1(X \ P ) in BlP An. Part (iv) is supposed
to be an indication that the geometry of the blow-up is well understood, at least when we are blowing
up a smooth variety along a smooth center. In particular, if X is nonsingular of dimension n and Z
is a nonsingular codimension ` subvariety, then the vector space fibers of the conormal bundle have
dimension `, so part (iv) implies that not only do we know that π : BlZ X → X is an isomorphism
outside of Z, but π−1Z is a fiber bundle over Z with fiber P`−1. One can use information about this
conormal bundle to relate the cohomology ring of BlZ X to that of X. Since blow-ups of nonsingular
subvarieties of nonsingular varieties are best understood, it’s fruitful to study blow-ups of a singu-
lar variety Y by first finding an embedding Y ⊆ X where X is nonsingular and then exploiting (iii).

Now that we have some rough idea of the geometry of blow-ups, and we know that Hiron-
aka has proven that any variety X is brought to a nonsingular variety X̃ by a finite sequence of
blow-ups, we have an answer to our question as to how far a complex variety is from a smooth
complex manifold: it is a finite sequence of contractions of hypersurfaces away.

A little bit about the construction.

Classically, affine varieties were just viewed as irreducible zero sets of polynomials in affine
space, and the blow-up of Z ⊆ An with Z given by m equations was constructed by writing down
suitable algebraic equations for a subvariety BlZ(An) ⊆ An × Pm−1, i.e. a system of polynomial
equations in n + m variables, homogeneous in the last m variables. In the modern setting, we do
essentially the same thing via the Proj construction, which is a systematic (but not functorial) way
of turning certain graded k-algebras into subschemes of Pn

k . Blowing-up a subvariety Z of a general
variety X reduces to blowing-up Z ∩ SpecA for each affine open SpecA ⊆ X and then gluing, so
here we’ll focus on the affine case. Chapter 5 of [Eis08] is the main source for this section, with the



results on the Proj construction coming from [Har10]. If R is a Noetherian ring and J ⊆ R is any
ideal, defining a closed subscheme Z = V (J) of X = SpecR, the construction of BlZ X uses the
blow-up algebra

BlJ(R) = R⊕ J ⊕ J2 ⊕ · · ·

of R along J ; in fact, this algebra “contains the data of the blow-up” BlZ X, in the following sense.

Proposition 5. Let X = SpecR and Z = V (J) a closed subscheme. Then the blow-up of X along
Z is given by

BlZ(X) = Proj BlJ(R),

together with the morphism
BlZ(X)→ X

induced by the inclusion R→ BlJ(R).

The Proj construction makes projective schemes out of graded rings which are generated in
degree one; we saw in 2520 that the blow-up algebra has this property. Since R is Noetherian,
J = (f1, . . . , fm) is a finitely generated ideal, and therefore BlJ(R) is a finitely generated R-algebra;
indeed there is a surjective graded morphism R[T1, . . . , Tm]→ BlJ R taking Ti to fi, which in turn
gives a closed immersion Proj BlJ R → ProjR[T1, . . . , Tm] = Pm−1

R . Thus we see that the modern
construction realizes the blow-up as a closed subset of Pm−1

R = Pm−1
Z ×Z SpecR (if R is a finitely

generated k-algebra, this is the same as Pn
k×k SpecR), which is a hint that this construction can be

reconciled with classical one. Upon taking a quotient of the blow-up algebra by the ideal J BlJ(R),
we get the algebra

BlJ(R)/J BlJ(R) = grJ R = R/J ⊕ J/J2 ⊕ J2/J3 ⊕ · · ·

called the associated graded ring of R with respect to J (we considered this in 2520 in the
special case where R is local and J is its maximal ideal). Therefore there is a surjective, graded
morphism of graded rings BlJ(R)→ BlJ(R)/J BlJ(R). We thus get a closed immersion

Proj grJ(R) ↪→ Proj BlJ(R).

Using standard properties of Proj, one can show that

Proj grJ(R) Proj BlJ(R)

Z X

is a fibered diagram, so that the fiber over Z in the blow-up is in fact Proj grJ(R). If Z is non-
singular, this is exactly P(N∨Z⊂X), the projectivization of the conormal bundle. In fact, whenever
we have an algebraic vector bundle E on X, its set of global sections M forms an R-module, and
the projectivization P(E) is given by Proj(Sym(M)), where Sym(M) is the symmetric algebra
of M , defined in a 2520 homework assignment. So, since we know that the fiber over Z in the
blow-up is Proj grJ(R), we can see that this is the projectivization of the conormal bundle by first
realizing that the global sections of the conormal bundle are given by J/J2, and then realizing
(via a detour on regular sequences) that since Z is nonsingular, Symd(J/J2) = Jd/Jd+1, so in fact
grJ(R) = Sym(J/J2).



Finally, we can see that BlZ X → X is an isomorphism outside of π−1Z as follows. Let f ∈ J ,
that is f vanishes on Z, so that the distinguished affine open SpecRf ⊆ SpecR is disjoint from Z.
Set S = {1, f, f2, . . .}

S−1 BlJ(R) = S−1R⊕ S−1J ⊕ S−1J2 ⊕ · · · = S−1R⊕ S−1R⊕ · · · ∼= S−1R[t],

so by standard properties of Proj,

π−1 SpecRf = ProjS−1 BlJ R = ProjS−1R[t] ∼= SpecS−1R = SpecRf .

Since X \ Z can be covered by distinguished open affines of the form SpecRf , this proves that π
restricts to an isomorphism BlZ X \ π−1Z → X \ Z.

Worked example: blow-up of An at the origin.
Set R = k[x1, . . . , xn] and take X = An = SpecR and I = (x1, . . . , xn). Then the blow-up

algebra of R along I is given by
S = R⊕ I ⊕ I2 ⊕ · · · ,

with a surjective map of graded rings R[T1, . . . , Tn] → S by Ti 7→ xi in degree 1. What is
the kernel of this map? We note that elements of the form xjTi − xiTj are mapped to 0, and
indeed this is everything, since x1, . . . , xn are algebraically independent. Therefore BlP An =
ProjR[T1, . . . , Tn]/(xjTi−xiTj) ⊆ Pn

R = Pn
k ×k SpecR. The blow-up is covered by the affine charts

D+(Ts) = SpecR[T1/Ts, . . . , Tn/Ts]/(xjTi/Ts − xiTj/Ts). But since xj/xi = Tj/Ti we have that
BlP An is covered by n affine charts

D+(Ts) = Spec k[x1, . . . , xn, x1/xs, . . . , xn/xs].

Note that each of these charts D+(Ts) has a morphism to An induced by the inclusion of coordinate
rings

k[x1, . . . , xn]→ k[x1, . . . , xn, x1/xs, . . . , xn/xs].

In each case, the extension of the ideal (x1, . . . , xn) is principal. This is a manifestation of the univer-
sal property of blowing-up: we replaced the origin (0, . . . , 0) corresponding to the ideal (x1, . . . , xn)
with a hypersurface, i.e. a subvariety locally cut out by a principal ideal.

Singularities in the news media.

See https://www.nytimes.com/2019/02/14/science/math-algorithm-valentine.html
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