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Spec and MaxSpec can be understood as functors from the category CRing to Top, and allows a
geometric interpretation of rings. In particular, in classical algebraic geometery, it is used in order
to study the geometry of zero sets of polynomials. Instead of polynomial rings, however, this note
will explore the MaxSpec of rings that are naturally associated to topological spaces, manifolds and
measure spaces.

1 MaxSpec and C(X,R)

We first recall the definition of MaxSpec and it’s associated topology.

Definition 1.1. Given a commutative ring R, MaxSpec (R) := {m ⊂ R | m is a maximal ideal },
with a topological structure called the Zariski topology. This topology is generated by sets of the form
V (I) := {m ∈ MaxSpec (R) | m ⊃ I}, where I is an ideal of R. Furthermore, there is a canonical basis
of topology of MaxSpec (R), {Xf}f∈R, where Xf = {m ∈ MaxSpec (R) | m 63 f} .

Definition 1.2. Given a topological space X, C(X,R) := {f : X → R | f is continuous }, and has a
natural ring structure induced by R. Given f, g ∈ C(X,R), (f + g)(x) = f(x) + g(x) and (fg)(x) =
f(x)g(x) define a ring structure on C(X,R).

This note was inspired by the following (surprising) result in [1], and follows the proof sketch given in
the problem statement.

Proposition 1.3. Given a compact, Hausdorff space X, MaxSpec (C(X,R)) ∼= X

Proof. Note that for x ∈ X, mx := {f ∈ C(X,R) | f(x) = 0} is a maximal ideal. This follows from
the fact that mx = ker (evalx) where evalx : C(X,R)→ R taking f 7→ f(x). We will show that in fact,
µ : X 7→ MaxSpec (C(X,R)) taking x 7→ mx is a homeomorphism.

We begin by proving surjectivity of µ. Let m ∈ MaxSpec (C(X,R)) and,

V (m) := {x ∈ X | f(x) = 0, ∀f ∈ m} .

Assume for a contradiction that V (m) is empty. Then, for any x ∈ X, there exists a function fx ∈ m
such that fx(x) 6= 0. By continuity of fx, there is an open neighborhood Ux 3 x on which fx is
nonvanishing and positive. If fx is negative for some element in our neighborhood, then we may take
f2
x ∈ m, which is guaranteed to be positive. Repeating this process for any element, we observe that⋃
x∈X Ux = X. By compactness of X there are a finite number of points x1, . . . , xn ∈ X such that⋃n
i=1 Uxi = X. Therefore, we can define a function f ∈ m,

f := fx1 + · · ·+ fxn .

This is positive on X, since it is the sum of positive functions. However, if f vanishes nowhere, then
1
f is continuous on X, implying that f is a unit. This contradicts f ∈ m, so we conclude that V (m) is
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nonempty. If x ∈ V (m), then ∀f ∈ m, f(x) = 0, so m ⊂ mx. By maximality of mx, m = mx. We have
shown that given an arbitrary maximal ideal m of C(X,R) there is an x such that m = mx, and so we
have shown surjectivity.

Now we show injectivity of µ. This requires Urysohn’s Lemma, which states that for a compact,
Hausdorff space X, and two closed disjoint subsets A,B there is a continuous function f : X → [0, 1]
such that f(a) = 0, ∀a ∈ A and f(b) = 1, ∀b ∈ B. Taking this lemma for granted (or checking it to
be true by reading [3]), this gives us the injectivity condition, x 6= y =⇒ mx 6= my. This is because
{x} , {y} are closed and disjoint when x 6= y, implying that there is a function f ∈ C(X,R) such that
f(x) = 0 and f(y) = 1. Therefore, f ∈ mx, but f /∈ my as desired.

Now we show that this µ is a homeomorphism We have already discussed that Xf form a basis of
topology for MaxSpec (C(X,R)), which can be written as,

Xf = {m ∈ MaxSpec (R) | m 63 f} = {mx ∈ MaxSpec (R) | mx 63 f} .

Consider the set Uf = {x ∈ X | f(x) 6= 0}. We claim that Uf forms a basis of topology. The zero
function 0 : x 7→ 0 and the constant function 1 : x 7→ 1 imply that X,Ø ∈ {Uf | f ∈ C(X,R)}.
All we need to show is that given Uf and Ug for every point p ∈ Uf ∩ Ug there is an Uh such that
p ∈ Uh ⊂ Uf ∩ Ug. But, Uf ∩ Ug. However,

Ufg = {x ∈ X | f(x)g(x) 6= 0} = {x ∈ X | f(x), g(x) 6= 0} = Uf ∩ Ug,

and so we conclude that Uf generate a basis of topology for X. Now, we show µ (Uf ) = Xf . Since
µ (x) = mx

µ (Uf ) = µ ({x ∈ X | f(x) 6= 0}) = {mx | mx 63 f} = Xf

We already know that µ is bijective, and any open set can be constructed from the basis of topology,
so this proves µ is actually a homemorphism.

In hindsight, this proposition is not extremely surprising, as it is essentially attempting to extend
the Weak Nullstellensatz from the ring of polynomials to the ring of continuous functions, but
having to impose additional conditions. Recall that the Weak Nullstellensatz Theorem says that
MaxSpec (C [x1, . . . , xn]) ∼= Cn. In this case, C [x1, . . . , xn] can be considered a subring of the much
larger ring, C(Cn,C). Here, the parallels become a little clearer – we would like to claim that
MaxSpec (C(Cn,C)) is a recognizable space, but we are forced to consider MaxSpec (C(Br(0)n,R)) ∼=
Br(0)n instead. Here, Br(0) = {z ∈ C | |z| ≤ r, r ∈ R}.
Recall that we require that X be compact and Hausdorff, and the ring of functions evaluate to the real
numbers in this proposition. However, it seems that these restrictions can be relaxed when considering
compactifications.1

This proposition seems to imply that we can use tools from algebraic geometry study the zero locus
of continuous functions on sufficiently nice topological spaces, such as compact manifolds. In fact, we
can say more about the allowable functions on a manifolds, which we will explore in a later section.

Even though the proposition states that MaxSpec (C(X,R)) ∼= X, how strong is this equivalence? In
order to rigorously pose and answer this question, we turn to category theory. We want to know if

1There are many different compactifications of a space and in fact, we can consider compactifications as functors.
We can consider the category of these compactifications, with the morphisms being “inclusion.” In other words, for
two compactifications C0,C1 : HausTop → HausCmptTop there is an arrow between C0 → C1 if C0(X) ⊂ C1(X) for
X ∈ HausTop. There is a final object in this category of compactifications, CSC , called the Stone-Ĉech compactification.
This is also called the maximal compactification. Using this, it seems as though we can extend the proposition as: Given
a Hausdorff space X, MaxSpec (C(CCS (X) ,CCS (R)) ∼= CCS (X). I’d like to thank Riley Levy for introducing me to this
maximal compactification.
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morphisms are also preserved, but this only makes sense in the context where CR : Top → CRing is
a functor that takes X → C(X,R). We check that given a continuous function f : X → Y , there
is an induced map f∗ : C(Y,R) → C(X,R) by precomposing f . In other words, f∗(g) = g ◦ f for
g ∈ C(Y,R). We claim that this association of morphisms satisfies functoriality. For,

X
f
// Y

g
// Z ,

given an element h ∈ C(Z,R),

(g ◦ f)∗(h) = h ◦ g ◦ f = f∗(h ◦ g) = f∗(g∗(h)) = f∗ ◦ g∗(h).

Furthermore, id∗X(f) = f ◦ idX = f and so id∗X = idC(X,R) as desired. We conclude that CR is a
contravariant functor. Now, we examine where morphisms f : X → Y of compact Hausdorff spaces
are sent through the functors CR and MaxSpec.

Proposition 1.4. There is a natural transformation between

MaxSpec ◦CR : HausCmptTop→ HausCmptTop

and 1 : HausCmptTop→ HausCmptTop the identity functor.

Proof. We have already established that CR sends f → f∗ where f∗(g) = g ◦ f . We have already
studied how the functor MaxSpec acts on morphisms, MaxSpec : f∗ 7→ f̄∗ where f̄∗ : mx 7→ f∗−1(mx).
Note that,

f∗−1(h) = {g | g ◦ f = h} .

We conclude that

f∗−1(mx) = f∗−1 ({h | h(x) = 0}) = {g | g ◦ f = h, h(x) = 0} = {g | g ◦ f(x) = 0} = mf(x)

Under the homeomorphisms µX , µY , we conclude that µ−1
Y ◦ f̄∗ ◦ µX = f . This implies that

X
f

//

µX
��

Y

µY
��

MaxSpecC(X,R)
f̄∗
//MaxSpecC(X,R)

which is the commutative diagram we desire for a natural transformation.

A natural question to ask given this information is if there is a natural transformation between CR ◦
MaxSpec and the identity functor on a subcategory of CRing. In other words, given a ring R with
sufficiently nice properties, such as Noetherianity, does C(MaxSpec (R) , k) ∼= R for k a field? This
does not seem to hold. We check two examples.

Example 1.5. Consider a local ring (R,m). By definition, m is the only maximal ideal, and so
MaxSpec (R) = {m}. C({∗}) ∼= R for a singleton set, but not all local rings are R. We conclude that
C(MaxSpec (R)) 6∼= R for R an arbitrary local ring.

Example 1.6. By the Weak Nullstellensatz, MaxSpec (C [x1, . . . , xn]) ∼= Cn. However, C(Cn,R) 6∼=
C [x1, . . . , xn], since polynomials with complex coefficients generally do not evaulate to real values.
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2 Extending to Manifolds and Measure Spaces

Recalling the structure of the proof of propostion 1.3, we note that for surjectivity, we need compactness
of X, continuity of f , and the fact that if f ∈ m, f2 ∈ m and f2 is nonegative for any f . This last fact
requires that the field we map to is R. For surjectivity, we needed Urysohn’s Lemma to show that
there are functions that separate points, which itself required X to be Hausdorff and compact. In the
last step, to show that µ was a homeomorphism, we used the bijectivity of µ and the fact that it sent
one basis of topology to another. We claim that this argument extends to compact manifolds.

Proposition 2.1. For a compact, Cr–manifold X, define Cr(X,R) to be functions from X → R that
are continuously differentiable r times.

MaxSpec
(
C0(X,R)

) ∼= · · · ∼= MaxSpec (Cr(X,R)) ∼= X

This proposition essentially states that MaxSpec does not detect smoothness of functions.

Proof. m
(r)
x := {f ∈ Cr(X,R) | f(x) = 0} still is a maximal ideal since it is the kernel of the surjective

ring homomorphism evalx. We will prove that the map µr : x 7→ m
(r)
x is still a homeomorphism by

mostly appealing to the proof of Proposition 1.3. Since Cr functions are also continuous, the Cr

functions map into R, and X is compact, we conclude that µr is surjective. For injectivity of µr, we
appeal to the Smooth Urysohn’s Lemma, proven in [2]. To prove that µr and it’s inverse is continuous,
we appeal again to the proof of Proposition 1.3, as it will be identical. We conclude the proposition
is true.

The most surprising fact about this proposition are the homeomorphisms,

MaxSpec
(
C0(X,R)

) ∼= · · · ∼= MaxSpec (Cr(X,R)) .

Yet, there is a proposition that says that the space of smooth (or differentiable) functions is dense in
the space of continuous functions on a compact space. This might be enough evidence to believe this
proposition.

Looking at differentiablilty, it might also be worth looking at the extention of the proposition to
include integrability, but the argument does not seem to hold. We investigate this in detail. Given
a compact measure space (X,A ,m), the natural ring associated to this measure space is L∞(X).2

Recall that this is defined to be,

L∞(X) := {f | ||f ||∞ <∞} , where ||f ||∞ = inf {C ≥ 0 | |f(x)| ≤ C for almost every x ∈ X} .

When we try to apply the proof method in Proposition 1.3, injectivity certainly holds, since we can
separate points with indicator functions. For x 6= y, there are two disjoint open sets Ux, Uy that
separate these points. These sets are measurable if m is a Borel measure, or even better, a Radon
measure. We can then take the indicator function on Ux to get our desired separating function.
However, when trying to show injectivity, there is some trouble. A L∞ function is not guaranteed to
be continuous, and furthermore, if f is not continuous, we are not guaranteed that the maximal ideal
that f is contained in has continuous functions that sufficiently approximate f .

2Unfortunately, Lp(X) is not a ring in general. Consider the following function, on X = [0, 1] with the Lebesgue
measure.

f(x) =

{
1√
x
, x ∈ (0, 1]

0, x = 0

For this function, f ∈ L1(X), but f2 /∈ L1(X). Taking roots of this function, we can construct the same type of
counterexample for each Lp(X), p <∞.
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One possible fix is to change the ring entirely by switching the multiplication on the ring from value-
wise multiplication to convolution. The downside to this is that the convolution generally does not
have a unit, making the ring (or “rng” if you would like) harder to work with.
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