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Linear Algebraic Groups

Overview

A linear algebraic group is analogous to a topological group; it is an affine
variety with a group structure, such that multiplication and the finding of
inverses are morphisms of varieties. The general linear group GL(n,K) can
be considered a linear algebraic group, and indeed every linear algebraic group
which is a variety of K is isomorphic to some subgroup of GL(n,K).

(1)-(4) follow source [1]. The rest follow source [2].

Preliminaries

Affine n-space: Let K be a field. We call Kn affine n-space, and we write
An. This is emphasizes the geometrical importance of the space.

Affine variety: The set of common zeros to a finite collection of polynomials
called an affine variety. This is a curve, surface, or hyper-surface in affine n-
space.

Zarisky topology: Consider An. One can set a topology on An in which the
closed sets are exactly the affine varieties. This is the Zarisky topology.

We set the following relationships between ideals and varieties: Let I be
an ideal of k[x1, ..., xn]. We set V (I) = {x ∈ An, f(x) = 0,∀f ∈ I}, the set
of common zeros of I. This is always an affine variety. By Hilbert’s basis
theorem, k[x1, ..., xn] is Noetherian, that is every ideal I is finitely generated
by some {fi}, and the common zeros of I are exactly the common zeros of the
generators. Since the set is finite, V (I) is a variety. (But different ideals can
generate the same variety.)

Let X be a variety of An. Set I(X) = {f ∈ k[x1, ..., xn], f(x) = 0,∀x ∈ X},
the set of polynomials vanishing on X. Note that this is always an ideal, and
furthermore it is always a radical ideal.

Hilbert’s Nullstellensatz:
√
I = I(V (I)). This states that ideals having the

same radical define the same ideal. In fact, it sets up an one-to-one, inclusion
reversing correspondence between radical ideals and varieties.

Varieties
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Affine algebra: Given an affine varietyX ofAn, we let k[X] = k[x1, ..., xn]/I(X).
We call k[X] the affine algebra of X, or the coordinate ring. We know I(X)
are exactly the polynomials vanishing on X. So k[X] is exactly the ring of
polynomials on X, in which polynomials are considered equal exactly when
they are equal everywhere on X.

Note that by the Nullstellensatz the varieties on X, that is the varieties of
An in X, correspond exactly to the radical ideals of k[X].

Morphism of varieties: Before discussing what a morphism of algebraic groups
looks like, we must determine what is a morphism of varieties. Let X ⊂
An, Y ⊂ Am be varieties. We want a function which is continuous with re-
spect to the Zarisky topology. Since the closed sets are based on the zeros of
polynomials, the ”natural” morphisms are polynomial. Specifically, polynomi-
als in k[X] can be considered functions from X to A. The products for such
functions are morphisms of varieties.

We define a morphism of varieties to be a function f : X → Y, x 7→
(f1(x), ..., fm(x)), where the fi ∈ k[X] That is, it is a function which is ”poly-
nomial in each coordinate.”

Isomorphism of varieties: An isomorphism of varieties is a morphism ϕ :

X → Y which is bijective, such that ϕ−1 : Y → X is also a morphism of
varieties (i.e. ϕ has a polynomial inverse.)

(1) Morphisms of varieties are continuous

Proof: Let ϕ : X → Y be a morphism of varieties. We must show the
inverse of every closed set is closed, that is the inverse of every variety is a
variety.

Let {fi} be a set of polynomials defining a variety Z ⊂ Y . We can consider
them to be functions from Y to A. So the polynomials fi ◦ ϕ are polynomials
on X. We have:
x ∈ ϕ−1(Z) ⇐⇒ ϕ(x) ∈ Z ⇐⇒ fi(ϕ(x)) = 0,∀i ⇐⇒ fi ◦ ϕ(x) = 0,∀i
So the set ϕ−1(Z) is a variety, the variety defined by the fi ◦ ϕ. �

Comorphisms: Let ϕ : X → Y be a morphism of varieties. We define the
comorphism ϕ∗ : k[Y ] → k[X] : f → f ◦ ϕ. It is a morphism of k-algebras.
Indeed the * defines a contravariant functor from the category of varieties to
the category of affine k-algebras, though we shall not go into this completely.
Also, note that ϕ∗ = ψ∗ =⇒ ϕ = ψ.

(2) Functoral behavior of * on morphisms:
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(i)1∗
X = 1k[X]

(ii)Let ϕ : X → Y, ψ : Y → Z be morphisms. (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗

(iii)Let ϕ : X → Y be a morphism. ϕ∗ : k[Y ] → k[X] is a k-algebra
morphism.

Proof:
(i) 1∗(f) = f ◦ 1 = f
(ii) (ϕ ◦ ψ)∗(f) = f ◦ ϕ ◦ ψ = ψ∗(f ◦ ϕ) = ψ∗ ◦ ϕ∗(f)
(iii) Let a ∈ k.

ϕ∗(af) = af ◦ ϕ = aϕ∗(f)
ϕ∗(f + g) = (f + g) ◦ ϕ = f ◦ ϕ + g ◦ ϕ = ϕ∗(f) + ϕ∗(g) ϕ∗(fg) = fg ◦ ϕ =
(f ◦ ϕ)(g ◦ ϕ) = ϕ∗(f)ϕ∗(g)�

(3) Affine algebra homomorphisms correspond to unique morphisms of varieties:Let

XAn, Y ⊂ Am be varieties. Let Φ : k[Y ] → k[X] be a k-algebra homomor-
phism. There is a unique morphism ϕ : X → Y such that ϕ∗ = Φ.

Suppose that we have morphisms ϕ, ψ : X → Y such that ϕ∗ = ψ∗. But this
implies that ϕ∗(ȳi) = ψ∗(ȳi) where the ȳi are the reductions of the variables of
yi mod I(Y ). Thus yi ◦ ϕ = yi ◦ ψ. Let ψ = (f1, ..., fm), ϕ = (g1, ..., gm). Then
yi ◦ ψ = fi, yi ◦ φ = gi. Thus fi = gi, and ϕ = ψ

Proof: We have k[X] = k[x1, ..., xn]/I(X), k[Y ] = k[y1, ..., ym]/I(Y ). Let
Φ̄ : k[y1, ..., ym] → k[X] : g 7→ Φ(g + I(Y )) be the lift of Φ. Note it is also a
k-algebra homomorphism, as it is the composition of Ψ and the quotient map.

We choose representatives fi such that Φ̄(yi) = Φ(yi + I(Y )) = fi + I(X).
For all g ∈ k[y1, ..., ym] we have:
g(f1, ..., fm) + I(X) = g(Φ̄(y1), ..., Φ̄(ym)) = Φ̄(g(y1, ..., ym)) = Φ̄(g)
We set ϕ = (f1, ..., fm). We must check that ϕ(X) ⊂ Y . If so, it is a

morphism of varieties. So we must show every polynomial in k[Y ] is zero at
ϕ(x) for all x ∈ X. Let g ∈ k[Y ]. Note then that g(f1, ..., fm) ∈ I(X).
g(f1 + I(X), ..., fm + I(X)) = g(f1, ..., fm) + I(X) = Φ̄(g) = I(X)
Also, we have ϕ∗ = Φ. Let g ∈ k[y1, ..., ym]:
ϕ∗(g+ I(Y )) = (g ◦ϕ) + I(X) = g(f1, ..., fm) + I(X) = Φ̄(g) = Φ(g+ I(Y ))
And so we have existence, and thus uniqueness. �

(4) Isomorphism of varieties depends on comorphism of algebras: Let X ⊂
An, Y ⊂ Am be varieties and let ϕ : X → Y be a morphism. ϕ is an isomor-
phism iff ϕ∗ is an isomorphism of k-algebras, and then (ϕ∗)−1 = (ϕ−1)∗.

Proof: Let ϕ : X → Y be an isomorphism. Then we have ϕ−1 : Y → X such
that ϕ◦ϕ−1 = ϕ−1◦ϕ = 1X . But then by (2) ϕ∗◦(ϕ−1)∗ = (ϕ−1)∗◦ϕ∗ = 1k[X].
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So ϕ∗ is an isomorphism with (ϕ∗)−1 = (ϕ−1)∗.
Let ϕ∗ : k[Y ]→ k[X] be an isomorphism. Then there is a (ϕ∗)−1 : k[X]→

k[Y ] such that ϕ∗ ◦ (ϕ∗)−1 = (ϕ∗)−1 ◦ ϕ∗ = 1k[X]. By (3) there is a morphism
of varieties ψ : Y → X such that (ϕ∗)−1 = ψ∗.

(ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗ = 1k[X] = ϕ∗ ◦ ψ∗ = (ψ ◦ ϕ)∗

By (2) and (3) this means ψ ◦ ϕ = ϕ ◦ ψ = 1X . Thus ϕ is an isomorphism,
and we have (ϕ∗)−1 = (ϕ−1)∗. �

Product of varieties: Let X ⊂ An, Y ⊂ Am be varieties. We let the product
X×Y be the usual subset of An+m, topologized by the Zariski topology. Note
this is not the usual product topology.

Furthermore, this is actually the product in the category of varieties in the
sense of category theory, but we shall not need this fact.

Product of varieties is a variety

Proof: Let fi : An → k, gi : Am → k be the finite sets of polynomials
defining X and Y respectively, seen as functions. Then the set of products
figj : An+m → k defines precisely the variety X × Y . �

(5) k[X × Y ] ∼= k[X]⊗ k[Y ]

Proof: Let R = k[X], S = k[Y ], σ : R ⊗k S → k[X × Y ] : f ⊗ g 7→
f(T1, ..., Tn)g(U1, ..., Um). We will show σ is an isomorphism of k-algebras.

Clearly any polynomial of n + m indeterminates is a sum of products of
polynomials in the first n and last m indeterminates. So σ is surjective.

Now we show injectivity. Let f =
∑r

i=1 fi ⊗ gi be a polynomial sent to 0,
such that f 6= 0. Then r = 1: Not all gi are 0, so let y ∈ Y, g(y) are not all 0.
Now we know

∑
fi(x)gi(y) = 0,∀x ∈ X. But this means

∑
gi(y)fi = 0 in R,

so the gi are linearly dependent over k. So if r > 1, we could reduce it by 1.
Hence r = 1.

Now by the above f1 = 0, so f = 0.�

Linear Algebraic Groups

Linear Algebraic Group: Let G be an affine variety (as opposed to a pro-
jective variety). We say G is a linear algebraic group, or an affine algebraic
group, when there is a group structure on the points of G. We require that
µ : G×G→ G : (g, h) 7→ gh, the multipication of the group, is a morphism of

4



varieties, and that i : G → G : g 7→ g−1, the inverse function, is a morphism
of varieties.

Of course we also require there is an identity 1 ∈ G such that 1g =
g1 = g,∀g ∈ G. We require inverses to have the usual property of in-
verses gg−1 = g−1g = 1. And we require the associativity of multiplication
g(hi) = (gh)i,∀g, h, i ∈ G.

Note that not all subgroups of a linear algebraic group are sub-structures.
The sub-structures of a linear algebraic group are the closed subgroups, that
is subgroups which are closed under the Zariski topology (varieties).

It shall not be proved here, but Im(ψ) is always a closed subgroup for any
morphism of linear algebraic groups.

Morphism of Linear Algebraic Groups: Let ϕ : G → H be a function be-
tween linear algebraic groups. Then it is a morphism of linear algebraic groups
if it is a group homomorphism and a morphism of varieties.
ϕ is an isomorphism of linear algbraic groups if it is an isomorphism of

groups and of varieties.

General Linear Group:One vitally important algebraic group is the general
linear group GL(n, k) of invertible n×n matricies under multiplication. First

we shall give it the structure of variety in An2+1.
We identify the first n2 coordinates with the corrdinate functions of the

matrix Tij. The n2+1-th coordinate will be identified with 1/det(T ). Since the
matricies are invertible, the determinant is always invertible. Then GL(n, k)
can be identified with the variety of zeros of (1/det(T ))∗det(Tij)−1 = 0. This
is a polynomial, since det(Tij) is a polynomial of the coordinates Tij.

Now, this forms an algebraic group since given matricies A,B ∈ GL(n, k),
µ(A,B) = AB is polynomial in each coordinate. We have ABij =

∑
k AikBkj,

so the coordinates of the product AB are polynomials of the coordinates of A
and B. Also, 1/(det(AB)) = (1/det(A))(1/det(B)), so it is polynomial in the
last coordinate as well.

The inverse mathcalci(A) = A−1 is also polynomial in every coordinate.
Note that the coordinates of A−1 are rearrangements of the corrdinates of A,
perhaps with signs switched. These are all clearly polynomial. And the final
coordinate 1/det(A−1) = det(Aij) which is a polynomial of the coordinates of
A. (This is a special case of a more general procedure to make a principle
open set affine, that is a set Xf = {f(x) 6= 0}.

Further examples:
The multiplicative group Gm: This is essentially the set k∗ = k−{0} under

multiplication. Since k is a field, we know k∗ is a group. Note that we can
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consider this to be the group of 1× 1 matricies, Gm = GL(1, k). So we know
it is truly a linear algebraic group over A2.

The additive group Ga: This is the set k as a group under addition. This
is clearly a variety with polynomial 0 over A. µ and i are clearly polynomial,
with µ : G×G→ G : (x, y) 7→ x+ y, i : G→ G : x 7→ −x.

Action of a Linear Algebraic Group: Let X be an affine variety and G be
a linear algebraic group. An action of G on X is a morphism of varieties
ϕ : G×X → X : (g, x) 7→ gx which follows the usual rules for group actions.
That is, 1x = x, g(hx) = (gh)x,∀x ∈ X, ∀g, h ∈ G. We say that G acts
morphically on X.

Translation of functions: Let ϕ : G × X → X be a morphic action. Now
consider the morphism of varieties X → X : y 7→ yx, x ∈ G. (It is a morphism
since ϕ is). The comorphism is called a translation of functions: τx : k[X] →
k[X] : (τxf)(y) = f(x−1y).

Note that τ : G→ GL(k[X]) : x 7→ τx,the group of automorphisms of k[X],
is a group homomorphism (in the usual sense):
τgh(f)(y) = f((gh)−1y) = f(h−1g−1y) = τh(f(g−1y)) = τg ◦ τh(f)(y)

(6) Translation of functions lemma: Let ϕ : G × X → X be an algebraic

group action. Consider the comorphism ϕ∗ : k[X]→ k[G×X] = k[G]⊗ k[X].
Let F be a finite dimensional subspace of k[X].

(a) There is a finite dimensional subspace E, such that F ⊂ E, which is
fixed under translation of functions: τxE = E∀x ∈ G.

(b) F is fixed under translation of functions iff ϕ∗F ⊂ k[G]⊗k F .

Proof:
(a) We know F is finite dimensional, so we can select generators F =<

h1, ..., hn >. Let hj be one of these generators. We write, perhaps not uniquely
ϕ∗hj =

∑
fi ⊗ gi ∈ k[G]⊗ k[X].

Let x ∈ G, y ∈ X. τxf(y) = f(x−1y) =
∑
fi(x

−1)gi(y). Hence τxf =∑
fi(x

−1)gi. Thus, the gi span a finite dimensional subspace of k[X] which
contains all possible translations of hj. Now, the set of all the gi for all hj
span a finite dimensional subspace E invariant under translation of functions.
Also, note it contains τ1hj = hj, all the generators of F . So F ⊂ E.

(b) Let ϕ∗F ⊂ k[G]⊗ F . Then in the proof of part (a), we can select gi in
F . So F itself is stable under translation of functions.

Let F be stable under translations. Extend the basis {fi} to a basis {fi} ∪
{gj} of k[X]. We let ϕ∗f =

∑
rifi +

∑
sigj. Then τxf =

∑
ri(x

−1)fi +∑
sj(x

−1)gj. This is in F , so the functions sj vanish everywhere on G. Hence
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they are zero in k[G]. Thus, ϕ∗F ⊂ k[G]⊗ F . �

Right translation of functions: By analogy, let G act on itself by right mul-
tiplication by x that is y 7→ yx. The comorphism is the right translation of
functions by x. ρxf(y) = f(yx).

Note that ρ : G→ GL(k[G]) : x 7→ ρx is a group homomorphism.

Theorem: Let G be a linear algebraic group. Then G is isomorphic to a
closed subgroup of some GL(n, k):

Proof: Let G be a linear algebraic group. Choose generators fi for k[G].
That is k[G] = k[f1, ..., fn]. Let F = Spanfi. Then by (6a) there is a finite
dimensional subspace E such that F ⊂ E and E is stable under translations
of functions. We now let the fi be a basis for E. This basis also generates
k[G].

Let ϕ : G × E → E denote the natural restriction of the action of ρ. By
(6b) we can write ϕ∗fi =

∑
j mij ⊗ fj, where mij ∈ k[G]. Then ρxfi(y) =

fi(yx) =
∑
mij(x)fj(y). That is ρxfi =

∑
mij(x)fj. Hence the matrix of ρx

in the basis fi is exactly (mij(x)). Let ψ : G → GL(n, k) : x 7→ (mij(x)).
Note that since ρ is a group homomorphism, so is ψ. Furthermore, since it
is polynomial in every coordinate, it is a morphism of varieties, and hence of
algebraic groups.
ψ is injective: Let x ∈ kerψ. Then ρx fixes all the fi. So ρxfi(y) = fi(yx) =

fi(y). So fi(x) = fi(1). But this means f(x) = f(1) for all f ∈ k[G]. So x = 1.
ψ is an isomorphism of varieties: Note that ψ∗ sends the coordinate func-

tions Tij to the polynomials mij. But we have fi(x) = fi(1x) =
∑
mij(x)fi(1).

This shows the mij generate k[G], so ψ∗ is surjective. Also, ψ is bijective
=⇒ ψ∗ is injective. So ψ∗ is an isomorphism and by (4) we are done. �
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