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What is a tropical curve?

A tropical curve C is a triple (G , l , w), where G is a connected
graph, l : E (G ) → R>0 is a length function, and

w : V (G ) → Z≥0

is a weight function on the vertices of G , with the property that
every weight zero vertex has degree at least 3.
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Its genus is g(G ) +
∑

v∈V w(v).



Motivation I: stratification of Mg by dual graphs
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Figure: Posets of cells of M tr
2 (left) and of M2 (right). Vertices record

irreducible components, weights record genus, edges record nodes.



Motivation II: Berkovich spaces

Let K be an algebraically closed field, complete with respect to a
nonarchimedean valuation val : K ∗ → R on it.

Examples: Cp, completed Puiseux series.



Motivation II: Berkovich spaces

Let K be an algebraically closed field, complete with respect to a
nonarchimedean valuation val : K ∗ → R on it.

Examples: Cp, completed Puiseux series.

Suppose X ⊆ (K ∗)n is an algebraic subvariety of the torus. Then
the tropicalization of X is the set

Trop(X ) = {(val(x1), . . . , val(xn)) ∈ R
n : (x1, . . . , xn) ∈ X}.

Note that Trop(X ) is highly sensitive to the embedding of X .
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Let X be a smooth curve of genus g ≥ 1 over K .

The Berkovich analytification X an is a certain space intrinsically
associated to X which contains the original points of the curve X

infinitely far away.



Motivation II: Berkovich spaces

Let X be a smooth curve of genus g ≥ 1 over K .

The Berkovich analytification X an is a certain space intrinsically
associated to X which contains the original points of the curve X

infinitely far away.

X an has a canonical deformation retract down to a finite metric
graph Γ, decorated with some nonnegative integer weights, sitting
inside it, called its Berkovich skeleton. In fact Γ is a tropical
curve of genus g .

Furthermore, X an is the inverse limit of all tropicalizations, and
any finite piece of X an can be found isometrically in some Trop(X )
[Payne, Baker-Payne-Rabinoff].



Motivation II: Berkovich spaces
So we have a map

Mg (K ) → Mtrop
g

sending a curve X to its skeleton Γ. For example, elliptic curves:



Classical vs. tropical hyperelliptic curves

Let X be a complex algebraic curve of genus ≥ 2. Then TFAE:

1. There exists a divisor D on X with degree 2 and dim|D| = 1.

2. There exists an involution i such that X/i has genus 0.

3. There is a degree 2 holomorphic map φ : X → P
1.

X is said to be hyperelliptic if so.
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Let X be a complex algebraic curve of genus ≥ 2. Then TFAE:

1. There exists a divisor D on X with degree 2 and dim|D| = 1.

2. There exists an involution i such that X/i has genus 0.

3. There is a degree 2 holomorphic map φ : X → P
1.

X is said to be hyperelliptic if so.

More concretely, hyperelliptic curves are cut out by polynomials of
the form

y2 = h(x)

with h a polynomial of degree 2g + 1 or 2g + 2. Hence the space
of hyperelliptic curves is (2g − 1)-dimensional.
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We’ll prove: Let Γ be a tropical curve of genus ≥ 2. Then TFAE:
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2. There exists an involution i such that Γ/i is a tree.

3. There exists a nondegenerate harmonic morphism of degree 2
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Classical vs. tropical hyperelliptic curves
Let X be a complex algebraic curve of genus ≥ 2. Then TFAE:

1. There exists a divisor D on X with degree 2 and dim|D| = 1.

2. There exists an involution i such that X/i has genus 0.

3. There is a degree 2 holomorphic map φ : X → P
1.

X is said to be hyperelliptic if so.

We’ll prove: Let Γ be a tropical curve of genus ≥ 2. Then TFAE:

1. Γ admits a divisor D with degree 2 and r(D) = 1.

2. There exists an involution i such that Γ/i is a tree.

3. There exists a nondegenerate harmonic morphism of degree 2
from Γ to a tree.

Γ is said to be hyperelliptic if so.

◮ In genus 3, every curve is either a plane quartic or it is
hyperelliptic.

◮ Hyperelliptic loci are the smallest examples of Brill-Noether

loci. [Caporaso, C-D-P-R, L-P-P]
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Let Γ be a metric graph. A divisor D on Γ is a formal Z-sum of
points of Γ.
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An effective divisor of degree 2.



Divisors on metric graphs [BN,GK,MZ]

A rational function on Γ is a continuous, piecewise affine-linear
function f : Γ → R with integer slopes.

The divisor div(f ) is defined as follows: at x ∈ Γ, it equals the sum
of the outgoing slopes at x .



Divisors on metric graphs [BN,GK,MZ]

A rational function on Γ is a continuous, piecewise affine-linear
function f : Γ → R with integer slopes.

The divisor div(f ) is defined as follows: at x ∈ Γ, it equals the sum
of the outgoing slopes at x .

We say that two divisors D and D ′ are linearly equivalent, and we
write D ∼ D ′, if D ′ = div(f ) + D for some rational function f .



Divisors on metric graphs [BN,GK,MZ]

Equivalently, two divisors D and D ′ are linearly equivalent if D ′

can be obtained from D by a chip-firing procedure, as follows.
Regard the coefficient of D at x as a number of chips at x ,
negative chips allowed. Pick any proper closed subset Z of Γ and
send a chip down each edge leaving Z an equal distance; repeat.
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Linearly equivalent divisors.



Divisors on metric graphs [BN,GK,MZ]
The rank r(D) of a divisor D is defined to be

max{k ∈ Z : for all E ≥ 0 of degree k , ∃E ′ ≥ 0 with D ∼ E+E ′}.
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The example above shows that the rank of the divisor on the left is
at least 1.
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The example above shows that the rank of the divisor on the left is
at least 1.

The rank is the correct analogue for the dimension of the linear
system |D|. With it, Riemann-Roch holds [BN]:

r(D) − r(K − D) = deg(D) + 1 − g .



Divisors on metric graphs [BN,GK,MZ]
The rank r(D) of a divisor D is defined to be

max{k ∈ Z : for all E ≥ 0 of degree k , ∃E ′ ≥ 0 with D ∼ E+E ′}.
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The example above shows that the rank of the divisor on the left is
at least 1.

The rank is the correct analogue for the dimension of the linear
system |D|. With it, Riemann-Roch holds [BN]:

r(D) − r(K − D) = deg(D) + 1 − g .

Definition
A metric graph is hyperelliptic if it has a divisor of degree 2 and
rank 1.



Harmonic morphisms of metric graphs

Next we define harmonic morphisms of metric graphs, which are
analogues of holomorphic maps of Riemann surfaces.
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A morphism of metric graphs φ : Γ → Γ′

1. sends vertices to vertices,

2. sends edges to edges (or collapses them down to vertices), in
an incidence-preserving way;

3. if φ (e) = e ′ then l (e ′) /l (e) is an integer. We call this
number the stretching factor of e.



Harmonic morphisms of metric graphs
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A morphism of metric graphs φ : Γ → Γ′ is harmonic if for all
x ∈ V (Γ), for all edges e ′ incident to φ(x), the sum of all
stretching factors of edges above e ′ incident to x is independent of
choice of e ′.



Harmonic morphisms of metric graphs
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A morphism of metric graphs φ : Γ → Γ′ is harmonic if for all
x ∈ V (Γ), for all edges e ′ incident to φ(x), the sum of all
stretching factors of edges above e ′ incident to x is independent of
choice of e ′.

The degree of φ is the sum of all stretching factors above any

edge of Γ′.

We say that φ is nondegenerate if every vertex v ∈ V (G ) is
incident to some edge with a nonzero stretching factor.
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Harmonic morphisms are a good analogue of holomorphic maps of
complex curves. For example, there is a natural way to define
pushforwards and pullbacks [BN] such that the following holds:

Proposition

Let φ : Γ → Γ′ be a harmonic morphism of metric graphs. Then

1. φ∗ div f ′ = div φ∗f ′ for any rational function f ′ : Γ′ → R.

2. φ∗ div f = div φ∗f for any rational function f : Γ → R.

3. deg φ∗D ′ = deg φ · deg D ′ for any divisor D ′ on Γ′.

4. deg φ∗D = deg D for any divisor D on Γ.
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Theorem (C)

Let Γ be a metric graph of genus ≥ 2 with |V (G )| > 2 and no

vertices of valence 1. Then TFAE:

1. Γ is hyperelliptic, i.e. it admits a divisor with degree 2 and

rank 1.

2. There exists an involution i : Γ → Γ such that Γ/i is a tree.

3. There exists a nondegenerate harmonic morphism of degree 2

from Γ to a tree.



Tropical hyperelliptic curves of genus g
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Recall: a tropical curve C is a triple (G , l , w), where G is a
connected graph, l : E (G ) → R>0 is a length function, and
w : V (G ) → Z≥0 is a weight function on the vertices of G , with
the property that every weight zero vertex has degree at least 3.

Definition
An tropical curve (G , w , l) is hyperelliptic if the metric graph
obtained by adding w(v) loops at each vertex v ∈ V (G ) is
hyperelliptic.
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Recall: a tropical curve C is a triple (G , l , w), where G is a
connected graph, l : E (G ) → R>0 is a length function, and
w : V (G ) → Z≥0 is a weight function on the vertices of G , with
the property that every weight zero vertex has degree at least 3.

Definition
An tropical curve (G , w , l) is hyperelliptic if the metric graph
obtained by adding w(v) loops at each vertex v ∈ V (G ) is
hyperelliptic.

The hyperelliptic algebraic curves of genus g form a
(2g − 1)-dimensional locus in Mg . Next, we will prove a tropical
analogue.
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Theorem (C)

Let g ≥ 3. The locus H
2,tr
g of 2-edge-connected genus g tropical

hyperelliptic curves is a (2g − 1)-dimensional stacky polyhedral fan

whose maximal cells are in bijection with trees on g − 1 vertices

with maximum valence 3.



Tropical hyperelliptic curves of genus g

Theorem (C)

Let g ≥ 3. The locus H
2,tr
g of 2-edge-connected genus g tropical

hyperelliptic curves is a (2g − 1)-dimensional stacky polyhedral fan

whose maximal cells are in bijection with trees on g − 1 vertices

with maximum valence 3.

Proof.
Let us group genus g tropical hyperelliptic curves together
according to their combinatorial type. That is, forget the edge
lengths, but remember if two edges are required to have equal
length.

Each combinatorial type is parametrized by a positive orthant
modulo finite symmetries.
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Proof continued.
Fix a maximal combinatorial type G , and fix the tree T to which
such graphs have a nondegenerate degree 2 harmonic map.
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Theorem (C)
Let g ≥ 3. The locus H2,tr

g of 2-edge-connected genus g tropical hyperelliptic

curves is a (2g − 1)-dimensional stacky polyhedral fan whose maximal cells are

in bijection with trees on g − 1 vertices with maximum valence 3.

Proof continued.
Fix a maximal combinatorial type G , and fix the tree T to which
such graphs have a nondegenerate degree 2 harmonic map. We
claim that above each tree edge there are precisely two edges.
Then above each tree vertex there are precisely two vertices. So G

has two horizontal copies of T . Each vertex of G has degree at
least 3; in fact, it must have degree precisely 3.
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For the same reason, T cannot have vertices of degree ≥ 4.



Theorem (C)
Let g ≥ 3. The locus H2,tr

g of 2-edge-connected genus g tropical hyperelliptic

curves is a (2g − 1)-dimensional stacky polyhedral fan whose maximal cells are

in bijection with trees on g − 1 vertices with maximum valence 3.

Proof continued.
Fix a maximal combinatorial type G , and fix the tree T to which
such graphs have a nondegenerate degree 2 harmonic map. We
claim that above each tree edge there are precisely two edges.
Then above each tree vertex there are precisely two vertices. So G

has two horizontal copies of T . Each vertex of G has degree at
least 3; in fact, it must have degree precisely 3.
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For the same reason, T cannot have vertices of degree ≥ 4. Call a
graph obtained from T this way a ladder L(T ). A counting
exercise shows: if T has g−1 vertices then L(T ) has genus g .
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Proof continued.
Fix a maximal combinatorial type G , and fix the tree T to which
such graphs have a nondegenerate degree 2 harmonic map. We
claim that above each tree edge there are precisely two edges.
Then above each tree vertex there are precisely two vertices. So G

has two horizontal copies of T . Each vertex of G has degree at
least 3; in fact, it must have degree precisely 3.
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For the same reason, T cannot have vertices of degree ≥ 4. Call a
graph obtained from T this way a ladder L(T ). A counting
exercise shows: if T has g−1 vertices then L(T ) has genus g .



Corollary

Let g ≥ 3. The number of maximal cells of H
(2),tr
g is equal to the

(g − 2)nd term of the sequence

1, 1, 2, 2, 4, 6, 11, 18, 37, 66, 135, 265, . . .
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What do these spaces look like?
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In the case g = 2 shown above, it is equal to the full moduli space
Mtr

g . It consists of rational open polyhedral cones modulo
symmetries, glued along boundaries via integral linear maps.



Theorem
The moduli space H

2,tr
3 of 2-edge-connected tropical hyperelliptic

curves has 11 cells and f -vector (1, 2, 2, 3, 2, 1).
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Theorem
The moduli space Htr

3 of tropical hyperelliptic curves has 36 cells

and f -vector

(1, 3, 6, 11, 9, 5, 1).
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Berkovich skeletons and tropical plane curves

Let X be a smooth hyperelliptic curve in the plane over a
complete, nonarchimedean field K . Every such curve X is given by
a polynomial of the form

P = y2 + f (x)y + h(x)

for f , h ∈ K [x ].
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Theorem (C)

Let X/K be the curve defined by P = y2 + f (x)y + h(x), suppose

the Newton complex of P is a unimodular triangulation, and

suppose that the core of TropX is bridgeless.

Then the minimal skeleton Σ of X̂ an is a standard ladder of

genus g.

Here, Trop(X ) is equipped with the lattice length metric, which
normalizes the segment from (0, 0) to (p, q) ∈ Z

2 to have length 1,
if gcd(p, q) = 1.



Further directions

◮ Study the map
Mg ,n(K ) → Mtrop

g ,n

and the behavior of Brill-Noether loci under this map. Every
2-edge-connected tropical hyperelliptic curve is the
tropicalization of a hyperelliptic algebraic curve. The same is
not true if we drop 2-edge-connectedness [AB,C].

◮ What about d-gonal curves, i.e. those admitting a divisor of
degree d and rank 1?


