Another Proof of Clairaut’s Theorem

Peter J. McGrath

Abstract. This note gives an alternate proof of Clairaut’s theorem—that the partial derivatives of a smooth function commute—using the Stone–Weierstrass theorem.

Most calculus students have probably encountered Clairaut’s theorem.

Theorem. Suppose that $f : [a, b] \times [c, d] \to \mathbb{R}$ has continuous second-order partial derivatives. Then $f_{xy} = f_{yx}$ on $(a, b) \times (c, d)$.

The proof found in many calculus textbooks (e.g., [2, p. A46]) is a reasonably straightforward application of the mean value theorem. More sophisticated techniques—Fubini’s theorem and Green’s theorem—can each be used to give easy proofs (for instance, [1, p. 61], exercise 3-28). The proof here relies on the density of two-variable polynomials in $C([a, b] \times [c, d])$. More precisely, we use the following version of the Stone–Weierstrass theorem.

Theorem. Let $g \in C([a, b] \times [c, d])$. There is a sequence $p_n(x, y)$ of two-variable polynomials such that $p_n \to g$ uniformly.

Applying the theorem to the continuous function f_{xy} gives a sequence of polynomials p_n such that

$$|p_n(x, y) - f_{xy}(x, y)| < \epsilon(n) \quad \text{for all} \quad (x, y) \in [a, b] \times [b, c]$$

where $\lim_{n \to \infty} \epsilon(n) = 0$.

Therefore, for any rectangle $R = [x_1, x_2] \times [y_1, y_2] \subset [a, b] \times [c, d]$,

$$\left| \iint_R p_n \, dx \, dy - \iint_R f_{xy} \, dx \, dy \right| < \epsilon(n) A(R), \quad (1)$$

where $A(R) = (x_2 - x_1)(y_2 - y_1)$ is the area of the rectangle R. Observe that

$$\iint_R f_{xy} \, dx \, dy = \iint_R f_{yx} \, dy \, dx ,$$

since both are equal to $f(x_2, y_2) - f(x_2, y_1) - f(x_1, y_2) + f(x_1, y_1)$.

Since p_n is a polynomial, it is a trivial computation to verify that

$$\iint_R p_n \, dx \, dy = \iint_R p_n \, dy \, dx$$

for each $n \in \mathbb{N}$ (this also follows from Fubini’s theorem, but even without assuming Fubini’s theorem, equality is straightforward since both integrals can be directly computed).

http://dx.doi.org/10.4169/amer.math.monthly.121.02.165
MSC: Primary 00A05
Therefore, we also have
\[
\left| \iint_{R} p_n \, dy \, dx - \iint_{R} f_{yx} \, dy \, dx \right| < \epsilon(n) A(R).
\] (2)

Taking a limit as \(n \to \infty \), (2) becomes
\[
\iint_{R} f_{xy} - f_{yx} \, dy \, dx = 0.
\] (3)

Since \(f_{yx} - f_{xy} \) is continuous and (3) is true for all rectangles \(R \), \(f_{yx} - f_{xy} \) is identically zero, that is, \(f_{xy} = f_{yx} \).

As a side remark, the same approach proves the equality of iterated integrals in the Fubini theorem for continuous functions. To see this, given \(f \in C([a, b] \times [c, d]) \), take \(p_n \to f \), so
\[
\int_{a}^{b} \int_{c}^{d} p_n(s, t) \, ds \, dt \to \int_{a}^{b} \int_{c}^{d} f(s, t) \, ds \, dt
\]
\[
\int_{a}^{b} \int_{c}^{d} p_n(s, t) \, dt \, ds \to \int_{a}^{b} \int_{c}^{d} f(s, t) \, dt \, ds.
\]

As above, the two integrals on the left are equal for all \(n \), so by uniqueness of limits, the right hand sides are also equal.

REFERENCES

Department of Mathematics, Brown University, Providence, RI 02912
peter.mcgrath@math.brown.edu

Most Active Mathematical Fields,
in *The American Mathematical Monthly*

<table>
<thead>
<tr>
<th>Historically:</th>
<th>Currently:</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 Real Functions</td>
<td>11 Number Theory</td>
</tr>
<tr>
<td>05 Combinatorics</td>
<td>26 Real Functions</td>
</tr>
<tr>
<td>15 Linear and Multilinear Algebra; Matrix Theory</td>
<td>51 Geometry</td>
</tr>
<tr>
<td>54 General Topology</td>
<td>05 Combinatorics</td>
</tr>
<tr>
<td>11 Number Theory</td>
<td>01 History and Biography</td>
</tr>
<tr>
<td>01 History and Biography</td>
<td>52 Convex and Discrete Geometry</td>
</tr>
<tr>
<td>52 Convex and Discrete Geometry</td>
<td>00 General</td>
</tr>
<tr>
<td>20 Group Theory and Generalizations</td>
<td>15 Linear and Multilinear Algebra; Matrix Theory</td>
</tr>
<tr>
<td>30 Functions of a Complex Variable</td>
<td>30 Functions of a Complex Variable</td>
</tr>
<tr>
<td>60 Probability Theory and Stochastic Processes</td>
<td>60 Probability Theory and Stochastic Processes</td>
</tr>
</tbody>
</table>

—Submitted by Vadim Ponomarenko and Robert Devitt-Ryder

© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121