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General Information: M127 is a course in functional analysis. Functional
analysis deals with normed, infinite dimensional vector spaces. Usually, these
vector spaces are spaces of functions, and the norm describes a particular way
of measuring the size of the function. By considering a particular function
as a point in such a vector space, it is often possibly to analyze the function
in a deep way using tools from linear algebra, real analysis, and geometry.

There doesn’t seem to be a set syllabus for M127; different people teach
different topics. In this summary, I’ll try to list some topics that would
probably appear in any version of M127, but you should take this list with
a grain of salt. Though M127 seems to build on some concepts from M113,
you can take M127 without taking M113. The M113 course goes into much
more depth on these common topics. In any case, you might want to read
my summary for M113 before reading this one.

Banach Spaces: Let V be a real vector space. A norm on V is a func-
tion v → ‖v‖ which satisfies the following properties:

• ‖v‖ ≥ 0, with equality iff v = 0.

• ‖av‖ = |a|‖v‖ for all a ∈ R.

• ‖v + w‖ ≤ ‖v‖ + ‖w‖.

The same definition works if V is a complex vector space, provided that |a|
is interpreted as the usual absolute value of a ∈ C. The norm on V turns
V into a metric space, with distance function d(v, w) = ‖v − w‖. If V is
complete (meaning that every Cauchy sequence converges) then V is called
a Banach space. Here are some examples.
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• R
n, equipped with the standard norm, is a Banach space.

• Let V denote the space of real valued functions f such that

‖f‖p :=
( ∫

∞

∞

|f |p
)1/p

< ∞.

Write f ∼ g if f and g agree except on a set of measure 0. Let
Lp(R, R) = V/ ∼, the quotient space. This is a Banach space known
as an Lp space. An obvious variant is Lp(R, C), the Lp space of complex
valued functions.

• Let C0(I) denote the set of continuous functions on a closed interval
I ⊂ R. For a norm, we can use

‖f‖
∞

= sup
I

|f |.

Contraction Mapping Principle: Here is a basic fact about a complete
metric space X. A map T : X → X is called a contraction if

d(T (x), T (y)) < αd(x, y)

for some α < 1 and all x, y ∈ X. A contraction map has a unique fixed
point. The uniqueness is easy. For existence, one chooses an arbitrary start-
ing point x and considers the sequence x, T (x), T (T (x)), etc. This sequence
is easily seen to be Cauchy, and the limit is fixed by T . The contraction
mapping principle applies to Banach spaces, and often provides a tool for
finding functions with special properties.

Existence of First Order ODE’s: I’ll give a quick application of the
contraction mapping principle, as applied to a Banach space. I’ll prove a toy
version of Picard’s theorem on the existence of ordinary differential equa-
tions. The formulation here is definitely not the most general one. Suppose
that φ : R → R is a smooth function such that |dφ/dx| < M for all points.
We seek a solution F : [0,∞) → R to the differential equation

dF

dx
= φ ◦ F (x); F (0) = A.

The argument I give will show that F exists on the interval

I0 = [0, 1/(2M)].
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A repetition of the argument shows that F exists on the interval

I1 = [1/(2M), 2/(2M)].

And so on.
Let X = C0(I0), as defined above. Consider the map T : X → X defined

as follows:
Tf(x) = A +

∫ x

0
φ ◦ f(t) dt. (1)

Since |dφ/dx| < M , the map φ stretches distances by at most a factor of M .
This means that

|φ ◦ f(t) − φ ◦ g(t)‖ < M‖f(t) − g(t)‖.

Hence

‖Tf − Tg‖ ≤
∫ 1/(2M)

0
M‖f − g‖dt ≤

1

2
‖f − g‖.

Hence T is a contraction. Let F be the unique fixed point of T .
Since F is the integral of a continuous function, F is once differentiable.

But then F is the integral of a once-differentiable function. So, F is twice
differentiable. And so on. In short, F is smooth. Moreover, F satisfies our
differential equation, by the Fundamental Theorem of Calculus. That’s the
proof.

Hilbert Spaces: A Hilbert space is a special case of a Banach space. An
inner product on a vector space V is a binary operation 〈 , 〉 such that

• 〈v, v〉 ≥ 0 with equality if and only if v = 0.

• 〈v, w〉 = 〈w, v〉.

• 〈v1 + v2, w〉 = 〈v1, w〉 + 〈v2, w〉.

The inner product defines a metric on V as follows:

d(v, w) = 〈v − w, v − w〉1/2.

V is called a Hilbert space if V is complete with this metric. The Lp spaces
above are Hilbert spaces for p = 2. The inner product is given by

〈f, g〉 =
∫

∞

−∞

f(x)g(x) dx. (2)
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Here g is the complex conjugate of g. This case is especially interesting.
We can also define similar spaces for sequences. For instance, L2(Z, C)

is the space of bi-infinite sequences {cn} of complex numbers such that

∞∑

n=−∞

|cn| < ∞.

The inner product is defined as in Equation ??, except that we do a sum
instead of an integral.

Going in another direction, we can replace R with R/Z, the unit circle.
That is, we can look at 1-periodic functions and define the inner product by
integrating over a single period. This leads to the space L2(R/Z, C).

Fourier Series: Let L2 = L2(R/Z, C) and l2 = L2(Z, C). Let gn be
the function

gn(x) = exp(2πinx).

We define

cn =
∫ 1

0
f(x)g

−n(x) dx (3)

We have

f ∼
∞∑

i=−∞

cngn.

The convergence (of the partial sums of the series) takes place in L2. This
sum is called the Fourier series of F .

One of the most beautiful facts about the Fourier series is Parseval’s
Identity: ∫

R
|f |2 =

∞∑

n=−∞

|ci|
2. (4)

That is, the map f → {cn} is an isometry (distance preserving map) from
L2 to l2. In M127, you see a proof.

Fourier series are a central topic in M127. One main kind of theorem
about Fourier series are convergence results. One is interested in how well
the truncated series

SN =
N∑

n=−N

cngn

converges to f . Here are some sample results.
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• Riesz-Fischer Theorem: ‖Sn − f‖ → 0 in the L2 norm.

• Sn(x) converges pointwise to f(x) when f is differentiable at x. In
particular, Sn converges pointwise to f if f is differentiable.

• Carlson’s Theorem: If f is continuous then SN converges to f except
perhaps on a set of measure 0. (This result is outside the scope of
M127.)

An Application of Fourier Series: In M127, you also see various appli-
cations of Fourier series. For example, consider the function

g(x) = x − floor(x).

We think of g ∈ L2, as in the previous section. We have

‖g‖2 = 1/3; c0 =
1

2
; c

−n = −cn = fraci2nπ.

Applying Parsival’s identity, one obtains

1

3
=

1

4
+

1

2

∞∑

n=1

1

n2π2
.

Rearranging this, we get the famous sum

∞∑

n=1

1

n2
=

π2

6
.

Analysis of the Heat Equation: Consider the Heat Equation

∂f

∂t
=

∂2f

∂x2
. (5)

Here we think of f(t, ∗) as a real valued periodic function. Call this function
ft. Starting with e.g. a differentiable f , we can expand f out in a Fourier
series:

ft =
∞∑

n=0

cn,t cos(2πnx).

Here we are using the fact that f is real-valued to simplify the sum.
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Since the heat equation is linear, we can analyze ft simply by analyzing
the behavior of the heat equation on the sin function ct cos(2πnx). In order
for this function to satisfy the heat equaton, we have

dcn,t

dt
= −(2πn)2cn,t.

This implies that cn,t decays exponentially fast as a function of t. The larger
the value of n, the faster the decay. So, if we think of f as a superposition
of waves of different frequencies, the heat equation damps out the high fre-
quency waves at a very fast rate. This phenomenon explains various things
about f . For instance, it turns out that ft is real-analytic for t > 0.

The Fourier Transform: Closely related to Fourier Series is the Fourier
Transform. Given f : R → C, one defines

f̂(ξ) =
∫

∞

−∞

f(x) exp(−2πinx)dx. (6)

In M127 you will see that the map f → f̂ is an isometry of L2(R, C) to
itself. The inverse map is given by

f(x) =
∫

∞

−∞

f(ξ) exp(2πintxi)dξ. (7)

The Fourier transform is closely related to the operation of convolution.
One defines

(f ∗ g)(x) =
∫

∞

−∞

f(y)g(x− y)dy. (8)

The function f ∗ g is called the convolution of f and g. When g is supported
in a small interval about 0 and has unit integral, then f ∗ g is a kind of
“blurred” version of f that is close to f . If one takes f to be a temperature
profile of a uniformly thick wire and g to be a Gaussian distribution,

g(x) = c1 exp(−c2x
2)

for suitably chosen constants, then f ∗ g represents the temperature profile
described by letting the heat diffuse for a certain time. The amount of time
depends on c2. The constant c1 is a normalizing constant designed to make
the total integral 1.

6



Setting h = f ∗ g, one has the convulution formula.

ĥ = f̂ ĝ. (9)

That is, the Fourier transform converts convolution to multiplication. This
result is important for the analysis of linear differential equations such as
heat flow.
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