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1 From Natural Numbers to Reals

You can think of each successive number system as arising so as to fill some
deficits associated with the previous one. Let’s consider some number sys-
tems in turn.

The Natural Numbers: The set of natural numbers, {1,2,3,4,...}, is
denoted by IN. You can order, add, and multiply numbers in IN and
there are various compatibilities between these operations. For instance
a(b + ¢) = ab + ac. However, subtraction is tricky. You can only take
a — b when a > b.

The Integers The set of integers {..., —2,—1,,0,1,2,...} is denoted by Z.
You can order, add, subtract, and multiply numbers in Z with the same
compabitilities. However, division is tricky. You can only take a/b when b
evenly divides a.

The Rationals The rationals are denoted . They are the expressions
of the form p/q where p and ¢ are integers, with ¢ # 0. Two such expres-
sions p1/q1 and py/qe are meant to be the same (or, techhically, equivalent)
if p1ga = paqy. For instance 2/3 and 4/6 are equivalent. The set of rationals
forms a ordered field, which means there is an ordering on the rationals, and
you can do all 4 basic arithmetic operations, and you have the usual com-
patibilities between all the operations. However, in the rationals you cannot
generally take limits, perform square roots, take logs, etc. All this stems
from the fact that the rationals have “gaps” in them.



The Reals: The reals are denoted R. As in class, you can define a real
number as a Dedekind cut (A, B), where A and B are both sets of rationals
satisfying certain axioms. The reals remain an ordered field, but they have
the additional virtue that the real number system has no gaps. This is some-
times formalized by saying that the real numbers have the least upper bound
property. If S C R is any set which is bounded from above, then there is
some b such that a < b for all @ € S, and no smaller b has this property.
Once you have the least upper bound property, you can define square roots,
limits, logs, etc.

2 Roots of Polynomials

The real numbers also have a deficit of sorts. You cannot take the square
root of a negative number. Put another way, some polynomials do not have
real roots. The classic example is 22 + 1. The same problem persists with
other polynomials. For instance, the quadratic equation

Az?> + Bz + C

has solutions which come from the quadratic formula:
—B++vB?—-4AC
2A '

But, there are problems if B> —4AB < 0. In this case, the formula doesn’t
give real numbers.

3 The Complex Numbers

The complex numbers are defined so that they overcome the deficits men-
tioned for the real numbers. The main idea is to introduce the symbol ¢,
which satisfies the rule that

2

1° = —1.

It is important to remember that ¢ is just a made-up symbol. It doesn’t have
any properties at all besides the ones which we give it.
A complex number is an expression of the form

a + bi,



where a and b are real numbers. The set of complex numbers is denoted C'.
Here are the basic laws for complex numbers:

o Addition: (ay +ib1) + (a2 + ib2) = (a1 + az) +i(by + b2).
e Subtraction: (aj +iby) — (az +iby) = (a1 — az) +i(by — by).
e Multiplication:
(aq +iby) * (ag + ibg) = (aras — biby) + i(a1be + ashy).

Basically, you just multiply the expression out as you would in high
school algebra, and then simplify the expression using the rule that
2

1° = —1.

e Inversion: 1/(a + bi) is defined to be

a ( b ) ,
- i
a* + b? a? + b?
Note that 1/(a + bi) times a + bi equals 1.
e Division
a+bi

c+di c+ di) '
This is using inversion and multiplication to define division.

:(a+bz’)><(

Once all these definitions are made, the complex numbers also form a
field. That is, the usual compatibility rules for the operations hold.
There are several other important operations on complex numbers:

e Norm: |a + ib| is defined to be va? + b?. Geometrically, |a + bi| is the
distance from the point (a, b) to the origin in the plane.

e Conjugation: a + bi is defined to be a — bi. The numbers a + b and
a — bi are called conjugates.

These last two operations make some of the formulas simpler. It is customary
to write complex numbers as single variables, such as z = a + bi. If sis a
real number, then z/s = (a/s) + (b/s)i. In general, if w is another complex
number

This gives a more concise formula for multiplication.
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4 Goodbye Order

The only thing that we really lose when we use complex numbers in place of
real numbers is that they cannot be ordered in such a way that is compatible
with all the arithmetic operations.

Suppose, for the sake of argument, that there was such an order. Then
we either have ¢ > 0 or ¢ < 0. Let’s first consider the case when ¢ > 0. If
the order is compatible with the other operations, then multiplication by a
positive number preserves the order. So 2 > 0. But > = —1. So —1 > 0.
This seems like a contradiction already, but maybe we just have some wierd
order that happens to have this property. So, let’s just go with it. If —1 > 0.
Then multiplication by —1 preserves the order. This gives (—1)(—1) > 0.
So, 1 > 0. Now we know that —1 > 0 and 1 > 0. But, when you negate
both sides of an equation you reverse the order. So 1 > 0 implies that
—(1) < —(0). That is, —1 < 0. Now we know that —1 > 0 and —1 < 0. This
is a contradiction. We get to the same kind of contradiction if we assume
that ¢ < 0. So, since both cases lead to a contradiction, there is no possible
order on C.

If you think about it, it makes sense that there isn’t an ordering on C.
The reals form a number line and there is an obvious geometrical notion of
left and right. The complex numbers really form a number plane and so there
isn’t an obvious notion of left and right.

The situation really isn’t that bad though. We can think of R as a subset
of C, just by considering the number

a4+ 07

to be the real number a. When we do this, all the operations above give the
usual operations on R. Also, the ordering on R still is compatible with all
the operations. For example

(a1 + OZ)(CLQ + Ol) == (alag + O) + Z(O + 0) = 1049 + Oz.

This shows that multiplication does the right thing on our copy of the reals.

So, the right way to think about it is that C extends R (like a plane
extends a line) but it is not possible to extend the ordering on R to an
ordering on C.



5 Quadratic Polynomials

For starters, it makes sense to take the square root of any real number in C.
If D > 0 then v/D is just defined in the usual way. If D < 0, then

VD =i\/|D).

So, for instance v/—3 = +iv/3. Once we make this definition, the quadratic

formula
—B4++vB2—-4AC
2A

gives roots to the polynomial Az? 4+ Bx + C. There are 3 possibilities:

1. The roots are real and unequal. This happens when B? — 4AC > 0.
2. There is one real root. This happens when B? — 4AC = 0.

3. The roots are non-real and conjugate. That is, the two roots have the
form z and Z. This happens when B? —4AC < 0.

Case 2 seems different from the others because there is just one root. But,
here’s a way to think about it. Imagine varying the coefficients A, B, C of the
polynomial so that you pass from Case 1 to Case 3. Then you have these two
real roots which approach each other along the real axis, then collide, then
split apart again. So, in Case 2, you should think that there are two roots,
but that they coincide. They sort of regain their independent identities when
they split apart.

The Fundamental Theorem of Algebra says that any polynomial of degree
n with complex coefficients, say

n
apg+ a1z + ... + a2z,

has n roots, provided that they are counted correctly. Put another way, a
typical choice for the coefficients ay, ..., a,, leads to a polynomial which has
n distinct roots, and then the cases where there are fewer roots comes from
the same kind of collision problems discussed for quadratic polynomials. I'll
give a proof of the Fundamental Theorem of Algebra in the next handout.



6 Geometry of Addition

If we consider complex numbers as points in the plane, then they add like
vectors —i.e. coordinatewise. This means that they satisfy the parallelogram
rule: Considered as points in the plane, the points 0, 21, 2o, and 27 + 2o form
the vertices of a parallelogram.

Z1 +22
Z4

Z;

Figure 1: The parallelogram law.

7 Angle Addition Formulas

Let’s take a break and recall two formulas from trigonometry. These are
called the angle addition formulas.

cos(6y + 63) = cos(6,) cos(fz) — sin(6y) sin(fy).

sin(fy + 02) = cos(6;) sin(6s) + sin(6;) cos(6s).

I'll give a proof of these formulas below, but first [ want to use them.

8 Geometry of Multiplication

A complex number z = a+ bi has two important geometric features. First, it
has a norm, |z| = va? + b%. In the Figure 2. |z| is denoted by r (for radius.)
Second, it has an argument, which is the angle that the point (a,b) makes
with the x axis. In the picture, the argument of z is the angle #. This is
sometimes written arg(z) = 6.



a+bi

Figure 2: The norm and argument of a complex number

Basically, the quantities  and # are the polar coordinates of (a,b). Here
are the basic facts about complex numbers.

1. ’2122‘ = ’Zl||22|.
2. arg(z129) = arg(z1) + arg(z2) mod 2.

In other words, when you multiply two complex numbers, their norms mul-
tiply and their arguments add. The mod 27 in the formula indicates that
angles, as usual, are only defined up to multiples of 27. For instance 7w and
3m are considered to be the same angle.

The first formula is easy to derive

|2122| = VR1R22129 = 4/ (2121)(2222) = 2121\/ 2’222 = |21||22|

The second formula uses the angle addition formulas from trig. Actually,
the second derivation gets both formulas at the same time.

Suppose that z; = a;+ib; and zo = as+iby are two complex numbers with
norms r; and 7 and arguments #; and 0. It follows from basic trigonometry
that

a; = r1cos(fy), by = +r1(sin(6y).

Therefore,
21 = r1(cos(fy) + isin(6y)).

The same goes for z5. We compute

2129 = 1r11r2(cos(fy) + isin(6y))(cos(0s) + isin(fy)) =



179 X (cos(@l) cos(fy)—sin(6;) sin(92)+i(cos(91) sin(fy)+sin(6;) 005(62))) =

riry X (cos(91 + 05) + isin(6; + 92)>.

The last equality comes from the angle addition formulas. When you in-
terpret this last formula geometrically, you see that z;z5 has norm ryry and
argument ¢, + 6 mod 2.

You can use the geometric picture to see that lots of other polynomials
have roots in C. For instance, consider the polynomial 2° — 1. We already
know that —1 is a root. Another root is

z = cos(2m/5) + isin(27/5).

This number has norm 1 and argument 27 /5. From the two main properties
above, z° has norm 1 and argument 27, which is the same as 0, mod 27. So
2°> = 1. Can you find the other 3 roots?

9 Angle Addition Formulas Revisited

The angle addition formulas are really just equivalent to the statement that
when you multiply complex numbers their arguments add. So, if we could
somehow prove that complex numbers had this property without using the
angle addition formulas, then we would have given a proof of the angle ad-
dition formulas.

So, now I'm going to sketch the “arguments add” principle without using
the trig formulas. Let’s say that a complex number z; is good if the angle
addition formula holds for every pair of numbers (21, z2). Here are some basic
facts.

e If z; is a positive real number, then z;2, points in exactly the same
direction as 2z, because we’re just scaling up the coefficients of z5 by z;.
So, the positive real numbers are all good.

o If z; is a negative real number, then z; 25 points in exactly the opposite
direction as zy because, again, we're just scaling up the coefficients of
29 by z1. In this case arg(z;) = m, and arg(z;) + arg(zo) = arg(zs) + 7.
So, negative real numbers are good.



o If 2; is good, then rz; is also good for for any positive real number r,
because (rz1)zo and 2125 point in the same direction.

e The number z; = i is good, because z1z9 = (—by + iaz). The point
(—by, ay) is what you get when you rotate (as, by) by m/2 counterclock-
wise, and arg(i) = 7/2. So i is good.

e For similar reasons, —i is also good. Applying the previous observations
about scaling, the numbers ri and —ri are good for any positive real
number r. That is, all the pure imaginary numbers are good. (A pure
imaginary number is one of the form 0 + bi.)

Now we know that the real numbers are all good, and the imaginary
numbers are all good. Now for the final step:

Lemma 9.1 If z; and 2] are both good, then so is z; + 2.

Proof: The numbers
0 /. /
) 21, Zla 21 + 21

satisfy the parallelogram law. They make a parallelogram P. Likewise, the
numbers
0, 2120, 2129 2120+ 212

satisfy the parallelogram law. They make a parallelogram Q).
We have the distributive law

/ / /
(214 21)22 = 2121 + 2122

This means that (z; + 21)z2 is also a vertex of (). But the two sides of @
emanating from 0 are obtained from the two sides of P emanating from 0 by
the correct rotation and scaling, since z; and 2| are both good. But these
sides determine Q). So, (21 + 21)z2 is obtained from 2z, by the correct rotation
and scaling. In other words z; + z] is also good. &

Any complex number is the sum of a real number and an imaginary
number. Since real numbers are good and imaginary numbers are good, so
is their sum. That is, all complex numbers are good. This proves the angle
addition property without (explicitly) using trig.
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10 Exercises

Pick 4 out of these and do them.

1. Compute the following quantities

. ‘ 3+ 4i "
2—4)(3+2 — 1 .
C-0B+2), S (1+)

2. Find the roots of the polynomial 2 —i. In other words, find all the
complex numbers z such that 23 = 1.

3. Say that a complex number z is a unit if |z| = 1. Prove that if z and w
are units, then so is z/w.

4. Say that a special unit is a unit of the form a + bi where a and b are
integers. How many special units are there, and why?

5. Say that a Gaussian integer is a complex number of the form a+ b7 where
a and b are integers. The prime number 5 factors into “smaller” Gaussian
integers:

5= (3 + 4i)(3 — 4i).

Of all the primes less than 20 which ones factor into smaller Gaussian inte-
gers and which ones don’t? Do you see a pattern?

6. Consider the function f(z) = 1/z. Let L be the line of the form 1 + bi.
This is the vertical line through the point (1,0) on the x-axis. Define

f(L) ={f(2)|z € L}.

In other words, you want to apply the function f to all the complex numbers
in L and see what you get. What shape is f(L)?

7. Let N be any positive integers. Prove that the polynomial zv — 1 has
exactly N roots in C.
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