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1 What is a Fractal?

Asking what a fractal is in mathematics is a bit like asking: What is an
object of art? It is hard to answer this question precisely. You might say
that clearly a painting is an object of art, but suppose that someone has
smeared toothpaste all over a canvas? Is it still art? Well, there might be
some very beautiful toothpaste paintings. Modern painting is pretty broad,
and a toothpaste composition is tame stuff for e.g. the folks over at R.I.S.D.
Is a basketball placed in an aquarium an object of art? The Chicago Museum
of Contemporary Art thinks so, but I’m a little bit skeptical. And so on.

The term fractal was popularized by Benoit Mandelbrot. There are cer-
tain classic sets, like the middle-third Cantor set and the Sierpinski triangle
(described below) which one would certainly say are fractals. These sets ex-
hibit self-similarity , meaning that the set breaks into a finite union of smaller
copies of itself. However, this definition doesn’t strictly work, because a line
segment also has this property.

Another definition of a fractal is that it is a set whose dimension is not
an integer. (Below I will explain what this might mean.) Technically, there
isn’t really a definition of dimension for sets; you need to have a distance
relation on the set for the calculations to make sense. A set with a distance
relation on it (which satisfies certain agreed-upon axioms) is called a metric

space. The reason why people usually speak of fractal sets is that the sets are
subsets of Euclidean space (e.g. the plane) and they automatically inherit a
distance relation from the space in which they sit. So, all along, people mean
fractal metric space when they say fractal set .

I would say that the most popular kinds of dimension are packing di-
mension, covering dimension, box dimension, and Hausdorff dimension. Box
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dimension is a notion which only works for subsets of Euclidean space and
the other notions work for any metric space. Hausdorff dimension is probably
the most “mathematically serious” kind of dimension used, but it is difficult
to give a definition without a buildup of terminology. In these notes I’ll focus
on packing dimension, but I will also define covering demension. For the sets
which are classically considered fractals – the household fractals, so to speak
– all these dimensions coincide.

It is also problematic to say that a fractal is a set which has fractional
dimension. For instance, you might have a set A which has dimension 3/2
and then you could define a new set B which is the union of A with a finite
number of line segments. The line segments have dimension 1, and it turns
out that B will still have dimension 3/2. However, you might feel like the
presence of these line segments mars the original set, much like scratches
on the canvas might mar a painting. You could do a little bit worse. For
instance, you could take a countable union of fractals, F1 ∪ F2 ∪ F3... where
Fn has dimension 3/2 − 1/n. The union will have dimension 3/2, but is it
still a fractal? If you say yes, then suppose that Fn has dimension 2 − 1/n.
Then the union has dimension 2, but maybe you would still want to call it a
fractal. And so on.

So, in short, I’m not really going to answer the question What is a fractal ,
but I will say that with practice you will know one when you see it.

2 Some Household Fractals

The most common kinds of (traditionally called) fractals are constructed
using infinite processes, though many of them have other kinds of descriptions
as well. The most classic example is the middle third Cantor set . This is the
subset of the interval [0, 1] consisting of real numbers whose base 3 expansion
has no 1s in it. Alternatively, start with S0 = [0, 1] and cut out the middle
third, leaving two intervals

S1 = [0, 1/3] ∪ [2/3, 1].

In general, given Sn, let Sn+1 denote the set obtained by chopping out the
middle third of each of the intervals of Sn. The middle-third Cantor set is
the intersection S1 ∩ S2 ∩ S3....

Another example is the Koch snowflake. Start with an equilateral tri-
angle T0 of side length 1 and place 3 smaller equilateral triangles on the
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centers of the edges of T0, as shown in the middle part of Figure 1. The new
triangles should have side length 1/3. Call the result T1. In general, place
small equilateral triangles at the centers of the edges of Tn to produce Tn+1.
These triangles should have size (1/3)n+1. Figure 1 shows a few steps of this
construction. Let T = T1∪T2∪T3... be the union. The boundary of T is the
Koch snowflake.

Figure 1: Three steps in the construction of the Koch snowflake.

Another example is the Sierpinski Triangle. Start with an equilateral
triangle T0, break the triangle into 4 equal piaces, and cut out the (interior
of the) middle one. This leaves T1, as shown in Figure 2. In general, cut
out the middle of all the triangles in Tn to produce Tn+1. The intersection
T1 ∩ T2 ∩ T3... is called the Sierpinski triangle.

Figure 2: Three steps in the construction of the sierpinski triangle

There are some other examples too, such as the Sierpinski carpet, the
Menger sponge, the dragon curves. The internet has some great pictures of
these sets.

You could imagine modifying these constructions in various ways. For in-
stance, you could cut out randomly chosen intervals when making the Cantor
set, or you could add on triangles of random shapes and sizes when making
the Koch snowflake. Are the results still fractals? Yeah, sort of.
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3 Metric Spaces

On your first pass through mathematics, you encounter sets contained in
Euclidean space (e.g. the plane), like the ones drawn above. For this reason,
you might not think too much about the distinction between sets and metric
spaces. The notion of Euclidean distance is so ingrained that it is practically
invisible. In this section, I’m going to define what is meant by a metric space.
Such a space need not be a subset of Euclidean space.

A metric space is a set X together with what is called a distance relation
d. The distance relation satisfies the following axioms.

1. (Positivity) d(x, y) ≥ 0 for all x, y ∈ X.

2. (Nontriviality) d(x, y) = 0 if and only if x = y.

3. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X.

4. (Triangle Inequality) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

These properties are abstract versions of the usual properties that hold for
distances in Euclidean space. The first three are pretty obvious. The last
one expresses the idea that the sum of the lengths of two sides of a triangle
is at least as large as the length of the third side. This property might seem
a bit arbitrary at first, but it turns out to be very important.

A metric space is usually denoted by (X, d). In case X is already a
subset of Euclidean space, the quantity d(x, y) is just the ordinary Euclidean
distance between two points x, y ∈ X. In this case, the axioms are certainly
satisfied.

Many metric spaces do not live in Euclidean space. Let X be the set of
integers. Define d(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y. So, in other
words, every two integers are defined to be 1 apart. Let’s think about this
metric space geometrically. If we just pick 3 points in X, we can think of
them as the vertices of an equilateral triangle. If we pick 4 points, we can
think of them as the vertices of a regular tetrahedron. If we pick 5 points,
we can think of them as the vertices of a regular 4-dimensional tetrahedron.
There is nothing wrong with trying to picture (X, d) this way, but you can see
that you have to go up a dimension every time you add a point to the image
you are building. For this reason, there is no subset of a finite dimensional
Euclidean space which has the same distance relation as X. The space (X, d)
is the set of vertices of an infinite dimensional regular tetrahedron!
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Here is another example. Suppose that X = [0, 1], the interval from 0 to
1. We define a new distance on X using the formula

d(x, y) =
√

|x− y|.

It is pretty obvious that d satisfies the first 3 axioms above. It is also not
too hard to show that d satisfies the last property: It boils down to the fact
that

√
t+

√
1− t ≥ 1 for all t ∈ (0, 1).

Here is another wierd example. Again let X be the set of integers. Define
d(m,n) = 3−k where k is the largest integer such that 3k divides m− n. For
example d(2, 11) = 1/9 because 11− 2 = 9 and hence 9 divides 11− 2. Here
are some other distances in X:

• d(2, 8) = 1/3 because 3 divides 6 = 8− 2 but 9 does not divide 6.

• d(2, 83) = 1/81.

• d(11, 18) = 1.

It turns out that (X, d) is a metric space. Geometrically (X, d) looks a lot
like a Cantor set. Also, (X, d) is very closely related to the 3-adic numbers.
In fact, d is called the 3-adic metric.

Metric Balls: Let (X, d) be a metric space, let x ∈ X, and let r > 0
be some real number. The ball of radius r about x is the set of all y ∈ X such
that d(x, y) ≤ 1/r. If you try this definition out in Euclidean space, you get
the usual notion of a ball.

Let’s consider our last example again. What is the ball of radius 1 about
the point 5? It is the set of all integers n such that n − 5 is divisible by 3.
For instance 8 is in this ball and 7 is not. What is the ball of radius 1/3
about 5? It is the set of all integers n such that n − 5 is divisible by 9. So,
for instance, 14 is in the ball of radius 1/3 about 5 but 8 is not.

Here is one property I will talk a lot about later. If two points in X are
at least 2r apart, then the balls of radius r about each of these points are
disjoint from each other: they have no points in common. Why does this
work? Well, the triangle inequality guarantees it. This is one hint that the
triangle inequality is important. If you have a bunch of points that are all
separated by 2r than all the balls of radius r around these points are disjoint
from each other.
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4 Growth of a Sequence

Before I talk about the notion of dimension, I want to talk about how fast
sequences grow. Suppose that we have a sequence A1, A2, A3, ... and we
suspect that the sequence grows like some polynomial. That is An ≈ nd for
some exponent d. Don’t worry too much now what the symbol ≈ means.
One way to capture what we want to is to computer the quantity

lim
n→∞

log(An)

log(n)
. (1)

This expression looks a bit forbidding at first, but let’s try it out.
Let’s consider the sequence where An = n2. So, this sequence starts out

1, 4, 9, 16, 25, .... We compute

log(An)

log n
=

log(n2)

log n
=

2 log n

log n
= 2.

In this case, the limit in Equation 1 is 2. Let’s try a messier example. Suppose
that An = 365n2. We have

log(An)

log n
=

log(365n2)

log n
=

2 log n

log n
+

log 365

log n
.

The second term goes away in the limit, and again the answer is 2.
Suppose we have An = 111n2 + 17n. In this case, we have

n2 < An < 365n2.

If we apply Equation 1 to either the left sequence or the right sequence, we
get 2. Therefore, we get 2 for the middle sequence as well.

By now, you can probably guess that if we take

An = Cdn
d + Cd−1n

d−1 + ...+ C2n
2 + C1n+ C0,

then the limit in Equation 1 is d. (Here C0, C1, .. are constants whose values
aren’t important.) At least for polynomial sequences like this, the limit in
Equation 1 picks out the biggest exponent. The quantity in Equation 1,
when it exists, is sometimes called the polynomial growth of the sequence.
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5 Some Geometrically Defined Sequences

Now imagine that we start with a line segment S. Suppose we let An be any
of the following quantities:

• The minimum number of intervals of length 1/n needed to completely
cover S.

• The maximum number of points you can place in I so that every two
points are at least 1/n apart.

Then both sequences have growth 1.
Now imagine that we replace the word interval by the word square. Then

the new sequences have growth 2. That is, we can cover the square S by about
n2 squares of side-length 1/n, and we can place about n2 points inside S so
that every two points are separated by at least 1/n. The exact number might
be a bit hard to figure out; it depends on the size of S. Whatever the answer,
the growth is always 2.

Finally, imagine that we replace the word square by the word cube. Now
we get sequences whose growth is 3. In all three cases, the growth of the
sequences coincides with the dimension of the object.

The construction is pretty robust: If we used triangles or pentagons in
place of squares, we would still get sequences of growth 2. Likewise, if we
used solid polyhedra, or solid balls, or solid ellipsoids instead of cubes, we’d
still get sequences of growth 3. So, using the above sequences are a pretty
good way to compute dimension.

6 Packing Dimension

Let (X, d) be a metric space. (If you don’t like metric spaces, you can just
think about sets in the plane.) Define An to be the maximum number of
points you can put in X so that no two points are within 1/n of each other.
If we call the set of our points S, then we are saying that d(x, y) ≥ 1/n for
all x, y ∈ S.

If the growth of An exists, number is defined to be the packing dimension

of S. It might happen that the limit in Equation 1 does not exist (because
not all sequences converge) but let’s not worry about this. In case the limit
doesn’t exist, the packing dimension is not defined.
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The reason for the name is as follows. Suppose that we have placed points
in X so that every two points are at least 1/n apart. Then, if we place balls
of radius 1/(2n) about each of our points, all these balls are disjoint. So,
when we are filling up X with points like this, we are asking how many balls
of a given size we can pack into X without overlaps.

Let’s try an example: The middle-third Cantor set. At the kth stage of
the construction of the middle-third Cantor set, you are left with 2k intervals,
each of which has length (1/3)k. Moreover, these intervals are all separated
from each other by a distance of at least (1/3)k.

So, if we take n = 3k, then we can place one point in the center of each
interval and get 2n points which are all separated by at least 1/n. On the
other hand, we can’t put more than one point in any interval. So, for this
choice of n, we have An = 2k.

Let’s say it again: Whan n = 3k, we have An = 2k. This gives us

log 2k

log 3k
=

k log 2

k log 3
=

log 2

log 3
.

We haven’t defined An for every value of n. We’ve only defined it for every
value of n which has the form 3k. If we believe that the full sequence An does
have a well-defined growth, then this growth must be log(2)/ log(3). So, if
the middle third Cantor set has a well-defined packing dimension, then the
dimension must be log 2/ log 3.

This discussion was a bit unsatisfying, so let’s prove that the middle-third
Cantor set really does have a packing dimension. That is, let’s deal with the
values of An at other values of n. We know that the sequence A1, A2, A3, ...
is not decreasing. So, if we have 3k−1 < n < 3k, then we have 2k−1 ≤ n ≤ 2k.
But this means that

k

k − 1
× log 2

log 3
≤ logAn

log n
≤ k − 1

k
× log 2

log 3
.

As k → ∞, both sides converge to log 2/ log 3, so the limit in Equation 1
really does exist. All in all, the middle third Cantor set has packing dimension
log 2/ log 3.

7 Covering Dimension

Now I’m going to define another kind of dimension. Given a metric space
X, let An be the smallest number of points you can place in X so that every
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point of X is within 1/n of the points you have placed. The reason for the
name is that, if you place a ball of radius r around each of the points, you
will have covered all of X with balls. When the sequence has a well defined
growth, the growth of An is called the covering dimension of X.

The covering dimension of the middle third Cantor set is log(2)/ log(3).
To see this, we take n = 3k/2. If we consider the 2k center points of the
intervals of size (1/3)k, then every point of the Cantor set is within 1/n of
one of the points. Moreover, this is the best we can do. This time we have

log(An)

log(n)
=

k log 2

k log 3− log 2
.

As k → ∞ the limit is log 2/ log 3. The extra term does not matter. The
same arguement as for the packing dimension shows that we would get the
same answer if we compute the limit for all values of n, and not just for the
special values we have considered.

Notice that the middle third Cantor set has the same packing dimension
and covering dimension. For most metric spaces you encounter, the two
dimensions exist and coincide. You have to work hard to find a set where
this doesn’t happen. There are many variants of the two kinds of dimensions
I’ve talked about in these notes, but the two I’ve talked about are probably
the easiest to define.

8 Completeness

The notions of packing and covering dimension work well for certain kinds
of metric spaces, but they work terribly for others. For instance, let’s take
X to be the set of rational numbers between 0 and 1, and let d be the usual
metric on the line, restricted to points of X. That is d(x, y) = |x−y|. In this
case, the packing and covering dimension of X will be 1, just as it would be
for the whole interval [0, 1]. On the other hand, X is just a countable set of
points, so any sane person would want to say that X has dimension 0. What
is going on?

The problem is that our space X is has lots of holes in it, but these holes
are not detected by our definitions above. The usual fix for this problem is
to insist that X must be a complete metric space. Informally, this means
that X has no holes the way that the rational numbers do. For the sake of
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completeness (of exposition) I will give a precise definition of what it means
for X to be a complete metric space.

An infinite sequence {xn} of points in X is called Cauchy if, for every
ǫ > 0, there is some N such that d(xm, xn) < ǫ provided that both m and n
are greater than N . In other words, as you look farther and farther out the
sequence, the points are settling down: they jump around less and less.

The sequence {xn} is called convergent if there is some y ∈ X so that
d(xn, y) → 0 as n → ∞. The difference between a Cauchy sequence and
a convergent sequence is that a Cauchy sequence is settling down and a
convergent sequence is settling down to a point of X. Every convergent
sequence is a Cauchy sequence, but it might happen that there are Cauchy
sequences which are not convergent sequences.

Here’s an example: If X is the set of rationals between (0, 1) we can
take any sequence which converges to

√
2/2. This sequence is a Cauchy se-

quence in [0, 1] because it converges to
√
2/2. However, it is not a convergent

sequence in X.
The space X is called complete if every Cauchy sequence in X is a con-

vergent sequence in X. This is one way to say that X has no holes. The
space [0, 1] is complete, but the set of rationals in [0, 1] is not complete.

Typically, the notions of packing and covering dimension are only applied
to complete metric spaces. They can be applied to all metric spaces, but they
will sometimes yield screwy results.

9 Problems

1. Let An = 23n3 + 17n2 + 119n. Show that this sequence has growth 3.

2. Draw a careful picture of the first 4 steps of the Koch snowflake.

3. Let X = [0, 1] and let d(x, y) =
√

|x− y|. Show that (X, d) has packing
dimension 2.

4. Compute the packing dimension or the covering dimension of the Sierpin-
ski triangle. Take your pick.
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