Leibniz’s Formula: Below I'll derive the series expansion
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Plugging the equation 7 = 4 arctan(1) into Equation 1 gives Leibniz’s famous
formula for 7, namely
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This series has a special beauty, but it is terrible for actually computing the
digits of . For instance, you have to add up about 500 terms just to com-

pute that 7 = 3.14....

Machin’s Formula: Machin’s formula also uses Equation 1, but takes ad-
vantage that the series converges much faster when z is closer to 0. Below
I’ll derive the identity

m = 16arctan(1/5) — 4 arctan(1/239). (3)

Combining Equations 1 and 3, we get Machin’s formula:
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How fast is Machin’s formula? Let S,, be the sum of the first n terms of
this series. The series is alternating and decreasing, so that
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Some fooling around with the terms in Equation 4 leads to the bounds
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Equation 6 gives a good idea of how fast Machin’s method is. For instance,
if you add up the first 100 terms in Equation 4, you get about 140 digits of .



Proof of Equation 3: Call a complex number z = x + iy good if x > 0
and y > 0. For a good complex number z, let A(z) € (0,7/2) be the angle
that the ray from 0 to z makes with the positive z-axis. By definition of the
arc-tangent,

A(x +1iy) = arctan(y/x). (7)
If z; and 25 and z12, are all good, then
A(leg) = A(Zl) + A(Zg) (8)

This is a careful statement of the principle that “angles add when you mul-
tiply complex numbers”.
A direct calculation establishes the following strange identity:

(5+1)* = (24 2i)(239 +19). (9)
Combining this with several applications of Equation 7 and 8, you get
4arctan(1/5) = arctan(1) + arctan(1/239). (10)
Rearranging Equation 10, multiplying by 4, and using 4 arctan(1l) = m, we
get Equation 3.

Proof of Equation 1: When |y| < 1 we have the geometric series
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Now substitute in y = —t2, to get
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Here is the one part of the proof that is really surprising. It is one of the
miracles of calculus.

z 1
arctan(z) = / o dt, x€]l0,1]. (13)
0

I’ll derive this equation below.
Combining everything, we get the result:
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The Arctan Function:
Define the functions

A(z) = arctan(z), S(x)=sin(z), C(x)=cos(z), T(z)=tan(z). (15)

We have
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The first of these is the definition of the arctan (or inverse tangent) function.
The second two are forced by the first one, and by the fact that 7= S/C
and C% + S? = 1.

Applying the Chain Rule to the first equation in Equation 16, we get

T'(A2))A'(x) = (T o A (x) = 1 (17)
Therefore 1
Al(z) = m (18)

By the quotient rule,
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Combining the last three equations, we get
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Since A(0) = 0, Equation 13 follows from the last equation and the Funda-
mental Theorem of Calculus.



