
Leibniz’s Formula: Below I’ll derive the series expansion

arctan(x) =
∞
∑

n=0

(−1)n
x2n+1

2n+ 1
; 0 ≤ x ≤ 1. (1)

Plugging the equation π = 4arctan(1) into Equation 1 gives Leibniz’s famous
formula for π, namely

π =
4

1
− 4

3
+

4

5
− 4

7
+

4

9
· · · (2)

This series has a special beauty, but it is terrible for actually computing the
digits of π. For instance, you have to add up about 500 terms just to com-
pute that π = 3.14....

Machin’s Formula: Machin’s formula also uses Equation 1, but takes ad-
vantage that the series converges much faster when x is closer to 0. Below
I’ll derive the identity

π = 16 arctan(1/5)− 4 arctan(1/239). (3)

Combining Equations 1 and 3, we get Machin’s formula:

π =
∞
∑

n=0

(−1)nAn, An =
16 (1/5)2n+1 − 4 (1/239)2n+1

2n+ 1
. (4)

How fast is Machin’s formula? Let Sn be the sum of the first n terms of
this series. The series is alternating and decreasing, so that

An − An+1 = |Sn+2 − Sn| < |π − Sn| < |Sn+1 − Sn| = An (5)

Some fooling around with the terms in Equation 4 leads to the bounds

An <
2

n25n
, An − An+1 >

1

n25n
.

Therefore
1

n25n
< |π − Sn| <

2

n25n
(6)

Equation 6 gives a good idea of how fast Machin’s method is. For instance,
if you add up the first 100 terms in Equation 4, you get about 140 digits of π.
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Proof of Equation 3: Call a complex number z = x + iy good if x > 0
and y > 0. For a good complex number z, let A(z) ∈ (0, π/2) be the angle
that the ray from 0 to z makes with the positive x-axis. By definition of the
arc-tangent,

A(x+ iy) = arctan(y/x). (7)

If z1 and z2 and z1z2 are all good, then

A(z1z2) = A(z1) + A(z2). (8)

This is a careful statement of the principle that “angles add when you mul-
tiply complex numbers”.

A direct calculation establishes the following strange identity:

(5 + i)4 = (2 + 2i)(239 + i). (9)

Combining this with several applications of Equation 7 and 8, you get

4 arctan(1/5) = arctan(1) + arctan(1/239). (10)

Rearranging Equation 10, multiplying by 4, and using 4 arctan(1) = π, we
get Equation 3.

Proof of Equation 1: When |y| < 1 we have the geometric series

1

1− y
= 1 + y + y2 + y3... (11)

Now substitute in y = −t2, to get

1

1 + t2
= 1− t2 + t4 − t6... =

∞
∑

n=0

(−1)nt2n, |t| < 1. (12)

Here is the one part of the proof that is really surprising. It is one of the
miracles of calculus.

arctan(x) =
∫

x

0

1

1 + t2
dt, x ∈ [0, 1]. (13)

I’ll derive this equation below.
Combining everything, we get the result:

arctan(x) =
∫

x

0

1

1 + t2
dt =

∫

x

0

( ∞
∑

n=0

(−1)nt2n
)

dt =
∞
∑

n=0

(−1)n
x2n+1

2n+ 1
. (14)
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The Arctan Function:

Define the functions

A(x) = arctan(x), S(x) = sin(x), C(x) = cos(x), T (x) = tan(x). (15)

We have

T ◦ A(x) = x, C ◦ A(x) = 1√
1 + x2

, S ◦ A(x) = x√
1 + x2

. (16)

The first of these is the definition of the arctan (or inverse tangent) function.
The second two are forced by the first one, and by the fact that T = S/C
and C2 + S2 = 1.

Applying the Chain Rule to the first equation in Equation 16, we get

T ′(A(x))A′(x) = (T ◦ A)′(x) = 1 (17)

Therefore

A′(x) =
1

T ′(A(x))
. (18)

By the quotient rule,

T ′ =
(

S

C

)

′

=
S ′C − C ′S

C2
=

C2 + S2

C2
=

1

C2
. (19)

Combining the last three equations, we get

A′(x) = (C ◦ A(x)
)2

=
1

1 + x2
. (20)

Since A(0) = 0, Equation 13 follows from the last equation and the Funda-
mental Theorem of Calculus.

3


