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1 Mobius Transformations

A Mobius transformation is a map of the form

T (z) =
az + b

cz + d
, det

[

a b
c d

]

6= 0, a, b, c, d ∈ C. (1)

Below we’ll be more restrictive about these requirements. Here z is a complex
number, but it also makes sense to take z = ∞. In this case, T (∞) = a/c.
If c = 0 then T (∞) = ∞. It also makes sense to say that T (z) = ∞. This
happens if z = −d/c.

Here are some pretty easy facts about Mobius transformations.

• The Mobius transformations form a group.

• If a, b, c, d ∈ R and if ad − bc = 1 then T maps points on R ∪ ∞ to
points on R∪∞. For instance T (z) = −1/z maps 0 to ∞ and ∞ to 0.
With the same conditions, T maps the upper half plane in C to itself.

• A Mobius transformation preserves angles between curves. That is, if
A and B are curves that meet at some angle, then T (A) and T (B)
meet at the same angle.

• A Mobius transformation maps a generalized circle to a generalized
circle. A generalized circle is either a circle or a straight line (union
∞).

• A Mobius transformation is determined by what it does to and 3 dis-
tinct points. So, if S(pj) = T (pj) for j = 1, 2, 3 then S = T .
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2 The Modular Group

SL2(Z) is the group of 2 × 2 integer matrices with determinant 1. These
elements have the form

M =
[

a b
c d

]

, a, b, c, d ∈ Z, ad− bc = 1. (2)

This is arguably the most famous group in mathematics.
There is a variant which is even nicer. The group PSL2(Z) is the group

obtained from SL2(Z) by declaring that the two matrices M and −M are
equivalent. The set of these equivalence classes is still a group because the 4
products

(A)(B), (−A)(B), (A)(−B), (−A)(−B)

are all equivalent.
PSL2(Z) has two advantages over SL2(Z). First, the two matrices

A =
[

0 1
−1 0

]

, A =
[

1 1
−1 0

]

(3)

have orders 4 and 6 in SL2(Z) but have orders 2 and 3 in PSL2(Z). What
is going on is that

A2 = B3 = −

[

1 0
0 1

]

. (4)

We’ll see that [A] and [B] generate PSL2(Z).
A second reason that PSL2(Z) is nicer has to do with Mobius transforma-

tions. The element given in Equation 2 gives rise to a Mobius transformation
TM whose formula is

TM(z) =
az + b

cz + d
. (5)

Note that TM = T(−M). So, in terms of Mobius transformations, there is a
redundancy in SL2(Z) that we treat by considering PSL2(Z) as well. Each
element of PSL2(Z) gives rise to a different Mobius transformation.

The assignment of Mobius transformations to elements of PSL2(Z) has
a nice property. A calculation shows that

TAB = TA ◦ TB. (6)

If you know about group homomorphisms, we can say that the mapM → TM

is an injective homomorphism from PSL2(Z) into the group of all Mobius
transformations.
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Lemma 2.1 PSL2(Z) is an automorphism of the Farey graph.

Proof: Given that Mobius transformations preserve angles and map gener-
alized circles to generalized circles, it suffices to prove that each element of
PSL2(Z) maps vertices of the Farey graph to vertices of the Farey graph
and preserves the edge relation. The first fact comes from the fact that the
entries of the elements in the group are integers. The second fact comes from
the product formula for the determinant. This is a tedious but not hard
calculation. ♠

Lemma 2.2 The elements A and B generate PSL2(Z).

Consider the Farey triangulation of the upper halfplane. This is the
triangulation from the first HW assignment. You join each integer point
to ∞ using a vertical ray and you join the rationals p1/q1 and p2/q2 by a
semi-circular edge iff

det
[

p1 p2
q1 q2

]

= ±1.

The group PSL2(Z), acting on the upper half plane as Mobius transfor-
mations, preserves the Farey graph. The element A has the effect of swapping
the triangles (0, 1,∞) and (0,−1∞). In terms of the dual tree, this element
reverses an edge of the tree and then the rest of the tree goes along for the
ride. The element B fixes a point in the (0, 1,∞) triangle and just rotates
this triangle. In terms of the dual tree, B fixes a vertex and rotates the
branches of the tree around this vertex.

Given any triangle T in the Farey graph, you can find a path of triangles
connecting T to the (0, 1,∞) triangle T0 using a finite chain of adjacent tri-
angles. This is just a path in the dual tree. By induction on the length of the
finite chain, you can find some work in A and B which maps T to T0. But
then we can compose with a suitable power of B to map T to T0 in any of the
3 possible orientation-preserving ways. Given g ∈ PSL2(Z) let T = g(T0).
We can find some product w of the generators such that w(T ) = T0. But
then gw fixes the vertices of T0 and must be the identity. Hence g = w−1.
This expresses an arbitrary element of PSL2(Z) as a product of generators.
♠
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3 Congruence Subgroups

Given an integer N , we define ΓN ⊂ PSL2(Z) to be those equivalence classes
of matrices M such that M ≡ ±I mod N . Here I is the identity matrix. For
example, Γ2 consists of those (equivalence classes of) matrices such that the
diagonal entries are odd and the off-diagonal entries are even.

Lemma 3.1 ΓN is a group.

Proof: Let AN denote the matrix obtained by reducing the entries of A mod
N . The elements of AN are elements of Z/N . Likewise define BN . Because
one can do both addition and multiplication in Z/N (i.e., because it is a
ring) we have

(AB)N = ANBN

When A,B ∈ Γ we have AN = ±I and BN = ±I, but then (AB)N = ±I.
There is a similar proof that works for inverses, but actually for inverses

we can see it more directly. There is a nice formula for the inverse of an
element of SL2(Z):

A =
[

a b
c d

]

⇒ A−1 =
[

d −b
−c a

]

. (7)

You can check the formula just by multiplying things out. This formula im-
mediately implies that A ∈ ΓN if and only if A−1 ∈ ΓN . ♠

Now we’re going to look harder at the Farey triangulation. We declare
two Farey triangles T1 and T2 equivalent exactly when there is some g ∈ ΓN

so that g(T1) = T2. The fact that ΓN is a group makes this an equivalence
relation: If g(T1) = T2 then g−1(T2) = T1. If g(T1) = T2 and h(T2) = T2 then
hg(T1) = T3.

Lemma 3.2 Adjacent triangles are never equivalent.

Proof: Suppose that g ∈ ΓN and g(U1) = U2 where U1 and U2 share an
edge. Let T1 and T2 respectively be the (0, 1,∞) and (0,−1,∞) triangle.
We can find some element h of PSL2(Z) such that h(Tj) = Uj for j = 1, 2.
But then h−1hg and the generator A do the same thing to T0 and T1. This
implies that

h−1gh = A.
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Since A 6∈ ΓN , we get that h−1gh 6∈ ΓN . On the other hand, reducing mod
N , we have

(h−1gh)N = (h−1)N(±I)hN = ±(hh−1)N = ±I.

This shows that h−1gh ∈ ΓN after all. This gives a contradiction. ♠

Remarks:

(i) For those of you who know, the last calculation shows that ΓN is a normal
subgroup of PSL2(Z).
(ii) A similar argument shows that there is no element of ΓN which maps a
Farey triangle to itself in a nontrivial way.

4 Building Surfaces and Triangulations

We color the Farey triangles according to their equivalence classes. Triangles
in the same class get the same color and triangle in different classes get
different colors. For instance, when N = 2, there are only two equivalence
classes. This gives the 2-coloring in which the triangles alternate colors.

We can build a surface ΣN out of the colored Farey graph. Choose one
triangle of each color and glue your choices together according to how the
triangles are glued together in the upper half plane. To be precise about this,
suppose that you have two pairs (T1, e1) and (T2, e2). We think of the edges
as oriented. Should you glue them (according to the orientations)?

We look for an element M ∈ ΓN so that M(e2) = e1 (as oriented edges)
and M(T2) shares the edge e1 with T1. If this works, we make the gluing.
This procedure is independent of all choices because ΓN acts as a group of
symmetries of the colored Farey graph, and no element of ΓN permutes the
edges of a single triangle.

Example: Let’s work out Σ2. We know that Σ2 is made from 2 trian-
gles, namely T1 = (0,−1,∞) and T2 = (0, 1,∞). (We’ll name triangles by
their vertices.) The edge (0,∞) is already common to both triangles.

Let’s prove that we should glue (T1, (0,−1)) to (T2, (0, 1)). Consider the
element

M =
[

1 0
−2 1

]

.
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This matrix belongs to Γ2 and the corresponding Mobius transformation is

M(z) =
z

−2z + 1
. (8)

We check that M(0) = 0 and M(1) = −1. Hence M(e2) = e1, with the
orientations given by the ordering of the vertices. Also, M(∞) = −1/2.
Hence T ′

2 = M(T2) is the triangle (0,−1/2,−1), and indeed T ′

2 and T1 meet
across e1. So, yes, we should make the gluing.

Finally, a similar argument shows that we should glue (T1, (−1,∞)) to
(T2, (1,∞)). Figure 1 shows the general situation. The surface you get is
made from gluing two triangles on top of each other. It is a sphere! (Some
people like to delete the 3 vertices and then speak of a 3-punctured sphere.)

T1 T2

e1

e2

e3
e3

0 1-1

M(T2)

-1/2

Figure 1: The surface obtained from Γ2.

It turns out that the other small values of N yield familiar examples:

• Σ3 is a sphere obtained by gluing together 4 triangles. The triangula-
tion is that of the regular tetrahedron.

• Σ4 is a sphere obtained by gluing together 8 triangles. The triangula-
tion is that of the regular octahedron.

• Σ5 is a sphere obtained by gluing together 20 triangles. The triangula-
tion is that of the regular icosahedron.

I’ll explain why this is what you get in the next section.
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5 Symmetry of the Construction

Let ΣN be the surface obtained by the gluing construction above. Let γ be
any element of PSL2(Z). The element γ permutes the triangles of the Farey
graph but might change the colors if γ 6∈ ΓN . The crucial lemma is that Γ
respects the instructions used to build the surface.

Lemma 5.1 Let (T1, e1) and (T2, e2) be two triangle-edge pairs which are

supposed to be glued together. Then are also supposed to be glued together.

Proof: There is an element M ∈ ΓN such that M(T2) is adjacent to T1 and
has the common edge e1 = M(e2) in common. But then γMγ−1 does the
same thing for the pairs (γ(T1), γ(e1)) and (γ(T2), γ(e2)). We just have to
show that γMγ−1 ∈ ΓN . We compute

(γMγ−1)N = γNMN(γ
−1)N = γN(±I)γ−1

N = ±(γγ−1)N = ±I.

This does it. ♠

Since one can map any element of the Farey graph to any other element,
we see that there is a symmetry of the surface ΣN which maps one triangle
on ΣN to any other triangle. Also, the elements A and B give symmetries of
ΣN . Combining this with the symmetry we already have, we see that there
is a symmetry of ΣN which rotates any given triangle by 2π/3 degrees, and
there is another symmetry which rotates around any given edge. This is one
explanation of the great symmetry seen in the platonic solids.

Lemma 5.2 The triangulation of ΣN is regular of degree N .

Proof: Thanks to the symmetry group, the triangulation has the same
degree at every vertex. You can map each vertex to each other using a
symmetry so they all have the same degree. Call a triangle tall if it has ∞
as a vertex. The element

[

1 N
0 1

]

belongs to ΓN and shifts the tall triangles by N . Moreover, the tall triangles
which are less than N away are inequivalant. So, you can always use N tall
triangles in a row as part of your material for ΣN . The rules above tell us to
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glue the first and last sides. This tells us that the degree of the triangulation
corresponding to the vertex ∞ is N . Hence, every vertex has degree N . ♠

In the case N = 3, 4, 5 there is only one regular triangulation of the sphere
having degree N , and this is why we get the Platonic solids.

What is interesting here is that the surface ΣN retains this huge amount
of symmetry when N > 5. The surface Γ7 turns out to be a triangulation of
a 3-holed surface made from 56 triangles. The triangulation has 24 vertices
and 84 edges. Its group of symmetries coming from PSL2(R) has order 168.
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