
Math 123 HW 4

1. This is problem 6,1.16 in the book. Prove that any planar Eulerian
graph can be drawn in such a way that the pencil never crosses what has
already been drawn and never retraces an edge. Figure 1 shows an example.
The drawing in red has been lifted off the graph a bit so as to reveal how it
goes.

Figure 1: A planar Eulerian graph

2. Prove that the Peterson graph is not planar but that it can be drawn in
the projective plane without edge crossings. The first part is a simplification
of Problem 6.2.2 in the book. (See also problem 6.1.30.) The left half of
Figure 2 shows the Peterson graph. The right half shows one way to view
the projective plane.

Figure 2: The Peterson graph and the projective plane.

There are various ways to think of the projective plane. If you want to
take a direct approach to this problem, then you could think of the projective
plane as a square with its opposite sides identified “crossways” as shown in
the picture. If you want to think about a really beautiful solution to this
problem – and it is worthwhile to try for it – think about the projective plane
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as the sphere with antipodal (i.e. opposite) points identified and consider the
dodecahedron graph.

3. Consider the graph whose vertices are the vertices of the n dimensional
cube and whose edges are the edges of the n dimensional cube. Prove that
the genus of this graph tends to ∞ as n tends to ∞. In other words, there
is no single surface on which you can draw these graphs.

4. Do problem 6.1.33 in the book. That is, suppose that G is a triangu-
lation, and let ni be the number of vertices of degree i in G. Prove that
∑
(6− i)ni = 12.

Remark: This is not part of the problem, but I can’t resist saying some-
thing about it. This formula has a great geometric interpretation in the
special case that ni = 0 for all i = 7, 8, 9, .... In this case, you can build G
out of equilateral triangles and the result will be isometric to the boundary
of a convex polyhedron. The quantity 6 − deg(v) measures the difference
between 2π and the “cone angle” at the vertex v. One can view this number
as a kind of curvature, concentrated at the vertices and then the formula says
that the total curvature is 4π = 12 × π/3. This result is in turn a special
of the Gauss-Bonnet formula from differential geometry. So, in a sense, this
problem is giving a combinatorial version of the Gauss-Bonnet formula.

5. Prove that every triangulation has an embedding in which the edges are
straight line segments. Hint: Consider the counterexample with the fewest
edges and then look at the following two cases:

1. There is an interior vertex – i.e. not on the outer cycle – which has
degree 3.

2. All interior vertices have degree at least 4.

Then study what happens when you selectively delete or contract edges.
Each of these cases breaks down into a few subcases.
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