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In these notes, I’ll describe 3 nice infinite graphs. The first one is not
the Cayley graph of a group but it is highly symmetric just the same. The
second two are Cayley graphs of groups, though I will somewhat downplay
the group theory.

1 The Coarse Hyperbolic Plane

This infinite graph has the following description. Start with a vertical ray
divided into segments of lengths ...4, 2, 1, 1/2, 1/4, .... Attach an infinite hor-
izontal row of squares having side length 2s to the edge of the vertical ray
which has length 2s. Figure 1 shows part of the picture. The picture is meant
to extend in all directions. The union of squares fills the upper half plane.

Figure 1: The coarse hyperbolic plane
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This graph is an infinite union of 5-cycles. One of the 5 cycles is high-
lighted in the figure. This graph is sometimes called the coarse hyperbolic

plane. We put a metric on the coarse hyperbolic plane by declaring that all
its edges have length 1. The distance between any two points is defined to be
the length of the shortest path which joins them. Let’s compare the coarse
hyperbolic plane to the hyperbolic plane.

The hyperbolic plane is the upper half plane equipped with a funny way
of measuring distances. At the point (x, y) the inner product of two vectors
V and W is defined by the formula

〈V,W 〉(x,y) =
1

y2
(V ·W ). (1)

In particular the langth of the vector V at (x, y) is

‖V ‖(x,y) =
1

y

√
V · V . (2)

This way of measuring lengths of vectors is called the hyperbolic metric.
The hyperbolic plane is denoted H

2. The length of a parametrized curve
α : [0, 1] → H

2 is defined to be

length(α) =
∫ 1

0
‖α′(t)‖α(t) dt. (3)

The distance between two points in the hyperbolic plane is defined to be the
infimum of the lengths of curves joining these points. In general, this kind of
definition might not work to define a metric space, but in this case it does.
The shortest curves joining two points in H

2 are either vertical line segments
or else arcs of circles which meet the real axis at right angles.

A map: f : H2 → H
2 is an isometry if it preserves the distances between

points. It is easy to check that f(x, y) = (x + t, y) and g(x, y) = (rx, ry)
are isometries for all choices of t and r. If you draw the coarse hyperbolic
plane inside H

2 then all the 5-cycles have the same size. Using the maps
just described you can find an isometry from one 5-cycle to any other. This
means that the edges of the graph, when drawn in H

2, are all the same
length to within some factor of K. Probably you can take K = 2.

This is the beginning of the proof that the coarse hyperbolic plane is quasi-
isometric to H

2. This is why it is called the coarse hyperbolic plane. There
are about Cr distinct points inside the disk of radius r in the coarse hyperbolic
plane. This is the beginning of the proof that the coarse hyperbolic plane is
not quasi-isometric to the Euclidean plane.
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2 The Heisenberg Graph

We introduce 3 symbols A,B,C and consider the group of words in these
symbols, subject to the relations that

AC = CA, BC = CB, ABA−1B−1 = C.

Here A−1 is such that AA−1 = A−1A = e, the empty word. There are other
relations implied by these. For instance

BAB−1A−1 = C−1, ABA−1B−1C−1 = e.

Two finite words are declared equivalent if there is a finite number of sub-
stitions of the relations above which brings the one word into the other. For
instance

CBA ∼ CBA(A−1B−1ABC−1) ∼ CABC−1 ∼ CC−1AB ∼ AB.

In general, any word in the Heisenberg group is equivalent to

AaBbCc, a, b, c ∈ Z.

The Heisenberg graph is the Cayley graph Γ(G,S) where G is the Heisen-
berg group and S is the generating set {A,B,C,A−1, B−1, C−1}. When
we draw Γ(G,S) we use the convention of omitting the edges labeled by
A−1, B−1, C−1. The idea is that if ew go backwards along the edge labeled
X we are doing X−1.

Let Γ be the Heisenberg graph. Let Γ0 be the Z
2 grid. There is a map

π : Γ → Γ0 which just collapses the C edges. More precisely,

π(AaBbCc) = (a, b).

Figure 2 shows the kind of corkscrew picture which maps to a single square
in Z

2.

Figure 2: One corkscrew in the Heisenberg graph
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The way you get the Heisenberg graph is that you build one corkecrew
per unit square in the Z

2 graph and glue these corkscrews together along
their edges.

The Heisenberg graph has some obvious symmetries. The map which
sends the vertex AaBcCc to AaBaCc+1 respects the edge relations and gives
a graph automorphism. More generally, the map Tn : Γ → Γ given by

T n(AaBbCc) = AaBbCc+n (4)

gives a graph automorphism for any n ∈ Z. We call these automorphisms
vertical translations .

Let γ be a walk in Γ which only uses A and B edges. We say that γ is a
lift of the path γ0 = π(γ). Each path γ0 in the Γ0 has infinitely many lifts,
but they all differ by vertical translations. Suppose γ0 is a closed loop and
γ is some lift. Then π maps the two endpoints of γ to the same point. So,
these endpoints differ just by ck. In other words, one endpoint is AaBbCc

and the other is AaBbCc+k. We call k the vertical displacement of the lift.

Lemma 2.1 The vertical displacement of a lift of a closed loop equals the

signed area of the loop.

Proof: Let A be the signed area enclosed by γ0. Let v(γ0) denote the vertical
displacement of a lift of γ. We want to prove that v(γ0) = A. The proof goes
by induction on the absolute value of the number of squares enclosed by γ0.
We can write γ0 = α0β0, where α0 encloses one fewer square and β0 winds
once around the square. The direction which β0 winds around depends on
the loop γ0. Let’s suppose that it winds counterclockwise, so that (by con-
vention) v(β0) = 1. Then v(α0) = A − 1 Using the fact that Γ is a group,
we have v(γ) = v(α) + v(β), where α and β are lifts of α0 and β0. Hence
V (γ0) = 1 + (A− 1) = A. ♠

Using this lemma you can see that a path from A0B0C0 of length 8n can
reach any point of the form AaBcCc where |a| < n and |b| < n and |c| < n2.
Hence, the number of points of Γ in the ball of radius n is on the order of
n4. By symmetry – i.e. using the fact that the Heisenberg group acts as a
group of automorphisms of Γ – we see that the same result holds for balls
around any point of Γ. This is the beginning of the proof that Γ is not
quasi-isometric to R

3.
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3 SOL

The graph called SOL is based on the choice of a 2 × 2 matrix in SL2(Z)
which has one eigenvalue greater than 1 and one less than 1. Any two choices
lead to quasi-isometric graphs. So, we’ll work with the matrix

M =
[
2 1
3 2

]
(5)

We form a graph whose vertices are Z
3. First, we add the edges

(a, b, k) ↔ (a± 1, b, k), (a, b, k) ↔ (a, b± 1, k).

This creates an infinite stack of copies of the square grid. Next, we add the
edges

(a, b, k) → (M(a, b), k + 1). (6)

For instance, there is an edge joining (1, 1, 0) to (2, 3, 1) because we have
M(1, 1) = (2, 3). One can realize SOL as the Cayley graph of a group.
Rather than take this point of view, we’ll just exhibit lots of symmetries of
SOL.

Lemma 3.1 One can map any vertex of SOL to any other vertex by an

automorphism.

Proof: Let’s change notation so that a vertex of SOL is denoted (V, n)
where V ∈ Z

2 is a vector. Note that (V, n) ↔ (W,n + 1) if and only if
(V,m) ↔ (W,m + 1). For this reason, the map T (V,m) = (V, n) is an
automorphism for any integers m and n. In particular, you can use an
automorphism to move any point in SOL to a point of the form (V, 0). Now,
choose some vector W and define

T (V, n) = (V +Mn(W ), n).

This is also an automorphism. In each copy of Z2 the map is just a transla-
tion. Also, the vector

T (V, n) = (V +Mn(W ), n)

is connected to

(M(V ) +Mn+1(W ), n+ 1) = T (M(V ), n+ 1)
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and the vector (V, n) is connected to (M(V ), n + 1). This shows that T is
a graph automorphism. Setting W = V , we can map (V, 0) to (0, 0) by an
automorphism. Since we can map any point to (0, 0) using an automorphism,
we can map any point to any other using an automorphism. ♠

The interesting thing about SOL is that the balls of radius n have about
Cn points in them for some C > 1. I’ll sketch how this is proved. By
symmetry, it suffices to check this for balls centered at the origin. The proof
is going to be slightly unusual in that we’re going to slice SOL by a plane
that does not quite contain vertices of SOL. We think of the vertices of SOL
as being Z

3 and the edges as being straight line segments. When drawn in
space, these segments are generally very long, but in the natural metric they
all have unit length.

Let E be the eigenvector of M corresponding to the eigenvalue greater
than 1. Let Π be the plane spanned by the Z axis and the line through the
origin parallel to E. Let Π̂ denote the slab of thickness 1 centered on Π.
That is, Π̂ is the set of all points which are at most one unit from Π in the
Euclidean metric. The way to picture Π̂ is that is intersect each horizontal
plane R×{m} in an infinite strip of width 2. Any portion of this strip having
length L intersects about L points of Z2.

Given that M(L) = L and M expands distances by a factor of λ > 1. We
see that all the points in

(Z2 × {m}) ∩ Π̂ (7)

which are within λm of the origin can be reached by a path of length about
m. But this already gives about λm points in the ball of radius m about the
origin.

It turns out that Π̂ intersects SOL in a graph that is quasi-isometric to the
hyperbolic plane. Fattened up planes parallel to the other eigenvector also
intersect SOL in graphs which are quasi-isometric to the hyperbolic plane.
So, SOL has these two different directions in which you can slice it and get
something quasi-isometric to the hyperbolic plane.

There is quite a bit more to say about the geometry of SOL, but these
notes are just an introduction.

6


