
Notes on topological bases

The purpose of these notes is to pin down what I said in class today about
bases, because it departs from what the book says. The definition of a base
for a topology given in the book is not that useful, because it does not work
in the most common example, namely the case of open balls in R

2. The
definition I gave, which is the standard definition, is more usable.

Let X be a set. A topological basis for X is a collection β of subsets of
X, called basis elements , satisfying the following axioms.

1. X is the union of elements of β. In other words, every point of X is
contained in some basis element.

2. If U and V are basis elements and p ∈ U ∩ V then there is some basis
element W such that p ∈ W and W ⊂ U ∩ V .

Given β, a set in X is declared open if X is a union of basis elements.
Equivalently, a subset U ⊂ X is declared open if every p ∈ U has the
property that there is some basis element Vp with p ∈ Vp and Vp ⊂ U . These
formulations are equivalent because

U =
⋃

p∈U

Vp.

Let’s check the axioms for a topology.

• X is open, by Axiom 1.

• ∅ is open because technically it is the union of basis elements.

• The arbitrary union of open sets is again a union of basis elements.
Hence it is open according to the definition.

• For the finite intersection property, it suffices to show that U1 ∩ U2

is open when U1 and U2 are open. Choose some p ∈ U1 ∩ U2. By
definition, there are basis elements V1 and V2 so that p ∈ V1 ∩ V2 and
V1 ⊂ U1 and V2 ⊂ U2. By Axiom 2, there is some basis element W such
that p ∈ W ⊂ V1 ∩ V2. But then W ⊂ U1 ∩ U2 as well. Hence U1 ∩ U2

is open.

It turns out that the same topology can be induced from many different
bases. Here are some examples which all give the usual topology on R

2.
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• The set of open disks in R
2.

• The set of open squares in R
2.

• The set of open squares having rational vertices.

• The set of open triangles having irrational vertices.

The way to see that these are all the same is to show that each kind of set is
a union of the others. For instance, an open disk is the union of countably
many open rational squares. (Hint: use a grid argument, like in class.)

Here is a really wierd example: On R, the set of half-open intervals of
the form [a, b) is a basis. The indced topology on R is different from the
usual one. To see this, I’ll prove below that with the standard topology R

cannot be written as the union of two nonempty disjoint open sets. On the
other hand with the half-open topology, both (−∞, 0) and [0,∞) are open
sets. So, in this wierd topology, R is the union of two disjoint open sets.

The following result is not really part of what I wanted to say in these
notes, but it is pretty neat and I will cover it later in class too. So, just
ignore this if you want.

Lemma 0.1 R cannot be the union of two disjoint nonempty open sets.

Proof: Suppose that R = U∪V where U and V are both open and nonempty
and disjoint from each other. Pick points u0 ∈ U and v0 ∈ V . Given points
(ui, vi) consider the point wi that is halfway between ui and vi. If wi ∈ U

then set ui+1 = wi and vi+1 = vi. If wi ∈ V then set ui+1 = ui and vi+1 = wi.
This construction produces points (un, vn) for all n such that

• un ∈ U and vn ∈ V for all n.

• Both un and vn converge to the same point w∞.

The point w∞ lies either in U or V . If w∞ ∈ U then vn ∈ U for all n suf-
ficienly large. This is a contradiction. If w∞ ∈ V then un ∈ V for all n
sufficiently large. This is also a contradiction. Since all outcomes lead to
a contradiction, R cannot be written as a nontrivial union of disjoint open
sets. ♠
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