
Math1410: Crash Course on Forms and Cohomology: The purpose
of these notes is to discuss differential forms, Stokes’ Theorem, and cohomol-
ogy. These notes will be somewhat sketchy.

Tensors: Let V be a real vector space. It is convenient just to take V = R
n.

Let V k denote the set of k-tuples of vectors in V . A point in V k is a k-tuple
(V1, ..., Vk). A k-tensor is a map T : V k → R such that

T (..., aVi + bWi, ....) = aT (..., Vi, ...) + bT (...,Wi, ...).

That is, T is linear in each slot. The dot product is a classic example of a
2-tensor.

A tensor is called alternating if

T (..., Vi, ..., Vj , ...) = −T (..., Vj , ..., Vi, ...)

for all i, j. The determinant is an example of an alternating n-tensor on R
n.

Here is a more general example of an alternating k-tensor on R
n for

k ≤ n. Let a1, ..., ak be some sequence of integers between 1 and n. Given
vectors V1, ..., Vk, define

T (V1, ..., Vk) = det











V1a1 ... V1,ak

...
Vka1 ... vk,ak











.

Here V1 = (V11, ..., V1n), etc. This tensor is denoted dxa1 ∧ ... ∧ dxak . Note
that this tensor is zero if there are repeated indices. Note also that the tensor
switches signs if you switch two indices. For instance, when k = 3 and n = 5
we have

dx1 ∧ dx3 ∧ dx4 = −dx3 ∧ dx1 ∧ dx4.

If turns out that every alternating k-tensor is a linear combination of the
examples given. Therefore, the vector space of alternating k-tensors has di-
mension n choose k. Alternate notation: Given a k-tuple I = (a1, ..., ak), we
let dxI be the form mentioned above.

Differential Forms: Let U be an open subset of Rn. A differential k-
form is a smoothly varying choice of alternating k-tensor for each point of
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U . Given that we have a basis for the vector space of alternating k-tensors,
we can say more concretely that a differential k-form is a sum of the form

α =
∑

fIdxI , (1)

each fI is a smooth (i.e. infinitely differentiable) function on U . Here are
some examples, on R

3:

• The 0-forms are just functions.

• the 1-forms look like A1dx1+A2dx2+A3dx3 where A1, A2, A3 are func-
tions.

• The 2-forms look like A1dx1 ∧ dx2 +A2dx1 ∧ dx3 +A3dx2 ∧ dx3 where
A1, A2, A3 are functions.

• The 3-forms look like Adx1 ∧ dx2 ∧ dx3 where A is a function.

Note that we can interpret a function either as a 0-form or a 3-form. Likewise
we can interpret the vector field (A1, A2, A3) either as a 1-form or a 2-form.

To give a more exotic example, the 2-forms on R
4 look like

4
∑

i=1

4
∑

j=i+1

aijdxi ∧ dxj.

There are 6 summands, and each aij is a function.

The d Operator: When f is a function, we define

df =
n
∑

i=1

∂f

∂xi

dxi.

In other words, df is a 1-form. For the general k form defined in Equation
1, we have

dα =
∑

dfI ∧ dxI . (2)

Consider the 4 possibilities in R
3.

• Suppose we start with a function f , compute df , then interpret the
result as a vector field. The result is just the gradient of f .
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• Suppose we start with a vector field, interpret it as a 1 form f , then
re-interpret df as a vector field. Then we get get the curl. Here is the
main part of the calculation.

d
3

∑

i=1

Aidxi =
3

∑

i=1

dAi ∧ dxi =
3

∑

i=1

3
∑

j=1

∂Ai

∂xj

dxj ∧ dxi =

(

∂A1

∂x2

−
∂A2

∂x1

)

dx1∧dx2+
(

∂A2

∂x3

−
∂A3

∂x2

)

dx2∧dx3+
(

∂A3

∂x1

−
∂A1

∂x3

)

dx3∧dx1.

• Suppose we start with a vector field, interpret it as a 2-form, apply
d, then interpret the result as a function. Then we are computing the
divergence.

So, for differential forms in R
3 the d-operator unifies all the basic operations

from vector calculus: gradient, curl, and divergence.

Cohomology: In vector calculus you learn the basic facts that

curl ◦ grad = 0, div ◦ curl = 0.

Using the interpretations above, both these statements just say that d◦d = 0.
This is true in general. Here is the calculation, for the form α in Equation 1:

d(dα) = d
( n
∑

i=1

∂fI
∂xi

∧ dxI

)

=
n
∑

i=1

n
∑

j=1

∂2fI
∂xi∂xi

dxi ∧ dxj ∧ dxI .

But this whole thing is zero because

∂2fI
∂xi∂xi

dxi ∧ dxj −
∂2fI

∂xi∂xj

dxj ∧ dxi −
∂2fI

∂xj∂xi

dxj ∧ dxi.

That is, the terms in the sum cancel in pairs.
A k-form α is called closed if dα = 0. A k-form α is called exact if

α = dβ. The calculation above says that “exact implies closed”. As an
alternate terminology, exact forms are called coboundaries and closed forms
are called cocycles . This alternate terminology is supposed to line up with
the language of homology.

Let M be some open subset of Rn. We define:

• Ck(M) is the vector space of k-forms on M .
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• Zk(M) is the vector space of closed k-forms on M .

• Bk(M) is the vector space of exact k-forms on M .

The fact that d ◦ d = 0 means that Bk(M) ⊂ Zk(M). The quotient group

Hk(M) = Zk(M)/Bk(M) (3)

is known as the k-th deRham cohomology group of M .

Connection to Simplicial Homology: Here I’ll explain a special case
of the connection between the deRham cohomology defined above and sim-
plicial homology. Suppose that f : Rn

→ R is a smooth function. Suppose
also that there are no points p ∈ R

n where f(p) = 0 and ∇f(p) = 0. In
other words, the function and its gradient cannot vanish at the same point.
In this situation, f−1(0) is a well defined manifold of dimension n − 1. The
tangent space at some point p is the subspace perpendicular to ∇p.

We can look at Σ = f−1(0) in two ways.

• We can triangulate Σ and treat it as a simplicial complex. Then we can
compute the simplicial homology Hi(Σ,R). What we do is take real

linear combinations of simplices and then take cycles mod boundaries.
Here Hk(M,R) is not just a group but also a vector space.

• We can consider the open set Mǫ = f−1(−ǫ, ǫ) for some very small ǫ.
The space Mǫ is an open set in R

n which is a kind of thickening of Σ.
For small ǫ, the space Mǫ is homeomorphic to Σ×(−1, 1). We can then
compute the cohomology groups Hk(Mǫ).

Here is the punchline. For sufficiently small ǫ, the groups Hk(Σ,R) and
Hk(M) are isomorphic vector spaces. This is a special case of the famous
De Rham Isomorphism Theorem. One take-away from this result is that the
basic notions in vector fields: incompressible vector fields, irrotational vector
fields, conservative potentials, etc., are all closely related to homology.

Integration and Stokes Theorem: The isomorphism theorem discussed
above has close connections to Stokes’ Theorem. The basic fact is that a
k-form can be integrated over a k-dimensional manifold.

Suppose first that T is an alternating k-tensor and ∆ is a k-dimensional
simplex. If we label the vertices of ∆ as ∆(0), ...,∆(k) then we get the
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number
T (∆) = T (V1, ..., Vk), Vj = ∆(j)−∆(0).

When T is alternating this number only depends very mildly on the labeling.
If we change the labeling by an even permutation, then the answer does not
change. So, in short, an alternating k-tensor assigns a number to an oriented
k-simplex.

Now suppose that we have some oriented k-dimensional manifold M in
R

n and some k-form ω. We can triangulate M into small simpliciess, say
M = ∆1 ∪ ...∪∆ℓ, and we can arrange that the orientations of the simplices
are chosen so that the union of simplices is a k-chain. (This last arrangement
requires M to be oriented.)

We can then define the sum

ℓ
∑

i=1

Ti(∆i),

where Ti is the tensor we get by evaluating ω at some point in ∆i (like the
center of mass.) You should think of this sum as like a Riemann sum from
the theory of integration. Letting the mesh size of the triangulation go to 0
and taking a limit, we can get a well defined answer, which we call

∫

M
ω,

the integral of ω over M .
Suppose finally that Ω is a (k+1)-dimensional manifold with a boundary

∂ω, and ω is a k-form defined on an open neighborhood of Ω. The form
dω is a (k + 1) form and it makes sense to integrate it on Ω whereas ω is a
k-form and it makes sense to integrate ω on ∂Ω. Here is the general version
of Stokes’ Theorem: ∫

Ω

dω =
∫

∂Ω
ω. (4)

This one result, when suitably interpreted, encompasses all the results from
vector calculus – Green’s Theorem, the Divergence Theorem, Gauss’s law,
Stokes Theorem.

At the same time, Equation 4 hints at a direction between cohomology
and homology by relating the operation of taking boundaries (homology)
with the d-operation (cohomology).
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