Math1410: Crash Course on Forms and Cohomology: The purpose of these notes is to discuss differential forms, Stokes’ Theorem, and cohomology. These notes will be somewhat sketchy.

Tensors: Let V be a real vector space. It is convenient just to take $V = \mathbb{R}^n$. Let V^k denote the set of k-tuples of vectors in V. A point in V^k is a k-tuple $(V_1, ..., V_k)$. A k-tensor is a map $T: V^k \to \mathbb{R}$ such that

$$T(..., aV_i + bW_i, ...) = aT(..., V_i, ...) + bT(..., W_i, ...).$$

That is, T is linear in each slot. The dot product is a classic example of a 2-tensor.

A tensor is called *alternating* if

$$T(..., V_i, ..., V_j, ...) = -T(..., V_j, ..., V_i, ...)$$

for all i, j. The determinant is an example of an alternating n-tensor on \mathbb{R}^n.

Here is a more general example of an alternating k-tensor on \mathbb{R}^n for $k \leq n$. Let $a_1, ..., a_k$ be some sequence of integers between 1 and n. Given vectors $V_1, ..., V_k$, define

$$T(V_1, ..., V_k) = \det \begin{bmatrix} V_{1a_1} & \cdots & V_{1a_k} \\ \vdots \\ V_{ka_1} & \cdots & V_{ka_k} \end{bmatrix}.$$

Here $V_i = (V_{i1}, ..., V_{in})$, etc. This tensor is denoted $dx_{a_1} \wedge \cdots \wedge dx_{a_k}$. Note that this tensor is zero if there are repeated indices. Note also that the tensor switches signs if you switch two indices. For instance, when $k = 3$ and $n = 5$ we have

$$dx_1 \wedge dx_3 \wedge dx_4 = -dx_3 \wedge dx_1 \wedge dx_4.$$

If turns out that every alternating k-tensor is a linear combination of the examples given. Therefore, the vector space of alternating k-tensors has dimension n choose k. Alternate notation: Given a k-tuple $I = (a_1, ..., a_k)$, we let dx_I be the form mentioned above.

Differential Forms: Let U be an open subset of \mathbb{R}^n. A *differential k-form* is a smoothly varying choice of alternating k-tensor for each point of
Given that we have a basis for the vector space of alternating k-tensors, we can say more concretely that a differential k-form is a sum of the form

$$\alpha = \sum f_I dx_I, \quad (1)$$

each f_I is a smooth (i.e. infinitely differentiable) function on U. Here are some examples, on \mathbb{R}^3:

- The 0-forms are just functions.
- The 1-forms look like $A_1 dx_1 + A_2 dx_2 + A_3 dx_3$ where A_1, A_2, A_3 are functions.
- The 2-forms look like $A_1 dx_1 \wedge dx_2 + A_2 dx_1 \wedge dx_3 + A_3 dx_2 \wedge dx_3$ where A_1, A_2, A_3 are functions.
- The 3-forms look like $A dx_1 \wedge dx_2 \wedge dx_3$ where A is a function.

Note that we can interpret a function either as a 0-form or a 3-form. Likewise we can interpret the vector field (A_1, A_2, A_3) either as a 1-form or a 2-form.

To give a more exotic example, the 2-forms on \mathbb{R}^4 look like

$$\sum_{i=1}^{4} \sum_{j=i+1}^{4} a_{ij} dx_i \wedge dx_j.$$

There are 6 summands, and each a_{ij} is a function.

The d Operator: When f is a function, we define

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i.$$

In other words, df is a 1-form. For the general k form defined in Equation 1, we have

$$d\alpha = \sum df_I \wedge dx_I. \quad (2)$$

Consider the 4 possibilities in \mathbb{R}^3:

- Suppose we start with a function f, compute df, then interpret the result as a vector field. The result is just the gradient of f.

• Suppose we start with a vector field, interpret it as a 1 form f, then re-interpret df as a vector field. Then we get the curl. Here is the main part of the calculation:

$$d \sum_{i=1}^{3} A_i \, dx_i = \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial A_i}{\partial x_j} \, dx_j \wedge dx_i = \left(\frac{\partial A_1}{\partial x_2} - \frac{\partial A_2}{\partial x_1} \right) dx_1 \wedge dx_2 + \left(\frac{\partial A_2}{\partial x_3} - \frac{\partial A_3}{\partial x_2} \right) dx_2 \wedge dx_3 + \left(\frac{\partial A_3}{\partial x_1} - \frac{\partial A_1}{\partial x_3} \right) dx_3 \wedge dx_1.$$

• Suppose we start with a vector field, interpret it as a 2-form, apply d, then interpret the result as a function. Then we are computing the divergence.

So, for differential forms in \mathbb{R}^3 the d-operator unifies all the basic operations from vector calculus: gradient, curl, and divergence.

Cohomology: In vector calculus you learn the basic facts that

$$\text{curl} \circ \text{grad} = 0, \quad \text{div} \circ \text{curl} = 0.$$

Using the interpretations above, both these statements just say that $d \circ d = 0$. This is true in general. Here is the calculation, for the form α in Equation 1:

$$d(\alpha) = d \left(\sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \wedge dx_i \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f_i}{\partial x_i \partial x_j} dx_i \wedge dx_j \wedge dx_j.$$

But this whole thing is zero because

$$\frac{\partial^2 f_i}{\partial x_i \partial x_j} dx_i \wedge dx_j - \frac{\partial^2 f_i}{\partial x_i \partial x_j} dx_j \wedge dx_i - \frac{\partial^2 f_i}{\partial x_j \partial x_i} dx_j \wedge dx_i.$$

That is, the terms in the sum cancel in pairs.

A k-form α is called **closed** if $d\alpha = 0$. A k-form α is called **exact** if $\alpha = d\beta$. The calculation above says that “exact implies closed”. As an alternate terminology, exact forms are called **coboundaries** and closed forms are called **cocycles**. This alternate terminology is supposed to line up with the language of homology.

Let M be some open subset of \mathbb{R}^n. We define:

• $C^k(M)$ is the vector space of k-forms on M.

3
\[Z^k(M) \text{ is the vector space of closed } k\text{-forms on } M. \]
\[B^k(M) \text{ is the vector space of exact } k\text{-forms on } M. \]

The fact that \(d \circ d = 0 \) means that \(B^k(M) \subset Z^k(M) \). The quotient group

\[H^k(M) = Z^k(M)/B^k(M) \quad (3) \]

is known as the \(k\)-th deRham cohomology group of \(M \).

Connection to Simplicial Homology: Here I’ll explain a special case of the connection between the deRham cohomology defined above and simplicial homology. Suppose that \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is a smooth function. Suppose also that there are no points \(p \in \mathbb{R}^n \) where \(f(p) = 0 \) and \(\nabla f(p) = 0 \). In other words, the function and its gradient cannot vanish at the same point.

In this situation, \(f^{-1}(0) \) is a well defined manifold of dimension \(n - 1 \). The tangent space at some point \(p \) is the subspace perpendicular to \(\nabla p \).

We can look at \(\Sigma = f^{-1}(0) \) in two ways.

- We can triangulate \(\Sigma \) and treat it as a simplicial complex. Then we can compute the simplicial homology \(H_i(\Sigma, \mathbb{R}) \). What we do is take real linear combinations of simplices and then take cycles mod boundaries. Here \(H_k(M, \mathbb{R}) \) is not just a group but also a vector space.

- We can consider the open set \(M_\epsilon = f^{-1}(-\epsilon, \epsilon) \) for some very small \(\epsilon \).

The space \(M_\epsilon \) is an open set in \(\mathbb{R}^n \) which is a kind of thickening of \(\Sigma \).

For small \(\epsilon \), the space \(M_\epsilon \) is homeomorphic to \(\Sigma \times (-1, 1) \). We can then compute the cohomology groups \(H^k(M_\epsilon) \).

Here is the punchline. For sufficiently small \(\epsilon \), the groups \(H_k(\Sigma, \mathbb{R}) \) and \(H^k(M) \) are isomorphic vector spaces. This is a special case of the famous *De Rham Isomorphism Theorem*. One take-away from this result is that the basic notions in vector fields: incompressible vector fields, irrotational vector fields, conservative potentials, etc., are all closely related to homology.

Integration and Stokes Theorem: The isomorphism theorem discussed above has close connections to Stokes’ Theorem. The basic fact is that a \(k\)-form can be integrated over a \(k\)-dimensional manifold.

Suppose first that \(T \) is an alternating \(k\)-tensor and \(\Delta \) is a \(k\)-dimensional simplex. If we label the vertices of \(\Delta \) as \(\Delta(0), ..., \Delta(k) \) then we get the
When T is alternating this number only depends very mildly on the labeling. If we change the labeling by an even permutation, then the answer does not change. So, in short, an alternating k-tensor assigns a number to an oriented k-simplex.

Now suppose that we have some oriented k-dimensional manifold M in \mathbb{R}^n and some k-form ω. We can triangulate M into small simplicess, say $M = \Delta_1 \cup \ldots \cup \Delta_\ell$, and we can arrange that the orientations of the simplices are chosen so that the union of simplices is a k-chain. (This last arrangement requires M to be oriented.)

We can then define the sum

$$
\sum_{i=1}^\ell T_i(\Delta_i),
$$

where T_i is the tensor we get by evaluating ω at some point in Δ_i (like the center of mass.) You should think of this sum as like a Riemann sum from the theory of integration. Letting the mesh size of the triangulation go to 0 and taking a limit, we can get a well defined answer, which we call

$$
\int_M \omega,
$$

the integral of ω over M.

Suppose finally that Ω is a $(k+1)$-dimensional manifold with a boundary $\partial \Omega$, and ω is a k-form defined on an open neighborhood of Ω. The form $d\omega$ is a $(k+1)$ form and it makes sense to integrate it on Ω whereas ω is a k-form and it makes sense to integrate ω on $\partial \Omega$. Here is the general version of Stokes’ Theorem:

$$
\int_\Omega d\omega = \int_{\partial \Omega} \omega. \quad (4)
$$

This one result, when suitably interpreted, encompasses all the results from vector calculus – Green’s Theorem, the Divergence Theorem, Gauss’s law, Stokes’ Theorem.

At the same time, Equation 4 hints at a direction between cohomology and homology by relating the operation of taking boundaries (homology) with the d-operation (cohomology).