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Here is a result which is pretty obvious.

Lemma 0.1 If A and B and C are all sets, then

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).

Proof: There are two halves to this result. First we must show that

A ∩ B) ∪ C ⊂ (A ∪ C) ∩ (B ∪ C)

and then we must show that

(A ∪ C) ∩ (B ∪ C) ⊂ (A ∩B) ∪ C.

For the first equation, choose an element x ∈ (A ∩ B) ∪ C. Then either
x ∈ A ∩ B or else x ∈ C (or both). In the first case x ∈ A and x ∈ B.
Therefore x ∈ A ∪ C and x ∈ B ∪ C. Therefore x ∈ (A ∪ C) ∩ (B ∪ C). In
the second case, x ∈ C. But then x ∈ A ∪ C and x ∈ B ∪ C. Therefore
x ∈ (A ∪ C) ∩ (B ∪ C). In either case we see that x ∈ (A ∪ C) ∩ (B ∪ C).
This shows that any element of our first set belongs to our second set, and
therefore establishes the first equation we had wanted to prove.

Now suppose that x ∈ (A∪C)∩ (B∪C). Then x ∈ A∪C and x ∈ B∪C.
There are two cases. If x ∈ C then certainly x ∈ (A ∩B) ∪ C. On the other
hand, if x 6∈ C then x ∈ A and x ∈ B. But then x ∈ A ∩ B. Therefore
x ∈ (A ∩ B) ∪ C. This shows that any element of our second set belongs to
our first set and therefore establishes the second equation we had wanted to
prove. ♠
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A positive integer P > 1 is prime if it is impossible to write P = ab
where a and b are both positive integers greater than 1. Another way to
say this is that a prime number is one whose only divisors are 1 and itself.
The following proof really uses the well-ordering principle, which says that
any nonempty set of positive integers has a smallest element. This principle
is really quite close to the principle of induction. Anyway, here is the next
sample proof:

Lemma 0.2 Any positive integer (greater than 1) can be factored into a
product of positive primes.

Proof: We will argue by contradiction. If not all positive integers greater
than 1 can be factored into primes then there is some smallest positive integer
N > 1 that cannot be factored into primes. (We just used the well-ordering
principle.) If N is prime then we have an immediate contradiction. So, we
must have N = ab where both a and b are positive integers greater than 1.
But then both a and b are smaller than N . Since a and b are smaller than the
smallest “unfactorable integer”, a and b can both be factored into primes.
That is

a = p1 × ...× pr; b = q1 × ...× qs,

where all the ps and qs are understood to be primes. But then

N = ab = p1 × ...× pr × q1 × ...× qs

and we have successfully factored N into primes. This contradicts the ex-
istence of N . The contradiction forces us to acknowledge that all positive
integers can be factored into primes. ♠

Our next proof is the classic proof, due to Euclid, that there are infinitely
many prime numbers. Our proof uses the previous result about factoring in
an essential way.

Theorem 0.3 There are infinitely many primes.

Proof: Suppose, for the sake of contradiction, that there are only finitely
many prime numbers. Then let P1, ..., Pn be the complete list of prime num-
bers. Consider the new number

N = P1 × ...× Pn + 1.
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Notice that N is larger than each of P1, ..., Pn. So, N cannot be prime. On
the other hand, we can factor N into primes, like any other positive integer
greater than 1. So, there must be some prime on our list that divides N .
(any one of the prime factors will do the job.) Let’s say that we have ordered
our primes so that P1 divides N . This means that we can write

N = aP1

for some other integer a. However, from the very definition of N , we have

N = bP1 + 1,

where b = P2 × ...× Pn is some integer. We now know that

bP1 + 1 = aP1.

But then
1 = P1(a− b).

Since P1 is an integer bigger than 1, and a− b is an integer, it is impossible
for P1(a − b) to equal 1. This contradiction shows that there is no largest
prime. ♠

The next proof is similar in spirit to the last one, and just uses standard
facts about arithmetic that most people would take as axioms. Recall that
integers a and b are relatively prime if there only common positive divisor is
1. That is, if k > 0 divides both a and b then k = 1. For instance 3 and 25
are relatively prime.

Lemma 0.4 Suppose that a and b are positive integers that are relatively
prime. Then there are integers m and n such that am+ bn = 1.

Proof: Let D be the set of all numbers of the form am + bn, where m and
n range over all possible integers. Note that all elements of D are integers,
some of which are positive.. Let δ be the smallest positive integer in D. We
would like to show that δ = 1. Since a and b are relatively prime, it suffices
to show that δ divides both a and b. We will show that δ divides a. The
proof that δ divides b is the same.

We can write
δ = am+ bn
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for some particular choice of m and n. Our argument works like this. We’re
going to assume that δ does not divide a and then we will produce another
pair of integers m′ and n′ such that the combination am′ + bn′ is positive
and less than δ. This will contradict the choice of δ as the minimum positive
element of D.

Here is the argument: When we divide a by δ we get some nonzero
remainder, since a doesn’t divide δ. This means that there is some integer k
such that

a = kδ + r; ,

where r > 0 and r < δ. Here r is the remainder. We can write

r = a− kδ = a− k(am+ bn) = am′ + bn′

for some other integers m′ and n′. But then r is positive, belongs to D, and
is less than δ. This is a contradiction. The only way out of the contradiction
is that δ divides a.

Once again, the argument that δ divides b is the same. Since δ divides
both a and b we must have δ = 1. But then we have solved the equation
am+ bn = 1. ♠

Here is a proof of the Pythagorean theorem which relies somewhat on
modern notions of area.

Theorem 0.5 Let T be a right triangle. Let a and b be the lengths of the
short sides of T and let c be the length of the long side. Then a2 + b2 = c2.

Proof: Let X denote the set of all triangles which are similar to T . So,
the members of X are rotated and/or dilated and/or shrunk versions of T .
There is some particular member T0 of X whose long side has length 1. Let
λ be the area of T0. If r is the long side of some other triangle T in X then
the area of T is λr2. The idea is that we dilate T by r units to create T ,
and this increases the area by a factor of r2. We want to emphasize that this
principle works for any choice of r. We’re going to apply it using 3 different
choices of r.

Here’s the main construction: Draw the line segment from the right angle
of T to the long side, so that this segment makes a right angle with the long
side, as shown in Figure 1.
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Figure 1

One can see easily, using the fact that T is a right triangle, that the angles
of T1 are the same as the angles of T . Hence T1 belongs to X . The long side
of T1 is b and hence the area of T1 is λb2. Our argument using the dummy
variable r above works for any choice of r, as we already mentioned.

The same argument shows that the area of T2 is λa2. But T is just
the union of T1 and T2, and there is no overlap between these two smaller
triangles. Therefore

λc2 = area(T ) = area(T1) + area(T2) = λb2 + λa2.

Cancelling λ gives a2 + b2 = c2. ♠

Here is a classic result from graph theory.

Lemma 0.6 Let K6 denote the complete graph on 6 vertices: one has an edge
connecting every pair of vertices. Suppose that the edges have been colored
red and blue. Then there either exists a red triangle or a blue triangle.

Proof: Let v0 be one of the vertices. Of the 5 edges emanating out of v0,
at least three of them have the same color. Without loss of generality, we
can assume that there are at least 3 red edges, and that these edges connect
v0 to vj for j = 1, 2, 3. If the edge connecting v1 to v2 is red, then v0v1v2 is
a red triangle. So, if we want to avoid a red triangle, then the edge v1v2 is
blue. The same argument goes for the edge v2v3 and the edge v3v1. So, if
there is no red triangle, then v1v2v3 is a blue triangle. ♠

Here is a generalization of this result, known as the Ramsey theorem for
graphs.
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Theorem 0.7 Let n be any integer. Let N = 22n. Let KN be the complete
graph on N vertices. If every edge of KN colored either red or blue, then
there is either a red copy of Kn in the graph or a blue copy of Kn in the
graph.

Proof: Let Γ0 = KN , the whole graph. Choose any vertex v0. At least
half of the edges emanating from v0 have the same color. Call this color C0.
We are going to choose 2n − 2 vertices inductively. Assume that vertices
v0, ..., vk have been chosen, with associated colors C0, .., Ck, and an associ-
ated sequence Γk ⊂ ... ⊂ Γ0 such that Γk is a complete graph on 22n/2k

vertices for each k. Let vk+1 be any vertex of Γk. At least 22n/2k+1 of the
edges connecting vk+1 to other vertices of Γk have the same color Ck+1. Let
Γk+1 ⊂ Γk be a complete graph of size 22n/2k+1 such that every edge con-
necting vk+1 to a vertex of Γk+1 has color Ck+1. We make this construction
for each k = 0, ..., 2n−4, getting vertices v0, ..., v2n−3 such that the edge con-
necting vi to vj has color Ci as long as j > i. From amongst the first 2n− 3
of these vertices, there are at least n − 1 of them such that the associated
color, say C, is the same. Call these vertices vi1 , ..., vin−1

. Let in = 2n − 3,
the index of the last vertex constructed. By construction all the edges con-
necting vertices in the set {vi0 , ..., vin} have the same color, C. ♠

Here is a classic result from combinatorics:

Lemma 0.8 Suppose that every point in the plane is colored one of three
colors. Then there are two points on the plane, exactly one unit apart, which
have the same color.

Proof: Let the colors be red, white, and blue. We can suppose without
loss of generality that the origin, x0, is colored white. Let C be the circle
of radius 1 centered on the origin. If some point of C is colored white then
obviously there are two white points that are exactly one unit apart and we
are done. So, we can suppose that all points of C are colored red and blue.

Suppose that x1 and x2 are any two points on C that are one unit apart
from each other. Then the points x0, x1, x2 form an equilateral triangle whose
sides are one unit apart. This is shown in Figure 2. If these three points
do not have all different colors, then we are done. So, suppose they have all
different colors.
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Figure 2

Consider the point x3, which makes the other equilateral triangle with x1

and x2. Recall that x1 and x2 are red and blue (or else blue and red). If x3

is not white then we are done. So, suppose that every configuration like the
one above gives rise to a white x3. But then the entire circle D is colored
white. But then any chord of D having length 1, such as the one shown at
the bottom of Figure 2, connects two white points. ♠

The logic of the last result merits some further discussion. We are trying
to prove that some particular statement is true. Our strategy is to assume
the worst case at each stage and show that even the worst case leads to the
truth of the lemma. It is important to notice e.g. that we are not asserting
that any particular 3-coloring of the plane leads to the circle D being colored
completely white. Rather, we are asserting that any coloring of the plane
either has the desired two-point property or else has the white circle−and
then the white circle gives us the two-point property anyhow.
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