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1 Sperner’s Lemma

Sperner’s Lemma applies to any cleanly triangulated triangle. An example
is shown on the left hand side of Figure 1. The drawing on the right is
not meant to be an example; it shows something we want to avoid. The
main things you want from the triangulation are that the small triangles
meet edge to edge and pairwise have disjoint interiors. We call this a clean

triangulation.
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Figure 1: Two good triangulations and a bad one in action.

Let T be the triangle, and suppose it is cleanly triangulated into n smaller
triangles T1, ..., Tn. Suppose also that the vertices of the triangulation are
labeled by integers {1, 2, 3} so that the kth side of T has no k label. Sperner’s
Lemma says that some Tj gets all 3 labels. This result generalizes to n di-
mensions in a way which I will leave to you.
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First Proof: Here is the reference for the amazing proof to follow.

A. McLennan and R. Tourkey, Using volume to prove Sperner’s lemma Econ.
Theory 35 (2008) pp 593-597

We’re going to assume that we have a labeling in which no triangle sees
all three labels and derive a contradiction. We normalize so that T has area
1. Let’s call the vertices of the triangulation V1, ..., Vm. Let L1, ..., Lm be the
labels of these vertices. Let W (1), W (2), W (3) be the vertices of the big
triangle T . For each t ∈ [0, 1], define the new point

Vk(t) = (1− t)Vk + tW (Lk). (1)

In other words, we think of t as time and we think of a the curve t → Vk(t)
as a path which starts at Vk and ends at W (Lk) and moves in a straight line
at constant speed. Supposing that the triangle Tk has vertices A,B,C, let
Tk(t) be the triangle with vertices A(t), B(t), C(t). As the points move with
t these triangles change shape.

Consider the function

f(t) =
n∑

j=1

area(Tj(t)). (2)

First of all, this function is a polynomial, thanks to the simple formulas –
e.g. determinants – one can use to compute the areas of the triangles. Second
of all, f(t) = 1 for all t sufficiently close to 0. The point is that, for small
t, we still have a triangulation even though the points have moved a little.
Since f is a polynomial, we must have f(t) = 1 for all t ∈ [0, 1]. However,
suppose that no triangle Tk sees all three labels. Then Tk(t) converges either
a single vertex or to an edge of T as t → 1. Hence

lim
t→1

area((Tk(t)) = 0. (3)

Since this is true for all triangles, and there are only finitely many of them
in the triangulation, we see that f(t) → 0 as t → 1. This is a contradiction.
That’s the end of the proof.

Second Proof: This is the more traditional proof. Say that a flag is a
pair (Tk, e), where Tk is one of the triangles of the triangulation and e is an

2



edge of Tk. Each triangle participates in 3 flags and each edge either partici-
pates in 1 or 2 flags, depending on whether the edge is in the boundary of T .
Say that (12)-flag is a flag which has the labels 1 and 2 on its edge. We’re
going to count the (12)-flags in two ways.

Let’s first count these flags going edge to edge. Each interior edge con-
tributes an even number of (12)-flags to the total, because it participates in
two flags and these two flags are either simultaneously (12)-flags or not (12)-
flags. The only boundary edges which contribute a (12)-flag are the ones on
the side which has the 1 and 2 labels. This side is divided into finitely many
edges. One endpoint of the side is labeled 1 and the other one is labeled 2.
So, as we go from one endpoint to the other, we have to switch labels an odd
number of times. Hence, there are an odd number of (12)-flags coming from
the boundary edges. But that means there is an odd number of (12)-flags
overall.

On the other hand, let’s count the (12)-flags triangle by triangle. As
I mentioned above, each triangle participates in 3 flags. Just list out the
possibilities and you can see that a triangle contributes an odd number of
(12)-flags to the count if and only if it gets all 3 labels. The triangles labeled
(1, 2, 2) (1, 1, 2) each contribute two (12) flags to the count and the rest
contribute zero. Hence, there must be an odd number of triangles which are
labeled (1, 2, 3). That completes the proof.

2 A Topological Interlude

Before going further, we need a foundational result from topology.

Lemma 2.1 (Uniform Continuity) Suppose that X is a compact metric

space and f : X → R is a continuous function and ǫ > 0 is given. Then there

exists some δ > 0 with the following property. For any two points a, b ∈ X
with d(a, b) < δ¡ we have |f(a)− f(b)| < ǫ.

Proof: Suppose this is false. Then we can find sequences {an} and {bn}
such that d(an, bn) → 0 but |f(an) − f(bn)| ≥ ǫ. By compactness, there
is a subsequence of {an} which converges to a point a ∈ X. Passing to a
subsequence, we might as well assume that an → a. But then bn → a as
well. Since f is continuous at a, there is some δ such that |f(p)−f(a)| < ǫ/2
once d(p, a) < δ. But than |f(an) − f(bn)| < ǫ once n is large enough for
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both these points to be within δ of a. This contradiction proves the lemma. ♠

3 Applications

Suppose that X is a topological space and Y ⊂ X is a subspace. A retraction

from X to Y is a continuous map f : X → Y such that f is the identity map
when restricted to Y . Here is a classic theorem from topology.

Theorem 3.1 Let ∆ be a topological disk. Let ∂∆ denote the boundary of

∆. Then there is no retraction from ∆ to ∂∆.

Proof: Since it is expressed entirely in terms of continuous maps, the notion
of a retraction is invariant under homeomorphisms. So, we can assume that
∆ is an equilateral triangle having side length 100.

We will suppose that f is a retraction and derive a contradiction. By the
Uniform Continuity Lemma, we can find some δ so that |f(a)− f(b)| < 1 for
all a, b in the triangle with |a − b| < δ. Choose a triangulation of ∆ where
each triangle in the triangulation has side length less than δ.

Label a vertex v of the triangulation by the name of the vertex of ∆
closest to f(k). In case of a tie, choose the lower label. f maps the vertices
of each small triangle so that they are each within 1 of each other. But then
no triangle can be labeled (1, 2, 3) because the three vertices of ∆ are spread
far apart. On the boundary, the labeling is more or less as in Figure 1. So,
this labeling contradicts Sperner’s Lemma. ♠

Theorem 3.2 Suppose that ∆ is a topological disk and f : ∆ → ∆ is a

continuous map. Then f has a fixed point. That is, there is some p ∈ ∆
such that f(p) = p.

Proof: Again, this notion is invariant under homeomorphism, so we might
as well assume that ∆ is the standard round disk. We will suppose that f
has no fixed points and derive a contradiction.

Given any p ∈ ∆. consider the ray Rp which starts at f(p) and moves in
the direction of p. Let g(p) = Rp∩∂∆, the point where the ray intersects the
boundary. It is easy to check that the function g is continuous. If you move

4



p a little, then the ray does not change much, either in terms of slope or
starting point. So, it hits ∂∆ at a nearby point. At the same time, g(p) = p
when p ∈ ∂∆. Hence g is a retraction. Contradiction. ♠

Here is a nice application from linear algebra. Say that a positive matrix

is a square matrix with all positive entries. Say that a positive eigenvector

is an eigenvector with all positive entries. All the results above work in n
dimensions, and have the same proofs. I’ll leave this to you, but will assume
the n-dimensional Brouwer fixed point theorem for the next result.

Theorem 3.3 Any positive matrix has a positive eigenvector.

Proof: Let ∆ denote the space of rays which emanate from the origin and
point into the positive orthant. One can put a metric on ∆ as follows: The
distance between two rays is the angle they make. With this metric, ∆ is
isometric to a spherical simplex. In particular, ∆ is homeomorphic to a ball.
The matrix M induces a continuous map from ∆ into itself. By the Brouwer
fixed point Theorme, M has an eigenvector E with non-negative coefficients.
Note that M(V ) is a positive vector whenever V is a non-negative vector.
Hence E must be a positive vector. ♠
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