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The purpose of these notes is to explain Lagrange’s famous 4 square
theorem. Every positive integer n can be written as the sum of 4 integer
squares. n = a2+b2+c2+d2. These notes follow Herstein’s proof in Chapter
7 to some extent, but they simplify the argument and explore some of the
beautiful underlying geometry.

1 Reduction to Odd Primes

Given a quaternion q = a+ bi+ cj + dk we define

N(q) = qq = a2 + b2 + c2 + d2, q = a− bi− bj − bk. (1)

Lagrange’s Theorem is equivalent to the statement that every positive
integer arises as N(q) for some quaternion in the ring Z[i, j, k] of integer
quaternions.

We have
qr = (r)(q). (2)

This identity is easily checked in the 16 cases of q, r ∈ {1, i, j, k} and then
the general case follows from the distributive law. The identity above implies
that

N(qr) = (qr)(qr) = q(rr)q = qN(r)q = qqN(r) = N(q)N(r).

In short
N(qr) = N(q)N(r). (3)

So, if we can prove that every prime arises as N(q) for some quaternion q,
then Equation 3 and the existence of factoring over Z finishes the proof for
us. Note that 2 = 12 + 12 + 02 + 02, so we just have to worry about odd
primes.
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2 Counting Lemmas

Lemma 2.1 In Z/p the equation x2 = b has at most 2 solutions.

Proof: Let p(x) = x2 − b. If p(a) = 0 then p(−a) = 0 as well. But then we
can write p(x) = (x−a)(x+a) in Z/p[x]. But then p(c) = (c−a)(c+a) 6= 0
as long as c is distinct from a and −a in Z/p. ♠

Here is the key lemma.

Lemma 2.2 For any odd prime p, then there exist integers a and b such that

a2 + b2 ≡ −1 mod p.

Proof: Consider the set of all elements of the form a2 in Z/p. By the pre-
vious result, there are at least (p+1)/2 distinct elements. Likewise consider
the set of all elements of the form −1− b2 in Z/p. Again, there are at least
(p + 1)/2 distinct elements. By the pidgeonhole principle, some element a2

coincides with some element −1−b2 in Z/p. But then a2+b2 ≡ −1 mod p. ♠

3 The Half-Integral Quaternions

Let

ζ =
1 + i+ j + k

2
. (4)

Here ζ is a certain half-integral quaternion. Geometrically, ζ is the center of
the cube [0, 1]4. Let R be the ring of element of the form

aζ + bi+ cj + dk, a, b, c, d ∈ Z. (5)

Geomtrically, one can think of Z[i, j, k] as the set of vertices of the tiling of
R

4 by unit cubes. One obtains R by adjoining to Z[i, j, k] the centers of
all these cubes. We will explore the beautiful geometry of R below. But for
now, we prove some basic facts about R.

Lemma 3.1 R is a ring, and in particular a left PID. That is, every left

ideal has the form Ra for some a ∈ R.
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Proof: Considering the several cases, we see that R is closed under addition,
multiplication, and taking additive inverses. Hence R is a ring. The equation
N(qr) = N(q)N(r) implies that R has no zero divisors.

First we show that R is a left Euclidean Domain: Given any nonzero
elements a, b ∈ R there are q, r ∈ R such that a = qb+r where N(r) < N(b).
We think of the elements of R as points in R

4. The distance between q, r ∈ R

is
√

N(q − r). This is always a square-root of an integer and hence at least

1. We just have to show that every element in R
4 is closer than 1 to a point

corresponding to an element of R. The only point in the 4D cube which is
as far from the vertices as the side length is the center of the cube. Thus,
Z[i, j, k] barely fails to be a left ED. The only failure points are the centers
of the cubes. But we get R by adding in these centers.

The same argument which shows that an ED is a PID shows that a left
ED is a left PID. ♠

Lemma 3.2 The ideal Rp is not maximal.

Proof: If Rp is maximal, then R/Rp is a division ring, and in particular has
no zero divisors. But let α = a + bi + j, where a and b solve a2 + b2 ≡ −1
mod p. We have αα ∈ Rp. But then [α] is a zero divisor in R/Rp. This is a
contradiction. ♠

Since Rp is not a maximal ideal, there is some new ideal M such that
Rp ⊂ M ⊂ R and M is not equal to either Rp or R. Since M is also a left
ideal, M = Rα for some α ∈ R. Hence p = cα for some c ∈ R. We have

p2 = N(p) = N(c)N(α).

If N(c) = 1 then c is a unit and M = Rα. This is false. If N(α) = 1
then α is a unit and M = R. Hence N(α) = p. But then, we can write
α = a+ bi+ cj + dk and p = N(α) = a2 + b2 + c2 + d2.

The numbers a, b, c, d might be half integers rather than integers. In this
case, let

a′ = (a+ b)/2, b′ = (a− b)/2, c′ = (c+ d)/2, d′ = (c− d)/2

These are all integers, and (a′)2 + (b′)2 + (c′)2 + (d′)2 = p.
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4 Heavenly Beauty

When I was an undergraduate, I didn’t appreciate the heavenly beauty of the
ring R of half-integral quaternions. So, in this section I’m going to describe
it.

Let’s talk about polyhedra first. Given a convex polyhedron P , we can
form a new polygon P ∗ whose vertices are the centers of each face. In order
to make sense of this, the notion of a center of a face must make sense.
In general, we could take the center of mass of the face, but in the cases of
interest – platonic solids – it is clear what “center” means just from symmetry.

Consider what this does to the platonic solids:

• When P is a tetrahedron, P ∗ is a tetrahedron.

• When P is a octahedron, P ∗ is a cube

• When P is a cube, P ∗ is a octahedron

• When P is a icosahedron, P ∗ is a dodecahedron.

• When P is a dodecahedron, P ∗ is a icosahedron.

From the point of view of this construction, known as duality, the tetrahedron
is best: It is self-dual.

Now consider another possible property of polyhedra. Does the polyhe-
dron tile all of space? The cube certainly tiles all of space, but the other 4
platonic solids do not. So, from the point of view of the tiling property, the
cube is best.

Even though the five platonic solids are perfectly symmetric, in the sense
their group of symmetries takes any vertex to any vertex and any edge to
any edge and any face to any face, none of them is both self-dual and a space
tiler. They are all “flawed” in some sense.

In 4 dimensions, it turns out that there is a convex polyhedron (or poly-
tope, as it is usually called) which is perfectly symmetric, self-dual, and a
space tiler. This polytope is called the 24-cell and it is precisely the group

of units in our ring R! There are 24 such units. Call this group Γ. Up to
sign and permutation, elements of Γ are represented by points of the form
(1, 0, 0, 0) or (1/2, 1/2, 1/2, 1/2). Given a, b ∈ Γ, we have the symmetry
Ta,b : Γ → Γ given by Ta,b(q) = aqb. We also the symmetry Tc,c where
c = (1 + i)/

√
2. Finally, ther have the symmetry q → q. Each of the 1152

possible symmetries of Γ is a composition of the ones just described.
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Lemma 4.1 R
4 is tiled by smaller copies of the 24-cell.

Proof: For each point q ∈ R
4 corresponding to an element of R, there is the

Voronoi cell Vq consisting of points which are closer to q than to any other
point representing an element of R. All of R4 is tiled by the union of these
Voronoi cells. So, to finish the proof, we have to show that each Voronoi
cell is a 24-cell. Since R is a ring (or even just an additive group) all the
Voronoi cells are translates of each other. So, we just have to check that V0

is a 24-cell.
To see this, suppose that x = (a, b, c, d) is some point in R

4. Subtract-
ing off elements of R and using reflection symmetries, we can arrange that
a, b, c, d ∈ [0, π/2] and also a + b + c + d ≤ 1. Conversely, any such point is
closer to 0 than to any other point representing an element of R. From this
it is not hard to deduce that V0 is the polytope with vertices that have the
form (1/2, 1/2, 0, 0) up to sign and permutation. There are 24 such points
and they are the vertices of a smaller (rotated) copy of the 24-cell. For later
reference, we call this smaller 24 cell Q. ♠

Lemma 4.2 The 24 cell is self-dual.

Proof: Let P be the 24-cell whose vertices represent the elements of Γ. Let
Q be the 24-cell from Lemma 4.1. Consider the linear functional

f(x, y, z, w) = (1, 1, 0, 0) · (x, y, z, w) = x+ y.

The level sets of f are hyperplanes in R
4. There are 6 points of P which

maximize f on P , namely

(1, 0, 0, 0), (0, 1, 0, 0), (1/2, 1/2,±1/2,±1/2).

By computing distances you can check that these 6 points are the vertices
of a regular octahedron. The midpoint of this face is just the average of
these 6 vertices, namely the point (1/2, 1/2, 0, 0). Permuting the entries in
the vector defining f and choosing all possible signs, we see that P has 24
faces and that the centers of all these faces make up the vertices of Q. In
short P ∗ = Q, which means that P is self-dual. ♠
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