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1 A Homework Problem

Here is a solution to one of the problems from the last HW assignment. Let
R be a ring and suppose that the only right ideals of R are {0} and R.
We’re going to show that R is either a division ring or R = Z/p with trivial
multiplication. Trivial multiplication means that ab = 0 for all a, b ∈ R.

Suppose first that R has trivial multiplication. Then R is commutative,
and a subset of R is an ideal if and only if it is a right ideal if and only if
it is a subgroup. We know from a previous problem that a group has no
nontrivial subgroups if and only if it is isomorphic to Z/p for some prime
p. So, R is isomorphic as a ring to Z/p with trivial multiplication. So, now
we’ll show that R is a division ring if R does not have trivial multiplication.

Say that a bad element of R is an element a such that ab = 0 for all
b ∈ R.

Lemma 1.1 R has no bad elements.

Proof: Let I be the set of bad elements. You can check that I is a right
ideal. So, if there are any bad elements at all, I is a nontrivial ideal and
hence I = R. But then R has trivial multiplication. Since this is not the
case, there are no bad elements. ♠

Lemma 1.2 For any nonzero a ∈ R we have aR = R.

Proof: aR is a nontrivial right ideal. Hence aR = R. ♠
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Lemma 1.3 R has no zero divisors.

Proof: Suppose that ab = 0 for some nonzero a and some nonzero b. Since b
is not a bad element, bR = R. But abr = a(br) for all r ∈ R. Since bR = R,
we see that as = 0 for all s ∈ R. But then a is a bad element. This is a
contradiction. ♠

Lemma 1.4 R has an element λ such that λs = s for all s ∈ R.

Proof: Choose a ∈ R nonzero. We have aR = R. Hence aλ = a for some
λ. But then aλλ = aλ = a. So aλ2 = aλ. But then a(λ2 − λ) = 0. Since
there are no zero divisors, we have λ2 = λ. But then λ(λr) = λ2r = λr for
all r ∈ R. But λr = r. Since λ is nonzero, λR = R. Hence λs = s for all
s ∈ R. ♠

Lemma 1.5 λ = 1.

Proof: For any nonzero a, we have aλa = aa. Using cancellation, we get
aλ = a. So, λa = a = aλ for all nonzero a. This shows that λ = 1. ♠

Now we can finish the proof. For any nonzero a ∈ R we have aR = R.
This means that 1 = ab for some b ∈ R. At the same time aba = a =
a1. Hence ba = 1 as well. This shows that every nonzero a ∈ R has a
multiplicative inverse. Hence R is a division ring.

Here is a nice corollary.

Corollary 1.6 Suppose that R is a commutative ring and M is a maximal

ideal and R/M is infinite. Then R/M is a field.

Proof: R/M satisfies the hypotheses of the homework problem because ide-
als coincide with right ideals in the commutative case, and the ideals of R/M
are in one-to-one correspondence with the ideals of R containing M . Since
R/M is not Z/p, it must be a division ring and therefore a field. ♠
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2 More Maximal Ideals

In this section I’ll prove the following result. If R is a commutative ring with
1, and M ⊂ R is a maximal ideal (not equal to R) then R/M is a field.

2.1 First Proof

Since M 6= R, we have 1 6= M . But then the coset [1] in R/M has the
property that [1][1] = [1]. Hence R/M does not have trivial multiplication.
The homework problem again applies, and shows that R/M is a division ring
and hence a field.

2.2 Second Proof

We can reduce this to the result in the book if we can show that R/M is
an integral domain. So, suppose for the sake of contradiction that R/M has
zero divisors [a] and [b]. We have ab ∈ M but neither a nor b lies in M .
Consider the set

I = {ca+m| c ∈ R,m ∈ M}.

This set is an ideal, and M ⊂ I. Since M has a 1, we have a ∈ I. But
a 6∈ M . Hence M 6= I. Since M is maximal, I = R. But then 1 = ca+m for
some c ∈ R. Multiplying through by b, we get b = c(ab) = bm ∈ M . This is
a contradiction.
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