
These are some notes on error correcting codes. Two good sources for
this material are

• From Error Correcting Codes through Sphere Packings to Simple Groups ,
by Thomas Thompson.

• Sphere Packings, Lattices, and Simple Groups by J. H. Conway and N.
Sloane

Planet Math (on the internet) also some information.

1 Main Definitions

Let F be a finite set. A code of length n is a subset S ⊂ F n. The elements
of S are called codewords . When F = Z/2, as is usually the case, a code is
called a binary code.

The Hamming distance between two elements is the number of coordi-
nates in which they differ. For instance, the Hamming distance between
101000 and 111001 is 2 because the two words differ in spots 2 and 6. We
will write H() for the Hamming distance.

A code is called k-error correcting if the Hamming distance between any
two distinct codewords is at least 2k+1. The rationale for this definition is as
follows. Suppose that one intends to send the message s but ends up sending
s′ instead, and s′ contains at most k errors. We know that H(s, s′) ≤ k. If
there was some other codeword s′′ such that H(s′, s′′) ≤ k, then we would
have H(s, s′′) ≤ 2k. This forces s = s′′. So, if we have received s′ in place of
s, we can recover s. That is, we can correct up to k errors.

The code S is called a linear (n, k) code if F is a finite field and S is a
k-dimensional vector subspace of F n. The intuitive idea here is that we have
some isomorphism φ : S → F k (often given by some coordinate projections,
but not always.) You want to send some element t ⊂ F k. So, you send
s = φ−1(t). The receiver then performs t = φ(s) to recover the message. If
S has some error correcting properties, then s can be sent with some errors,
and one can still recover t.

The weight of a codeword is the number of nonzero entries. The minimum

weight of a linear code is the minimum weight, taken over all nontrivial
codewords. Thanks to the equality H(s, t) = H(0, s − t), the minimum
Hamming distance between any two distinct words in a linear code is the
same as the minimum weight of the code.
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2 Hamming’s Rectangle Codes

We say BL code in place of binary linear code for the sake of brevity. Here
is an example of a BL (9, 4) code which is 1-error correcting.

Say that a grid is a 3× 3 matrix with entries in Z/2 such that the sum
of every row and every column is congruent to 0 mod 2. Let S be the set of
grids. There is a linear map f : F 9 → F 6, which just strings out all the mod
2 sums of the rows and columns. Clearly S is the kernel of f . Hence S is a
linear code.

It is clear that any nontrivial grid must have weight at least 4. Hence the
minimum Hamming distance between any two words in S is 4. In particular,
S is 1-error correcting.

There is a natural isomorphism from S to F 4. We just write out the
entries of the upper 2 × 2 block. knowing these entries, it is easy to fill in
the rest of the grid. Here is an example.







1 0 ∗
1 1 ∗
∗ ∗ ∗





 →







1 0 1
1 1 0
0 1 1





 . (1)

This code can be improved somewhat. Suppose we consider the (8, 4) BL
code obtained from the one above simply by deleting the bottom right entry.
The resulting code has minimum weight 3 and hence is still 1-error correcting.

You could make a similar code based on any (m + 1) × (n + 1) shape,
where min(m,n) ≥ 3. The result would be a BL ((m + 1)(n + 1),mn)-code
that is 1-error correcting. Leaving off the bottom right entry, you would get
a BL ((m+ 1)(n+ 1)− 1,mn)-code that was 1-error correcting.

Generalizing to higher dimension, one could consider (for example) a
3× 3× 3 cube of numbers over Z/2. It is not hard to check that this gives
a BL (27, 8) code that is 3-error correcting. The minimum weight in this
case is 8. The map to F 8 is again obtained by stringing out the entries of
the upper 2× 2× 2 block. This code can be improved by leaving off certain
entries. I’ll leave this to you to work out.

One of the problems with these rectangle codes is that they are not as
efficient as possible. According to Thompson, these are the first codes that
Hamming discovered, but later he found better ones.
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3 Hamming’s (7, 4) code

A k-error correcting code S is called perfect if every element of F n is within
k of a unique element of S. Put another way, F n is covered by disjoint
Hamming k-balls centered at the points of S. (A Hamming k-ball is the set
of points having Hamming distance at most k from a given point.) The codes
above are not perfect.

People usually credit Richard Hamming with discovering the first perfect
1-error correcting code around 1948, but some people give priority to Marcel
Golay because, technically, he published it first.

Let F = Z/2. Let P = P 2(F ) denote the projective plane over F . We
can think of F 7 as the set of labellings of P by elements of F . There is a
canonical linear map f : F 7 → F 3. One simply takes the mod 2 weighted
sum of the coordinates. An example will clarify this. After we choose some
ordering on the points of P (as indicated below), the element 1101010 gets
mapped to 011, as follows.

1 1 : 0 : 0
1 0 : 1 : 0
0 0 : 0 : 1
1 1 : 1 : 0
0 1 : 0 : 1
1 0 : 1 : 1
0 1 : 1 : 1
− −
− 0 : 1 : 1

(2)

We are simply taking the mod 2 dot product with 1101010 with each of the
columns in the matrix above.

The kernel S = ker(f) is the (7, 4) code. The map φ : S → F 4 is obtained
by simply ignoring the labels of points with only one nonzero coordinate, and
recording the rest. This map is clearly an injection, and both the domain
and range have 16 elements. Hence, it is an isomorphism.

Clearly, no nontrivial element of S has weight 1 or 2. Hence, S is 1-error
correcting. Given an arbitrary s′ ∈ F n, there is a unique point p ∈ P which
has the same coordinates as f(s′). We just change the bit of s′ corresponding
to this point. The resulting word s lies in S. This shows that S is perfect.
One can also see this by counting: Each hamming 1-ball has size 1 + 7 = 23,
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and we are placing disjoint 1-balls about 24 points, thereby covering all 27

points in F 7.

4 Other Perfect 1-error Correcting codes

Let F be set with m elements. Suppose that we have a perfect 1-correcting
(n, k) code based on F . Then the following holds.

• The number of codewords is mk.

• The size of the Hamming 1-balls are (m− 1)n+ 1.

• The total number of elements in F n is mn.

Since our code partitions F n into 1-balls, we have

mk((m− 1)n+ 1) = mn. (3)

Rearranging this gives

n =
ma − 1

m− 1
; a = n− k. (4)

Golay discovered that one can make this work when F = Z/p, p prime,
and Cocke later showed how to extend the method to all finite fields. We’ll
describe the general case. It is the natural generalization of the Hamming
(7, 4) code. To avoid trivialities, we take a ≥ 3.

Let F be a finite field and let P = P a(F ) denote the projective space of
dimension a−1 over F . When a = 3 we get the projective plane. In general,
Equation 4 gives the number of elements of P . Recall that each point in P is
an equivalence class of points in F a. We choose one representative for each
point in P . We call these points the special points . We consider elements of
F n to be labellings of P by elements of F . We define f : F n → F a to be the
weighted sum of the special points, according to the labels. The summation
is done in F a. The code S is defined to be the kernel of f .

The same argument as for the (7, 4) code shows that S is a perfect 1-error
correcting code. For instance, if s′ ∈ F n−S then f(S) represents some point
[p] of P . We choose the label λ so that f(S) = λp, where p ∈ F a is the special
point representing [p]. We then let s be the result of subtracting off λ from
the label of [p]. Then s ∈ S and H(s, s′) = 1. We get the isomorphism to
F k by ignoring the labels of points which have only one nonzero coordinate.
A counting argument shows that φ is an isomorphism.
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5 Golay’s perfect 3-error correcting code

Probably the most famous of all codes is Golay’s (23, 12)-code. This is a
perfect 3-error correcting BL code. To see that such a beast is possible, note
that the Hamming 3-balls in F 23 have size

(

23
0

)

+
(

23
1

)

+
(

23
2

)

+
(

23
3

)

= 211 =
223

212
. (5)

Golay found this amazing identity first and then worked out the correspond-
ing code in an ad hoc way. Since then, this code has been studied extensively
and related to many things – e.g. the densest possible packing of balls in
24-dimensions. Looking carefully at Golay’s code is like staring into the sun.

In this section, I’ll give one construction of it, without a (conceptual)
proof that it works. We’ll revisit this code from a deeper perspective in later
sections. It is known that there is only one perfect 3-error correcting (23, 12)
code up to isomorphism, so all the many constructions give the same result.

Given any graph Γ, whose vertices are labelled by integers 1, ..., k, the
reverse incidence matrix MΓ is the k × k matrix which has a 1 in the ijth
entry if and only if either i = j or i and j label non-incident vertices. The
next page of these notes shows the pertinent example.

We let G be the 24 × 12 binary matrix having the form [I][M ] where I
is the 12× 12 identity matrix and M is the reverse incidence matrix for the
graph made from the edges of the icosahedron. See Figure 1 below. These
two matrices are just stuck side-by-side. We define S ⊂ F 24 to be the row
space of G. Clearly S is a 12-dimensional vector subspace of F 24. The code S
has a total of 212 elements. A brute force enumeration checks that all words
have weight congruent to 0 mod 4, and that the minimum weight is 8. Hence
S is 3-error correcting. Taking the first 12 coordinates gives an obvious map
S → F 12. Hence S is a 3-error correcting (24, 12) code.

To obtain the (23, 12) code, we simply delete the last coordinate of S.
The new code S ′ is a 12-dimensional subspace of F 23 and still has minimum
Hamming distance 7. If we place Hamming 3-balls about the points of S ′,
we cover exactly 223 points, by Equation 5. Hence, S ′ is a perfect 3-error
correcting (23, 12) code.

It is worth pointing out that one can go the other way around. Had we
started with the (23, 12) code, we could produce the (24, 12) code just by
adding a single coordinate so that all the words have even weight.

Here is the matrix MΓ.
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MΓ =

















































1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 1 1 0 0 0 1 1 1 1
0 0 1 0 1 1 1 0 0 1 1 1
0 1 0 1 0 1 1 1 0 0 1 1
0 1 1 0 1 0 1 1 1 0 0 1
0 0 1 1 0 1 0 1 1 1 0 1
1 0 1 1 1 0 1 0 1 1 0 0
1 0 0 1 1 1 0 1 0 1 1 0
1 1 0 0 1 1 1 0 1 0 1 0
1 1 1 0 0 1 1 1 0 1 0 0
1 1 1 1 0 0 0 1 1 0 1 0
1 1 1 1 1 1 0 0 0 0 0 1

















































(6)

Here is the isosahedron graph.

1211

2

3

4

5 6
7

8
9

10

1

Figure 1.
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6 The Hexacode

Our main goal is to understand the Golay (24, 12) code in a more conceptual
way. For these purposes, it is useful to define what is known as the hexacode.
The hexacode is a 3 dimensional subspace of F 6

4
, where F 4 is the field with

4 elements.
F 4 is the splitting field for the polynomial x3 − 1. The roots of this

polynomial are denoted 1, ω, and ω = ω2. It is natural to think of ω as a
3rd root of unity. The field F 4 is thus {0, 1, ω, ω}. It is worth pointing out
that 1+ω+ω = 0, just as what happens for the number field Q(ω). Indeed,
reduction mod 2 gives a beautiful surjective ring homomorphism from the
Eisenstein integers Z[ω] to F 4.

The hexacode consists of elements abcdef ∈ F 6

4
such that

a+ b = c+ d = e+ f = s,

a+ c+ e = a+ d+ f = b+ c+ f = b+ d+ e = ωs,

b+ d+ f = b+ c+ e = a+ c+ f = a+ d+ e = ωs (7)

for some s ∈ F 4.

f

a

b c
e

d

Figure 2.

There is a nice geometric interpretation of these rules. We think of F 6

4
as

a labelling of the edges of a regular tetrahedron T by elements of F 4. Given
any vertex v of T , we define the vertex sum of v to be the sum of the labels
of the edges incident to that vertex. Similarly, given any face of T , we define
the face sum to be the sum of the edges bounding the face. Finally, given
any axis of T , namely, a line that goes through the centers of two opposite
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edges, we define the axis sum to be the sum of the two edges corresponding
to the axis. The hexacode consists of labellings with the following property.
There exists an element s ∈ F 4 such that

• All axis sums are s.

• All face sums are ωs.

• All vertex sums are ωs.

Given a face f of T , we can create a word by labelling the 3 edges of T by
ω and the other 3 edges by ω. This gives us a word w(f). For instance, if f
is the back face in Figure 2, then a = c = e = ω and b = d = f = ω. In this
case s = 1. One can check easily that w(f) ∈ S for each face f = f1, f2, f3, f4.

Lemma 6.1 The code S is the linear span of W (fj) for j = 1, 2, 3, 4.

Proof: Let S ′ be the code which is the linear span of W (fj). We have
already seen that S ′ ⊂ S. The matrix







ω ω ω ω ω ω
ω ω ω ω ω ω
ω ω ω ω ω ω





 (8)

is obtained by writing down 3 of the words W (fj). One checks easily that
this matrix has rank 3 over F 4, meaning that any 3 rows are linearly inde-
pendent. (Just take determinants.) Hence dim(S ′) ≥ 3. On the other hand,
one checks easily that the rules in Equation 7 allow us to recover a word in
S if any 3 entries are supplied. Hence dim(S) ≤ 3. But dim(S ′) ≤ dim(S ′).
All this is possible only if dim(S) = dim(S ′) = 3 and S = S ′. ♠

Being a 3-dimensional vector space of F 4, the set S has 64 = 43 elements.
One checks easily from the rules in Equation 7 that all nontrivial words in S
have even weight at least 4. In particular, there is no word in S with exactly
one 0. (This would be a word of weight 5.) By construction, S is a 1-error
correcting code of type (6, 3).
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7 The Miracle Octad Generator

R.T. Curtis invented the Miracle Octad Generator as a way of efficiently
working with the Golay (24, 12)-code. The definition here is (I think) due
to J. H. Conway. In any case, the explanation is given in the book Sphere

packings by Conway and Sloane. In a later section, I’ll discuss some of
Curtis’s ideas on the MOG.

The MOG works as follows. Let M = M4,6(Z/2) denote the set of 4× 6
binary matrices. (We mean to have 4 rows and 6 columns.) We define a map
ψ :M → F 6

4
by the equation

ψ(M) = (0, 1, ω, ω) ·M. (9)

That is, we simply take the dot product of each column of M with the
vector (0, 1, ω, ω). Equation 10 gives an example. The (−) signs are just
placeholders.





















0 − 0 1 1 0 1 0
1 − 0 1 1 0 1 0
ω − 1 1 0 0 0 0
ω − 0 0 1 1 1 1

− − − − − − −
ω ω ω ω ω ω





















(10)

The element ψ(M) ∈ F 6

4
is called the score of M . We call M balanced if

the parity of the top row of M coincides with the parity of each column of
M . So, these 7 parity calculations must be the same. In our example, the
parity is odd in all cases, so our example is balanced.

The Golay (24, 12) code has an alternate description as the set S of bal-
anced elements whose scores are in the hexacode. Thus, our example above
belongs to S. The rest of this section is devoted to proving that S is a (24, 12)
code of minimum Hamming distance 8. In particular S is 3-error correcting.

S is certainly a binary code of length 24. From the rules defining S, it is
clear that S is a vector subspace of M4,6(Z/2) = F 24.

Lemma 7.1 dim(S) = 12.

Proof: We will show that ψ maps S surjectively onto the set of 26 hexacode
words, and that the kernel of ψ has 26 elements. Our example above shows
that ψ(S) contains one of the special words W (f) generating the hexacode.
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Just by permuting the columns appropriately, we see that ψ(S) contains each
of the words W (f). But then ψ(S) contains the span of these words. Hence
ψ(S) is exactly the hexacode.

Let K be the kernel of ψ. One can see by inspection that the following
elements











1 1 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1





















0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1





















1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1











(11)
all belong to K. Moreover, so do the complements of these elements. (The
complement of an element is obtained by switching each entry by its oppo-
site.) Finally, any matrix obtained by permuting the columns of the above
matrices belongs to K. All in all, we count that there are

6
∑

i=1

(

6
i

)

= 26

such matrices. Hence K has at least 26 entries.
Any column of any element of K must have one of the two forms shown in

Equation 11. The parity rules then force such a matrix to be a permutation
of one of the matrices shown in Equation 11, or the complement of such a
matrix. Hence K has exactly 26 elements. ♠

Lemma 7.2 The weight of any element of S is a multiple of 4.

Proof: The parity condition guarantees that every element of S has even
weight. We just have to show that no element of S has weight congruent to
2 mod 4. If some element M of S has weight congruent to 2 mod 4, then
each column ofM must have odd weight. If some column ofM has weight 3,
then at least 2 columns have weight 3, because 3+1+1+1+1+1 = 8. But
then we can replace M by M +M ′, where M ′ is some permutation of the
middle matrix in Equation 11, so as to reduce the total weight by 4. Hence,
it suffices to consider the case when M has total weight 2 or 6. No element
of the kernel of ψ as weight 2 or 6, so ψ(M) is a nontrivial hexacode word.

M cannot have total weight 2 because then ψ(M) would have weight less
than 4. Suppose that M has weight 6. If M has more than one 1 in the top
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row, then ψ(M) has weight at most 3, which is impossible. Hence M has
just one 1 in the top row. If some column of M has weight 3 then ψ(M)
again has weight less than 4. Hence all columns of M have weight 1. But
then ψ(M) has weight 5. This is impossible. ♠

The following lemma completes our proof, because it combines combines
with the previous lemma to show that the minimum Hamming distance be-
tween elements of S is 8, as claimed.

Lemma 7.3 No word of S has weight 4.

Proof: Suppose M is a word of weight 4. No element of the kernel of ψ has
weight 4. So, ψ(M) is a nontrivial hexacode word.

If the common parity of M is even, then at most 2 columns of M have
nonzero weight. But then ψ(M) has weight at most 2. This is a contradic-
tion. Hence the common parity of M is odd. But then the top row of M has
at least 1 and so ψ(M) has weight at most 3. This is a contradiction. ♠

Lemma 7.4 Aside from the words 0..., 0 and 1, ...,, all Golay codewords have

weight 8, 12, or 16.

Proof: One codeword is 0, ..., 0 and another one is 1...1. Ignoring these two
words, the minimum weight of a codeword is 8. The maximum weight is 16
because the Golay code is closed under complementation. That is s ∈ S if
and only if s + 1...1 ∈ S. So, all Golay codewords have weight either 8, 12,
or 16. ♠

Lemma 7.5 The Golay (24, 12) code has 759 codewords of weight 8 and 2576
codewords of weight 12.

Proof: This can be established by a direct enumeration. ♠
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8 The Steiner (759, 8, 5) design

It is worth mentioning an amazing property of the Golay (24, 12) code S. As
we mentioned, there are exactly 759 codewords of weight 8. These are called
octads . Say that a pentad is a length 24 vector of weight 5. There are 24
choose 5 pentads – many more than there are octads. Conveniently,

759 =

(

24
5

)

(

8
5

) (12)

This suggests the following result.

Lemma 8.1 Any length 24 vector of weight 5 is contained in a unique octad.

Proof: The mod 2 sum of two octads is again an element of S. In particular,
the sum of two octads is either trivial or has weight at least 8. From this we
see that two octads can have at most four 1’s in common. Hence, any pentad
is contained in at most 1 octad. On the other hand, each octad contains 8
choose 5 pentads, and (one can count that) there are 759 octads. Hence, by
Equation 12, every pentad arises as a subset of some octad. ♠

One can give a more constructive proof, in which one starts with a pentad
and uses the rules above to complete it uniquely to an octad. I’ll leave this to
you. There are even java applets on the web which do this for you. The set
of 759 octads of the Golay code are known as the (759, 8, 5) Steiner design.
This is one of the great objects of combinatorics.

9 The MOG and Projective Space

I mentioned above that the given description of the MOG is really due to
Conway. Here I’ll explain some of the ideas of R.T. Curtis, the inventor of
the MOG. It turns out that the MOG encodes one of the beautiful bijections
in combinatorics.

Let P = P 3(Z/2) be the projective space over Z/2. There are 35 lines in
P . To see this, note that a line is determined by a choice of 2 points. There
are 15 points in P , so we can choose 2 points in 15 choose 2 ways. Each line
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has 3 points on it, so there is a redundancy of 3 choose 2 in our description
of the lines. Hence the total number of lines is

35 =

(

15
2

)

(

3
2

) .

At the same time, there are

35 =
(

7
3

)

ways to pick 3 elements from a 7 element set. Say that a 3 element subset
of a 7 element set is a triad .

Obviously, there is a bijection between the set of triads and the set of lines
in P . What is less obvious is that there is a bijection which preserves some of
the combinatorial structure of the two sets. Say that two triads are incident if
they share exactly 1 member in common. For instance 1110000 and 1101000
are incident. The beautiful fact is that there is a bijection between the set
of triads and the set of lines such that two triads are incident if and only if
the corresponding lines intersect. Thus, the pattern of intersections of lines
in P is encoded by the structure of the triads. The MOG “implements” such
a bijection.

We think of a 7-element set as a 2× 4 binary matrix having four 1’s, one
of which is in the upper left corner. Here is one way to encode a triad with
such a matrix

abcdefg →











1 d
b e
c f
d g











(13)

Incident triads are mapped to matrices which have exactly two 1’s in com-
mon.

At the same time, we can represent a line in P as a 4 × 4 matrix with
exactly four 1’s, one of which is in the upper left corner. The remaining 3
entries encode the line. Not any matrix is allowed. To describe the allowable
matrices, we let Ω be the 4×4 matrix whose entries are certain binary strings,
namely

Ω =











0000 0100 1000 1100
0001 0101 1001 1101
0010 0110 1010 1110
0011 0111 1011 1111











(14)
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A matrix M is allowable if and only if
∑

ij

MijΩij = 0. (15)

We are not doing matrix multiplication here. Rather, we are think of both
M as vectors of length 16 and taking their dot product.

Ω is really a planar representation of the 16 points in the 4 dimensional
vector space V = (Z/2)4 and the nonzero entries ofM are selecting an affine
subspace of V that contains the origin. Thus, the allowable matrices are in
bijection with the lines in P . We can read off the coordinates of the line by
looking at the entries of Ω which pair with nonzero entries. For instance, the
matrix

M =











1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0











encodes the line containing the points

[0 : 1 : 0 : 1], [1 : 1 : 1 : 0], [1 : 0 : 1 : 1]

Our allowability condition just says that the sum of these vectors is 0.
Now, we define the bijection from the set of triads to the set of lines. Let

T be one of our 2× 4 matrices representing a triad. Then there is a unique
allowable matrix M such that the 6× 4 allowable matrix TM belongs to the
MOG – i.e. is a balanced matrix whose score is in the hexacode.

To see why the map is well defined, suppose we let M0 denote the matrix
having a 1 in the upper left corner and having all other entries 0. Then TM0

is a pentad. There is a unique way to add 3 more 1’s to TM0 to make an
octad, and it turns out that these 1’s must all be added to M0, and that the
resulting matrix,M , is allowable. A few examples will convince you that this
works.

Suppose T1 and T2 are incident. Consider the MOG elements T1M1 and
T2M2. These elements both have weight 8 and can have at most 4 elements in
common. On the other hand, their sum also has weight 8. Hence, they have
exactly 4 elements in common. This means that M1 and M2 have exactly 2
elements in common. But M1 and M2 automatically share the upper left 1.
Hence, the lines representing M1 and M2 intersect in exactly one point. A
similar analysis shows that if T1 and T2 are not incident, then M1 and M2

share only one element in common. Hence the corresponding lines do not
intersect.
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10 The E8 lattice

As preparation for the definition of the Leech lattice, we consider a simpler
sphere packing in 8 dimensions. The Hamming (7, 4) code can be used to
create a very dense packing of spheres in 8 dimensions. Let F = Z/2, and
let S ′ ⊂ F 7 denote the Hamming (7, 4)-code. We form a code S ⊂ F 8

by attaching a single digit so that the weight of every word is even. The
minimum weight of S is 4. Note that 1111111 belongs to S ′, so 11111111
belongs to S. Every word in S has weight 4 except 00000000 and 11111111.

We define Λ8 ⊂ R8 to be the set of vectors V such that V mod 2 belongs
to S. That is, coordinatewise V is congruent mod 2 to some element of S.
Since S is a linear subspace of F 8, the set Λ8 is a subgroup of R8.

Lemma 10.1 The minimum distance between points in Λ8 is 2.

Proof: It suffices to show that the shortest nontrivial vector in Λ8 has length
2. The vector (2, 0, 0, 0, 0, 0, 0, 0) certainly belongs to Λ and has length 2. Any
vector congruent to (0, 0, 0, 0, 0, 0, 0, 0) mod 2 has at least one 2 and hence
has length at least 2. Any vector congruent to a nontrivial element of S has
at least 4 odd coordinates. Hence, again, such a vector has length at least
2 =

√
1 + 1 + 1 + 1. ♠

The Λ8 sphere packing is obtained by placing balls of radius 1 about each
of the points of Λ8. Thanks to the previous result, these balls are all disjoint
from each other.

Lemma 10.2 Each ball in the Λ8 sphere packing is tangent to 240 other

balls.

Proof: It suffices to prove that there are exactly 240 vectors in Λ8 which
have length 2. The vector (±2, 0, 0, 0, 0, 0, 0) and its permutations provides
16 such vectors. If we add signs arbitrarily to each of the 14 weight 4 words
of S we produce another 24× 16 = 224 such vectors. Adding together every-
thing, we get 240 vectors of length 2. It is easy to see that any other vector
in Λ8 has longer length. ♠

What worked well here is that the vectors

(2, 0, 0, 0, 0, 0, 0, 0)
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and
(±1, ...,±1)

all have the same length. It is tempting just to define Λ8 to be the lattice
generated by these vectors. However, it then turns out that some of these
vectors are too close together. The beauty of the (8, 4) code is that it picks
out a nice subset of these vectors, guaranteeing that no two come within 2
of each other.

11 The Leech Lattice

Just as the (8, 4) extended Hamming code is used to produce the E8 lattice
packing, the (24, 12) Golay code is used to construct the Leech lattice. The
Leech lattice was (re)discovered by Leech in 1964, but according to wikipedia
it was known to Witt in 1940 but not published. (I don’t know the history
of this.)

What works well in 24 dimensions is that the vectors

(2, 2, 0, ..., 0); (2, 2, 2, 2, 2, 2, 2, 2, 0, ..., 0); (3, 1, ...., 1)

and their permutations and negations all have the same length. The idea
behind the Leech lattice is to use the Golay (24, 12) code as a guide for
selecting which of these vectors should generate a lattice. This is analogous
to what we did for the E8 lattice.

Let S denote the (24, 12) Golay code. Given any s ∈ S and any integer
m, let L(s,m) ⊂ R24 denote those vectors v = (v1, ..., v24) such that

• v1 + ...+ v24 = 4m.

• vk −m ≡ 2sk mod 4.

Then
Λ24 =

⋃

s∈S

⋃

m∈Z

L(s,m). (16)

Lemma 11.1 Λ24 is a lattice.

Proof: Suppose that v1, v2 ∈ Λ24. Then there are elements s1, s2 ∈ S and
integers m1,m2 ∈ Z such that vj ∈ L(sj,mj). Evidently, the conditions

16



imply that v1 + v2 ∈ L(s1 + s2,m1 +m2). Here s1 + s2 is taken mod 2. This
works because S is a linear code. Similarly −v1 ∈ L(−s1,−m1) = L(s1,m1).
♠

Lemma 11.2 Every two points in Λ24 are at least 4
√
2 units apart.

Proof: It suffices to prove that the shortest nontrivial vectors in Λ24 have
length 4

√
2. Let v ∈ L(s,m). There are 4 cases to consider.

• Suppose s is trivial and m is even. In this case, each coordinate of v
is a multiple of 4, and least two of them are nonzero. Hence ‖v‖ ≥√
16 + 16 = 4

√
2.

• Suppose s is trivial and m is odd. In this case, all coordinates of v are
even and nonzero. Hence ‖v‖ ≥

√
96 > 4

√
2.

• Suppose that s is nontrivial and m is even. In this case, all the nonzero
coordinates of v are even and at least 8 of them are nontrivial. Hence
‖v‖ ≥

√
4 + ...+ 4 = 4

√
2.

• Suppose that s is nontrivial and m is odd. Then all coordinates of v
are odd. The vector (1, ..., 1) does not belong to Λ24 because it would
correspond to m = 6. Hence, at least one coordinate is 3, leading to
‖v‖ ≥

√
23 + 9 = 4

√
2.

This takes care of all the cases. ♠

The Leech packing is obtained by placing balls of radius
√
2 =

√
8/2

about each point of Λ24.

Lemma 11.3 Each ball in the Leech packing is tangent to 196560 other balls.

Proof: It suffices to prove that there are 196560 vectors of length 2
√
2 in

the Leech lattice. We’ll divide the count into 5 cases. The first three cases
are the same as in the previous result, and the last two cases come from
subdividing the fourth case above. Let v ∈ L(m, s) where s is trivial.

17



• Suppose m is even and s is trivial. The vectors (±2,±2, 0, ..., 0) and
all their permutations are the only possibilities. This leads to

2× 23× 24 = 1104

vectors.

• Suppose m is odd and s is trivial. As we saw above, this gives no
vectors of length 4

√
2.

• Suppose that s is nontrivial and m is even. In this case v must have
8 nontrivial entries, all ±2, and there must be an even number of +
signs. Since there are 759 octads, we get

759×
∑

k=04

(

8
2k

)

= 97152

possibilities. Here we are choosing the locations of the (−) signs.

• Suppose that s is nontrivial and m is odd and v has a 3 in one of
its coordinates. In this case m ≡ 3 mod 4 and v must have be a
permutation of the vector (3,±1, ...,±1), where all the entries 3 and
−1 occur in the same spots as an element of S. When s has weight k,
this leads to k × N(k) vectors, where N(k) is the number of words of
weight k in the Golay code. The possibilities here are k = 24, 16, 12, 8.
Hence, there are

24 + 759× 16 + 2576× 12 + 759× 8 = 49152

possibilities.

• Suppose that s is nontrivial and m is odd and v has a −3 in one of
its coordinates. In this case, m ≡ 1 mod 4 and v must have be a
permutation of the vector (−3,±1, ...,±1), where all the −1 entries
occur in the same spots as an element of S, and the remaining entries
do not. When s has weight k there are (24 − k) × N(k) possibilities.
The possibilities here are k = 0, 8, 12, 16. Since N(k) = N(24− k). we
get the same sum as in the previous case, namely

49152

possibilities.
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Adding everything up, we get 196560 vectors of length 4
√
2. ♠

The Leech lattice has been shown to be the densist possible lattice pack-
ing. Moreover, the configuration of 196560 balls has been shown to be unique:
Up to rotations, there is no other way to place 196560 balls around another
one so that they are all tangent to it.
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