Constructing the 17-gon:
In these notes, I'll give a proof that the 17-gon is constructible. I'll also take
the opportunity to correct something that I didn’t get right in the lecture.
Let F p denote the field of numbers o € R such that there is a finite
“tower” of fields
Q=F,CF C..CF,

with a € F), and [Fy, : Fj41] = 2 for all k. What I said incorrectly in class is
that F,, = Q[a], but this need not be the case.

Lemma 0.1 F R is a field.

Proof: Suppose o, € Fp. Then there are towers Fy C ... C F, and
Fj C ... C F} associated to o and 3 respectively. Consider the tower

FoC...CF,=(F,,F)C..C(F,,F)

Here (F,,, F}) is the field generated by F}, and F}. Note that a + 8 and af3
and «/f all belong to the last field. We just have to check that the degree
of each field over the previous one is at most 2. We have F}, = F}(y/a) for
some a € Fj. But then

Fy1 € (Fa, Fi(Va)).
Since
Fy C (F, Fr(Va))
as well, we have

<Fm, Fl;+1> - <F7m FIQ(\/E» - <Fm7 Flg>(\/a>

But this gives us what we want.

The field F ¢ is defined in the same way, except that it involves a € C,
the complex field. In class we showed that

Fo=TFRli). &

So, if we want to show that x € F' g it suffices to find z € F' (o such that z
is the real part of z.



Showing that the regular 17-gon is constructible is the same as showing
that cos(27/17) € F . To prove this, it suffices to prove that

w = exp(27mi/17) € F .

Define .
wr = w> . (2)

For instance ws = w? and ws = w?" = w'°.

Given a positive integer m and k € {0,...,m — 1} define

U = Y wj. (3)

j=k (m)

The sum is over an irredundant set of j congruent to K mod m. For instance
Qo = W + wa + ... + Wi =w! +w9+w13+w15+w16+w8+w4+w2.
Define the following fields.

e [H=0Q.

o [} = Fy(agg, ag1).

o Fy = Fi(au, aus).

o Iy = Fi(ouo, ur, uz, auz) = Foy(aup, au).
o [y = Fy(agg, (sq)-

o Fy = F3(w,w'®).

Use the notation A — B to mean that A C B and [A : B] < 2. The following
chain proves that every element of F} is constructible:

Fy—> F, — 5 — Fy, — F3 — Fy. (4)
The rest of these notes is devoted to establish this chain, one link at a time.

Lemma 0.2 Fy — F7.

Proof: We have agg + ag; = —1 and a calculation shows that aggae; = —4.
Therefore agy and ag; are roots of a degree 2 polynomial in Fy[z]. &



Lemma 0.3 Fl — FQl.

Proof: We have ay; + au3 = ais; and a calculation shows that ay;aus = —1.
Therefore ay; and ayg are roots of a degree 2 polynomial in Fi[z]. &

Lemma 0.4 F5 — F.

Proof: Note that Fy = Fy1[ayg, aua]. We have ayg + ayo = ang, and a calcu-
lation shows that aygaye = —1. Therefore ayg and ays are roots of a degree 2
polynomial in Fi[z]. But then, a forteriori, ay and ayy are roots of a degree
2 polynomial in. Fy[x]. @

Lemma 0.5 Fy, — F3.

Proof: We have agg+ ags = ayg, and a calculation shows that aggagy = .
Therefore agy and agy are roots of a degree 2 polynomial in Fy[z]. &

Lemma 0.6 F3 — F}.

Proof: Note that w = wy and w'® = ws. We have w + w'® = agy and
ww'® = 1. But then w and w'® are roots of the degree 2 polynomial i Fs[z].

)

That’s the end of the proof.



