
The purpose of these notes is to prove a special case of the Cayley-
Bacharach Theorem and then to prove Pascal’s Theorem as an application.
The main result we prove, the Grid Theorem, will be useful when we analyze
the group structure of an elliptic curve.

1 A Preliminary Result about Conics

Let F be a field. Say that 4 points in P 2(F ) are in general position if no 3
of those points are collinear. Recall that a conic in P 2(F ) is the solution to
a homogeneous polynomial of degree 2.

Lemma 1.1 Let A1, A2, A3, A4 be 4 general position points and let B be some

5th point. There exists a conic that contains Aj for all j but not B.

Proof: Let L1 be the line containing A1 and A2 and let L2 be the line
containing A3 and A4. Suppose first that B lies on neither L1 nor L2. There
is a homogeneous degree 1 polynomial λj such that Lj is the projective curve
corresponding to λj. That is, Lj = Vλj

. Let λ = λ1λ2. This is a homogeneous
degree 2 polynomial that vanishes exactly on L1 ∪ L2, and hence not on B.

Suppose that B ∈ L1. This time we let L′

1
be the line containing A1 and

A3 and L′

2
be the line containing A2 and A3. Suppose B ∈ L′

1
. Then L′

1

contains both A2 and B. But L1 contains both A2 and B. Hence L1 = L′

1
.

Hence A1, A2, A3 are collinear. This contradiction shows that B 6∈ L′

1
. A

similar argument shows that B 6∈ L′

2
. Now we can repeat the original argu-

ment, using L′

1
and L′

2
in place of L1 and L2. ♠

2 The Grid Theorem

The results in this section work for any field.

Theorem 2.1 Suppose that a homogeneous curve of degree at most 3 con-

tains 8 points of a grid. Then it also contains the 9th point.

Here is an equivalent formulation. Say that a vector grid is a collection
of 9 vectors in F

3 representing the points of a grid in P 2(F ).
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Theorem 2.2 A homogeneous polynomial of degree at most 3 that vanishes

on 8 vectors of a vector grid also vanishes on the 9th vector.

Let V denote the set of homogeneous curves of degree 3. As a vector space
V is isomorphic to F

10. To see this, note that an element of V is specified
by choosing constants a1, ..., a10 ∈ F , which give rise to the polynomial
a1X

3 + a3Y
3 + ... + a10XY Z. Given any nonzero vector v ∈ F

3, let Sv ⊂ V

denote those homogeneous polynomials that vanish on v. Note that Sv is a
linear subspace of V . Below, I’ll prove the following result.

Lemma 2.3 Let v1, ..., v8 be 8 vectors of the grid. Let Sj = Svj . Then the

intersection S1 ∩ ... ∩ S8 is 2 dimensional.

Proof: To each subspace Sj we have a vector Vj such that Sj is the solution
of the equation (a1, ..., a10) ·Vj = 0. Lemma 2.3 is equivalent to the statement
that the vectors V1, ..., V8 are linearly independent. We will suppose this is
not the case, and derive a contradiction.

If our vectors V1, ..., V8 are not independent, then (after relabelling) we
can write V8 as a linear combination of V1, ..., V7. This is the same thing as
saying that S1 ∩ ... ∩ S7 ⊂ S8. In other words, any homogeneous polynomial
of degree at most 3 that vanishes on v1, ..., v7 also vanishes on v8. We will
get a contradiction by producing a homogeneous polynomial of degree 3 that
vanishes on v1, ..., v7 but not on v8.

Here is the key observation. A case by case analysis shows that we can
divide up the points [v1], ..., [v7] so that (after relabelling if necessary)

• [v1], [v2], [v3] all lie on the line L. Here L is one of the 6 special lines
defining the grid. Note that [v8] does not lie on L.

• [v4], [v5], [v6], [v7] are in general position: No 3 are collinear.

Since F is a nice field, we can then find a conic section M that contains
these 4 points but does not contain the point [v8].

The line L is the projective curve associated to a homogeneous polyno-
mial λ of degree 1. The ellipse M is the projective curve associated to a
homogeneous polynomial of degree 2. The homogeneous cubic λµ vanishes
on [v1], ..., [v7] but not on [v8]. ♠
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Each line Ai is the projective curve corresponding to a degree 1 homo-
geneous polynomial αi. Likewise, each line Bi is the projective curve corre-
sponding to a degree 1 homogeneous polynomial βi. Let α = α1α2α3 and
β = β1β2β3. Note that α and β are both homogeneous cubics which van-
ish on all 9 grid vectors. Note also that α and β are linearly independent
(as elements of V ) because α vanishes on A1 ∪ A2 ∪ A3 and β vanishes on
B1 ∪ B2 ∪ B3.

Here is the punchline: The set of polynomials of the form

Σ = {aα + bβ; a, b ∈ F } (1)

is a 2 dimensional set that vanishes on v1, ..., v8. Hence S1∩ ...∩S8 = Σ. But,
every element of Σ vanishes on the 9th vector as well. Hence, every element
of S1 ∩ ... ∩ S8 also vanishes on the 9th vector.

3 Pascal’s Theorem
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Figure 1: Pascal’s Theorem

Pascal’s Theorem refers to the configuration in Figure 1. The 6 points
P1, ..., P6 lie on a conicM , and the theorem is that the pointsX1, X2, X3 lie on

3



a line. Let L be the line containing X1 and X2. We want to see that X3 ∈ L.
The line L is the projective curve associated to a homogeneous degree 1
polynomial λ. Likewise, the conic M is the projective curve associated to a
homogeneous degree 2 polynomial µ. The polynomial P = λµ vanishes on
L ∪M . Hence P vanishes on P1, ..., P6, X1, X2.

The points P1, ..., P6, X1, X2, X3 make a grid. Hence, by the Grid Theo-
rem, P vanishes on X3. But P vanishes exactly on L∪M . Hence X3 ∈ L∪M .
But a line intersects a conic at most twice, by Bezout’s Theorem. Hence
X3 ∈ L. This completes the proof.
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