
The purpose of these notes is to explain the complex analysis you need
to know for the Weierstrass uniformization of elliptic curves over C.

1 A Resume of Results

Let U be an open set in C, the complex plane. Let f : U → C be a
continuous map. We say that f has a complex derivative at z ∈ U if the
quotient

f ′(z) = lim
h→0

f(z + h)− f(z)

h

exists and is finite. Note that h is allowed to be a complex number. f is said
to be complex analytic (or CA for short) in U if f ′(z) exists for all z ∈ U and
the function z → f ′(z) varies continuously in U . Here are the basic results
we’re going to prove.

1. Bounded Implies Constant: Suppose f : C → C is is CA and
bounded, then f is constant.

2. Removable Singularities: Let U be an open set and let b ∈ U be a
point. Suppose that f : U − {b} → C is CA and f is bounded in a
neighborhood of b. Then f extends to all of U and is CA on U .

3. Non-Vanishing: Suppose that f is CA in a neighborhood of a ∈ C,
and not identically 0. Then there is somem such that f(z+a) = zmg(z)
where g is CA in a neighborhood of 0 and g(0) 6= 0.

4. Local Homeomorphism: Let f : U → C be a CA map. If f ′(a) 6= 0
then there is some open disk ∆ about a such that f : ∆ → f(∆) is a
homeomorphism.

2 Cauchy–Riemann Equations

We can think of a CA function f as a map from R
2 to R

2 by writing

f(x+ iy) = u(x+ iy) + iv(x+ iy).

To say that the complex derivative of f exists is the same as saying that f is
differentiable and df |p (the differential at p) is the composition of a rotation
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and a dilation. That is
[

ux uy

vx vy

]

=
[

r cos(θ) r sin(θ)
−r sin(θ) r cos(θ)

]

, r ∈ R, θ ∈ [0, 2π).

Equating terms, we get

ux = vy; uy = −vx. (1)

These are called the Cauchy–Riemann equations .

3 Complex Line Integrals

Suppose γ is a smooth oriented arc in C and f is a complex valued function
defined in a neighborhood of γ. We define a complex line integral along γ as
follows. Letting g : [a, b] → γ be a smooth parametrization of γ that respects
the orientation of γ, we define

∫

γ
f dz =

∫ b

a
f(g(t))

dg

dt
dt. (2)

From the change of variables formula for integration, the answer only depends
on the orientation and not the parametrization. Were we to switch the
orientation, the value of the line integral would switch signs.

If we have a finite union γ = {γj} of smooth oriented arcs, we define
∫

γ
f dz =

∑

j

∫

γj

f.

Theorem 3.1 (Cauchy) Let γ be a loop made from finitely many smooth
arcs. Suppose that f is CA in a neighborhood of the domain bounded by γ.
Then

∫

γ f dz = 0.

Proof: Let f = u + iv. Letting dx and dy be the usual line elements, we
can write

∫

∂D
f dz =

∫

∂D
(u+ iv)(dx+ idy) =

∫

∂D
(udx− vdy) + i

∫

∂D
(vdx+ udy).

By Green’s theorem, the integral on the right-hand side equals
∫

D
(uy + vx)dxdy + i

∫

D
(ux − vy)dxdy.

Both pieces vanish, due to the Cauchy–Riemann equations. ♠
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4 The Cauchy Integral Formula

Here is the main technical tool we will use.

Theorem 4.1 (Cauchy Integral Formula) Let γ be loop oriented coun-
terclockwise around the domain D that it bounds. Let a ∈ D − γ. Suppose
that f is CA in a neighborhood U of D. Then

f(a) =
1

2πi

∫

γ

f(z)

z − a
dz. (3)

Proof: We translate the whole picture and consider without loss of generality
the case when a = 0. The function g(z) = f(z)/z is CA in U − {0}. Let β
be the circular polygon shown in Figure 1.

0

Figure 1.

We have ∫

β
g dz = 0 (4)

by Cauchy’s Theorem. We allow the two oppositely oriented vertical seg-
ments in β to approach each other. In the limit, the contributions from the
two vertical segments cancel out, and equation (4) yields

∫

γ
g(z)dz =

∫

λ
g(z)dz. (5)

Here λ is a counterclockwise circle centered at 0. But
∫

λ
g(z)dz ≈ f(0)

∫

λ

dz

z
= 2πif(0). (6)

The approximation becomes exact as the radius of λ shrinks to 0. ♠
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5 Bounded Functions

Suppose that f : C → C is a CA bounded function. We will show that
f ′(a) = 0 for all a ∈ C.

Using the Cauchy Integral Formula, we compute

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

1

2πih

(
∫

γ

f(z)

z − a− h
dz −

∫

γ

f(z)

z − a
dz

)

=

lim
h→0

1

2πi

∫

γ

f(z)

(z − a)(z − a− h)
dz =

1

2πi

∫

γ

f(z)

(z − a)2
dz. (7)

Equation 7 tells us that

f ′(a) =
1

2πi

∫

γ

f(z)

(z − a)2
dz. (8)

Let N be the radius of γ. The length of γ is 2πN . The numerator in Equation
8 is at most C. The denominator is at least |N − a|2. Hence,

|f ′(a)| ≤
CN

|N − a|2
. (9)

Letting N tend to ∞, we see that |f ′(a)| = 0. But a is arbitrary. Hence
f ′(a) = 0 for all a ∈ C.

6 Removable Singularities

Here we will prove the following result:

Theorem 6.1 Let U be an open set that contains a point b. Suppose that f
is CA and bounded on U − {b}. Then f(b) can be (uniquely) defined so that
f is CA in U .

Proof: Let γ and β and λ be the loops used to prove the Cauchy Integral
Formula. So, λ is a small loop surrounding b and γ is a big loop surrounding
b. Let |λ| denote the radius of λ. Let D be the open domain bounded by γ.
We define g : D → C by the integral

g(a) =
1

2πi

∫

γ

f(z)

z − a
dz.
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The same derivation used for Equation 7 shows that g is CA on all of D. We
will show that f(a) = g(a) for all a ∈ D − {b}. Once we know this, we set
f(b) = g(b) and we are done.

Now suppose that a 6= b. Since f(z) is bounded in a neighborhood of b
we have

lim
|λ|→0

∫

λ

f(z)

z − a
dz = 0.

But, by the Cauchy Integral Formula,

f(a) =
1

2πi

∫

β

f(z)

z − a
dz

no matter which choice of λ we make. Therefore

f(a) = lim
|λ|→0

1

2πi

∫

β

f(z)

z − a
dz =

1

2πi

∫

γ

f(z)

z − a
dz = g(a).

So f(a) = g(a) for all a ∈ D − {b}. ♠

7 The Maximum Principle

Let f be a complex analytic function in a connected open set U . Here we
will show that f cannot take on its maximum value at a point in U unless
f is constant. We will assume that f takes on a maximum at some point
a ∈ U , and we will derive a contradiction. If f has an interior maximum,
we can compose f with translations and dilations and arrange the following
properties.

• |f(0)| = 1.

• U contains the unit disk.

• |F (z)| ≤ 1 for all |z| = 1.

• |F (z)| < 1 for some z such that |z| = 1.

Let γ be the unit circle. By the Cauchy Integral Formula we have

1 = |f(0)| =
1

2π

∣

∣

∣

∣

∫

γ

f(z)

z

∣

∣

∣

∣

≤∗ 1

2π

∫

γ
|f(z)|dz < 1.

This is a contradiction. The starred inequality is essentially the triangle
inequality.
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8 Non-Vanishing

Lemma 8.1 Suppose, for all n, that the function f(z)/zn is well defined at 0
and complex analytic in a neighborhood of the unit disk. Then f is identically
0 on the unit disk.

Proof: Let gn(z) = f(z)/zn. Let M be the maximum of f on the unit
disk. Note that |gn(z)| = |f(z)| for |z| = 1. But the maximum principle,
|gn(z)| ≤ M for all z in the unit disk. Hence |f(z)| ≤ M |z|n. If |z| < 1, then

lim
n→∞

M |z|n = 0.

Hence |f(z)| = 0 if |z| < 1. By continuity, |f(z)| = 0 if |z| ≤ 1. ♠

Now we prove Item 3. We want to see that f(a + z) = zng(a) for some
CA function g such that g(a) 6= 0. We can translate the picture so that
a = 0. Then we can dilate the picture so that f is defined and CA in a
neighborhood of the closed unit disk ∆. If f(0) 6= 0, then we are done. If
f(0) = 0, then the existence of f ′(0) guarantees that the function f(z)/z is
bounded on ∆ − {0}. But then f(z)/z is CA in ∆. Hence f(z) = zg1(z),
where g1(z) is CA in ∆.

If g1(a) 6= 0 we are done. Otherwise, by the same argument, we can write
f(z) = z2g2(z). And so on. The only way Item 3 could fail is that there is a
sequence of CA functions {gn} such that f(z) = zngn(z) for all n. But then
f satisfies the hypotheses of Lemma 8.1. Hence f vanishes identically in the
unit disk. This is a contradiction.

9 Local Homeomorphism

Now we prove Item 4. Let f : U → C be a CA function. We call f normalized
if f is defined at 0 and f(0) = 0 and f ′(0) = 1.

Lemma 9.1 When f is normalized, we have a small disk ∆ centered at 0
and an estimate

∣

∣

∣

∣

(f(a)− f(b))− (a− b)
∣

∣

∣

∣

≤
|a− b|

10
, (10)

which holds for all a, b ∈ ∆.
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Proof: f ′ exists and is continuous. Hence, there is some small neighborhood
∆ about 0 with the property that

|f ′(z)− 1| < 10−100 (11)

for all z ∈ ∆. If γ is any curve in ∆, then the velocity of γ at z and the
velocity of f(γ) at f(z) are nearly the same, by Equation 11. To get our
result, we compare the straight unit speed line segment γ connecting a to
b with the nearly straight, nearly unit speed, curve f(γ) connecting f(a) to
f(b). ♠

In what follows, we always take ∆ to be as in Lemma 9.1 when we are
talking about normalized functions.

Lemma 9.2 Suppose f is normalized. Then f is one to one on ∆ and f−1

is continuous on f(∆).

Proof: The fact that f is one to one follows immediately from Equation 10.
Equation 10 also gives us the bound |f(a)− f(b)| > |a− b|/2 for all a, b ∈ ∆.
But then we have f−1(a)− f−1(b)| < 2|a− b| for all a, b ∈ f(∆). This bound
obviously does the job. ♠

The next result has many different kinds of proofs, but none of the proofs
is really easy. We’ll give a geometrical proof. As you read this proof, you
should think about a bad game of golf: The player hits the ball towards the
hole but misses slightly. The next put comes closer, etc. In the limit, the
ball goes in the hole.

Lemma 9.3 Suppose f is normalized Then f(∆) contains a neighborhood
of 0.

Proof: Let r be the radius of ∆. Suppose α ∈ C satisfies |α| < r/10. Let
a0 = α. We have

|a0| < r/10; |α− f(a0)| < r/100.

The second bound comes from Equation 10. In general, suppose that

|an| < r/10 + r/100 + ...+ r/10n < r; |f(an)− α| < r/10n+1,
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we define
an+1 = an + α− f(an).

Note that
|an+1| < r/10 + r/100 + ...+ r/10n+1 < r.

Hence an, an+1 ∈ ∆. Equation 10 then gives

|f(an+1)− α| = |(f(an+1)− f(an))− (an+1 − an)| ≤

|an+1 − an|

10
=

|f(an)− α|

10
< r/10n+2.

So, we can define a1, a2, ... inductively. By construction |α − f(an)| → 0 as
n → ∞. By continuity f(a) = α where a = lim an. ♠

Lemma 9.4 Suppose that f : U → C is CA and f ′(a) 6= 0 for some a ∈ U .
Then

• f is one to one in a neighborhood ∆ of a.

• f(∆) contains an open neighborhood of f(a).

• f−1 : f(∆) → ∆ is continuous.

Proof: We can scale f so that a = 0 and f is normalized. This scaling
does not change the conclusions of the lemma. This result now follows from
everything we have proved about normalized functions. ♠

We are almost to the point of proving the first part of Item 4. Here is
the last step.

Lemma 9.5 Suppose that f : U → C is CA and f ′(a) 6= 0 for some a ∈ U .
Then, for all sufficiently small open sets V containing a, the set f(V ) is
open.

Proof: V just has to be small enough so that f ′(b) 6= 0 for all b ∈ V . But
then the previous result shows that f(V ) contains an open set that contains
f(b), for all b ∈ V . This proves that f(V ) is open. ♠

8


