The Elliptic Curve Group Law

Preliminaries: A general elliptic curve is a nonsingular projective curve
which is the solution set to a degree 3 cubic polynomial. A Weierstrass
elliptic curve is the solution set to a degree 3 polynomial of the form

Y27 — (X?*+ AXZ* + BZ%).

Here A, B are constants from the field of definition. The nonsingularity
condition comes down to the statement that the polynomial 23 + ax + b does
not have multiple roots. It turns out that this is equivalent to the condition
that 40° + 27¢% # 0.

We will focus on Weierstrass elliptic curves but the preliminary lemmas
work in the general case. Let E be a general elliptic curve and let L be a
line. If you are keen to see the main definition, you might want to just read
the statements of the lemmas here on the first pass.

Lemma 0.1 Let L be a line in the projective lane. Then L N E consists of
at most 3 points.

Proof: Let P be be the homogeneous degree 3 polynomial defining E. With-
out loss of generality, we can move the picture by a projective transformation
so that L is the line defined by Z = 0, and so that [1:0:0] ¢ LN E. Plug-
ging this in to P, we see that the points of intersection are all of the form
[X :1:0]. But P(X,1,0) = p(z) is just an ordinary cubic polynomial. We
have already seen that such a cubic can have at most 3 roots. #

Definition: Let E be an elliptic curve and let L be a line. We define the
multiplicity of an intersection point v € LNE as follows: We move the picture
by a projective transformation so that L is the line Z =0 and v = [0: 1: 0].
We then look at the multiplicity of 0 as a root of p(z) = P(X, 1,0).

Lemma 0.2 A point v € LN E has multiplicity greater than 1 if and only if
L is tangent to E at v. In other words, the VP (v) is the defining function
for L.

Proof: Let P be the defining function for L. We write

L = Az® + By’ + C2* + D2’y + Exy? + Fa’z + Gu2? + Hy? 2 + Ty2* + Jayz.
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We move by a projective transformation so that L is the line Z = 0. Since
P(0,1,0) = 0 we have B = 0. We compute

VP(0,1,0) = (F,3B,H) = (F,0,H).
At the same time, we have
p(x) = Az + D2* + Ex.

Suppose that P has a double root at 0. Then £ = 0. But then VP(0,1,0) =
(0,0, H). Since FE is nonsingular, this means that H # 0. Hence VP is the
defining function for L. That is, L is the tangent line to E at v. Conversely,
if L is tangent to E at [0: 1 : 0] then VP(0,1,0) is proportional to (0,0,1).
This means that £ = 0. Hence p has a double root at 0. #

Lemma 0.3 Let L be a line in the projective plane. If L N E consists of
exactly 2 points then L is tangent to E at one of the points of intersection.

Proof: Let F be the underlying field. We normalize as in the previous
lemma. The points in L N E are the points [X : 1 : 0] where p(X) = 0.
The hypotheses say that p(X) € F[X] has exactly 2 distinct roots. But then
P(X) has two linear factors, and so the third factor must also be linear. This
means that P(X) = (X —r)*(X —ry). But then E and L are tangent at
[71 : 1 : 0] by the previous result. #

Definition of the Group Law: We'll first consider the case of Weierstrass
elliptic curves. Let L be some line. We make the following rules.

1. The identity element is 0 =[0:1: 0].
2. If A, B,C are 3 distinct points of L N E then A+ B+ C = 0.

3. If L N E consists of exactly 2 points A and B, and L is tangent to E
at A, then A+ A+ B=0.

4. If LN FE is just a single point A and L is tangent to E at A, then we
have A+ A+ A =0.

Figure 1 illustrates some of these rules and their consequences.
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-C=A+B

A+B+C=0

-9
Figure 1: The Group Law on a Weierstrass Elliptic Curve

Here are some comments on this law:

Note that the tangent line to E at e is the line at infinity, and this
line intersects E only at e. In fact e is a triple root of the polynomial
corresponding to this intersection. Thus, the Rule 4 above gives us the
fact that 0+ 040 = 0.

By symmetry and Rule 1, the points C' and —C are images of each
other with respect to reflection in the x-axis.

If we work over R or C, then Rule 1 applies to almost every line that
intersects E in more than one point, and the remaining rules are just
limiting cases. The main idea is that if two points on E are very close
together then the line through them approximates the tangent line to
E at nearby points.

The rules imply that A + B is computed as follows: Take the line AB
and let C' be the third point where this line intersects E. Then get
—(C = A+ B by reflecting C' in the z-axis.



Verifying the Axioms: Now let’s check that E is a group with respect to
the law given above. The most interesting property is associativity. We’'ll
get to that last.

Definedness: Suppose that A and B are arbitrary points in E. If A # B
then there is a unique line L = AB. By the preliminary results, LN E either
consists of 3 distinct points A, B, C, or else L N E consists of 2 points and L
is tangent to E at (say) A. In the first case the rules tell us to define A+ B
as the reflection of the third point C in the z-axis. In the second case, the
rules tell us that A 4+ B is the reflection of A in the z-axis. This makes sense
even if the point in question is 0; the reflection of 0 in the x-axis is defined
to be 0. In short, the group law is defined for every pair of distinct points
A, B.

In case A = B, the fact that our elliptic curve is nonsingular tells us that
there is a well-defined tangent line L at A. Either L N E consists of two
distinct points A, C or else L N E consists of the single point A. We now
proceed just as in the case of distinct points. So, the group law is defined
even when A = B.

Abelian Property: The rules tell us that A + B = B + A for any two
points A, B € E. So, if FE is a group, it is an Abelian group.

Existence of Identity: As the notation suggests, 0 is supposed to be the
identity element. We’ll work in the ordinary plane, as shown in Figure 1.
Given any other point A € E, the line L = 0A is a vertical line, because
0 =1[0:1:0]. But then, by symmetry the third point of L N E is C, when
we reflect C' in the x-axis we get back to the point A. Hence 0 + A = A.
Since the law is abelian we also have A 4+ 0 = A.

Existence of Inverses: 0 is its own inverse. Any other point C' is such
that the reflection of C' in the x-axis is the inverse. So, for any A € E there
is some (—A) € C such that A+ (—A) = 0.

The Associative Law: Continuous Case: First [ will give a proof
when the defining field is C'. We are trying to establish the relation that
(A+B)+C=A+ (B+C) for all A, B,C. When we are working over C
it suffices to prove this relation for a dense set of points. For a dense set of
choices of A, B, C', the 8 points in Figure 2 are all distinct.
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Figure 2: Applying the Grid Theorem

The 8 points in Figure 2 are all on E, though Figure 2 is just a schematic
picture. The points on a single line are meant to be on a single line in the
projective plane, though perhaps not the line that is drawn. By the Grid
Theorem, E contains the bottom right marked point. If we go along the
bottom horizontal line, the rules tell us that this point is A+ (B + C). If we
go along the right vertical line, the rules tell us that this point is (A+ B)+C.
Since this is the same point, we have (A+ B) +C = A+ (B + C).

The Associative Law: Subfield Case: Let F' be a subfield of C. This
case includes @Q and all finite extensions of @ — i.e. the bulk of the fields we
considered while doing Galois Theory. Let E be a Weierstrass elliptic curve
whose coefficients (a,b) lie in F. We really have 2 elliptic curves to consider.
Let E(C) be the elliptic curve defined over C. Let E(F') be the elliptic curve
defined over F. The curve E(F) consists of all triples [z : y : 2] € P*(F)
satisfying the equation. In particular, E(F) C E(C) and the two group laws
agree whenever both are defined. Since the group law is associative on E(C)
it is also associative on E(F'). This proves that the law on any Weierstrass
elliptic curve over a subfield of C' is associative. In particular, this is true for
an elliptic curve over Q.



The Associative Law: General Case Our proof in the previous cases
used continuity properties of C' to set up a situation in which we didn’t have
to prove the result for every given triple (A, B, ('), just a dense set. In par-
ticular, we could ignore the case when A = B. When we are working over a
general field, say Z /5, the kind of continuity arguments we used don’t work.
There are two approaches to fixing this problem.

One approach involves observing that there are algebraic formulas for
A+ B and for A+ A in terms of a and b and the coordinates of A and B.
These functions are ratios of integer polynomials in the relevant variables.
(We think of a and b as variables.) The associative law thus reduces to the
the statement that certain polynomials ¢; and ¢, are identically zero. These
polynomials involve 8 variables, namely a and b and the 6 coordinates of
A, B,C'. The formulas are the same in any field of characteristic 0, and in a
field of charactaristic p they are obtained by reducing the formulas mod p.
The fact that ¢; and ¢, vanish when we plug in variables in C' means that
they are simply the 0 polynomials. Hence they vanish over any field.

A % -(A+A) E

3 o4

Figure 3: Applying the Degenerate Grid Theorem

A second approach is more concrete, and we will illustrate it by way of
an example. imagine that we have the case A = B, but that the remaining
7 points are distinct. We then have a grid like the one shown in Figure 3.
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We only have 7 (labeled) points in this case, but we have an 8th constraing
coming from the fact that (by our preliminary Lemmas) the curve C must be
tangent to the top horizontal line at A. An argument similar to what we did
for the Grid Theorem shows that this 8th constraint is independent from the
other 7 constraints, and this forces E to contain the marked point. The same
argument as in the case over C now says that A+ (A+C)=(A+ A) +C.
In other words, by enhancing the Grid Theorem so that it deals with a tan-
gency instead of an intersection point, we can handle a degenerate case. The
remaining degenerate cases are handled in a similar way. So, the general case
boils down to a routine but pretty tedious case by case analysis.

General Elliptic Curves: 1 want to say a few words about the group
law in the general case. In the Weierstrass case, the point [0 : 1 : 0] is called
an inflection point. The line tangent to E at this point only intersects E
at this point. In this case, [0 : 1 : 0] corresponds to a triple root of the
associated single variable polynomial (that we get by plugging the equation
for the line into the equation for E and dehomogenizing).

Here is how we define the group law at least for elliptic curves with an
inflection point. (A general elliptic curve over C has 9 inflection points, so
this will always work for elliptic curves over C.) We define 0 to be one of
the inflection points and then define the rest of the group law as above. The
reason we want to define 0 as an inflection point is that we want 0+0+0 = 0.

At least in the typical case, to find A + B we proceed as follows: We
compute the third point C € ABN E. Then A 4+ B is the third point of
0CNE. Again, the complete description of A+ B involves various tangencies
and degeneracies. Once the law is defined, the same argument as above shows
that it is a group.




