
The purpose of these notes is to introduce projective geometry, and to
establish some basic facts about projective curves. Everything said here is
contained in the long appendix of the book by Silverman and Tate, but this
is a more elementary presentation. The notes also have homework problems.
Do 7 out of 10 of the problems.

1 The Projective Plane

1.1 Basic Definition

For any field F , the projective plane P 2(F ) is the set of equivalence classes
of nonzero points in F

3, where the equivalence relation is given by

(x, y, z) ∼ (rx, ry, rz)

for any nonzero r ∈ F . Let F 2 be the ordinary plane (defined relative to the
field F .) There is an injective map from F

2 into P 2(F ) given by

(x, y) → [(x, y, 1)],

the equivalence class of the point (x, y, 1). In this way, we think of F 2 as a
subset of P 2(F ).

A set S ⊂ F
3 is called a cone if it has the following property: For all

v ∈ S and all nonzero r ∈ F , we have rv ∈ S. Given a cone S, we define the
projectivization [S] ⊂ P 2(F ) to be the set of points [v] such that v ∈ S.

1.2 Lines

A line in the projective plane is the set of equivalence classes of points in a 2-
dimensional F -subspace of F 3. In other words, a line is the set of equivalence
classes which solve the equation ax+ by + cz = 0 for some a, b, c ∈ F . That
is, a line is the projectivization of a plane through the origin. The set of lines
in P 2(F ) is often known as the dual projective plane. Think about it: Each
line is specified by a triple (a, b, c), where at least one entry is nonzero, and
the two triples (a, b, c) and (ra, rb, rc) give rise to the same lines.

Note that P 2(F ) − F
2 is the line consisting of solutions to z = 0. This

particular line is known as the line at infinity and we sometimes write it as
L∞.
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Exercise 1: Prove that every two distinct lines in P 2(F ) intersect in a
unique point. Likewise, prove that every two distinct points in P 2(F ) are
contained in a unique line.

Exercise 2: Let F be a finite field of order N = pn. How many points
and lines does P 2(F ) have.

1.3 Projective Transformations

A linear isomorphism from F
3 to itself respects equivalence classes, and

therefore induces a map from P 2(F ) to itself. This map is called a projective

transformation. A projective transformation is always a bijection which maps
lines to lines. In case F = R or F = C, the projective transformations are
continuous. The set of projective transformations forms a group, often known
as the projective group.

2 Homogeneous Polynomials

2.1 Basic Definition

Given a triple I = (a1, a2, a3), we define

XI = xa1
1
xa2
1
xa3
3
. (1)

Here a1, a2, a3 are non-negative integers. We define |I| = a1 + a2 + a3. We
say that a homogeneous polynomial of degree d (in 3 variables) over the field
F is a polynomial of the form

∑

|I|=d

cIX
I , cI ∈ F . (2)

The variables here are x1, x2, x3. Sometimes it is convenient to use the vari-
ables x, y, z in place of x1, x2, x3.

Exercise 3: Let P be a degree d homogeneous polynomial and let T be
a projective transformation. Prove that P ◦ T is another homogeneous poly-
nomial of degree d.
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2.2 Homogenization and Dehomogenization

A degree d polynomial in 2 variables has a homogenization, where we just pad
the polynomial with suitable powers of the third variable to get something
that is homogeneous. An example should suffice to explain this.

x5 + 3x2y2 + x2y − 5 =⇒ x5 + 3x2y2z + x2yz2 − 5z5.

Conversely, every homogeneous polynomial of degree d in 3 variables has a
dehomogenization, obtained by setting the third variable to 1. The operations
of homogenization and dehomogenization are obviously inverses of each other.

2.3 Projective and Affine Curves

Let P be a homogeneous polynomial of degree d. If v ∈ F
3 and r ∈ F , we

have
P (rv) = rdP (v). (3)

Therefore, when r 6= 0, we have P (rv) = 0 if and only if P (v) = 0. In other
words, the solution P = 0 is a cone in F

3. Because of this fact, the following
definition makes sense.

VP = {[v]| P (v) = 0} ⊂ P 2(F )}. (4)

This VP is just the projectivization of the solution set P = 0. The set VP is
known as a projective curve.

A projective curve is a kind of completion of the solution set to a poly-
nomial. Suppose that p(x, y) is a degree d polynomial in 2 variables and
P (x, y, z) is the homogenization. Let Vp = {(x, y)| p(x, y) = 0}. The set Vp

is known as an affine curve. Since F
2 is naturally a subset of P 2(F ), in the

way described above, we have the inclusion

Vp ⊂ F
2 ⊂ P 2(F ). (5)

Exercise 4: Interpreting Vp as a subset of VP , prove that Vp = VP ∩ F
2.

So, the projective curve VP is obtained from Vp by adjoining the points of
P 2(F )− F

2 where P vanishes.
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2.4 Nonsingular Curves

It makes sense to take the formal partial derivatives of a polynomial over any
field. In particular, the gradient

∇P =
(
dP

dx
,
dP

dy
,
dP

dz

)
(6)

makes sense. We say that a singular point of P is a point v 6= 0 such that
P (v) = 0 and ∇P (v) = 0. If r ∈ F is nonzero, then v is a singular point if
and only if rv is a singular point. The polynomial P is called nonsingular if
it has no singular points. The projective curve VP is called nonsingular if P
is nonsingular.

When it comes time to discuss elliptic curves, we will always work with
nonsingular ones.

Exercise 5: Suppose that V is a nonsingular projective curve and T is a
projective transformation. Prove that T (V ) is also a nonsingular projective
curve.

2.5 The Tangent Line

Let P be a nonsingular projective curve and let [v] ∈ P 2(F ) be a point. The
tangent line to P at [v] is defined to be the line determined by the equation

∇P (v) · (x, y, z) = 0. (7)

This is a line through the origin. In case F = R you can think about this
geometrically. In R

3, the tangent plane to the level set P (x, y, z) = 0 at the
point (x0, y0, z0) is given by the equation

((x, y, z)− (z0, y0, z0)) · ∇P = 0.

Here we are assuming that P (x0, y0, z0) = 0.
Since P is a homogeneous polynomial, P = 0 along the line through

(x0, y0, z0). This means that ∇P (x0, y0, z0) · (x0, y0, z0) = 0. (This works in
any field, but it requires an algebraic proof in general.) Therefore, in this
case, the equation of the tangent plane simplifies to

(x, y, z) · ∇P = 0.
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So, in R
3 the plane Π0 given by Equation 7 is a good approximation along

the line through (x0, y0, z0) to the level set P (x, y, z) = 0. Both sets are
cones, and so the projectivization of the tangent plane (the tangent line) is
a good approximation of the projectivization of the polynomial level set (the
projective curve).

Exercise 6: Let f(x, y) be a polynomial in 2 variables, and let P (x, y, z)
be its homogenization. Let (x0, y0) be some point where f(x0, y0) = 0 and
∇f(x0, y0) 6= 0. We think of (x0, y0) as a point of P 2(R) by identifying it
with [x0, y0, 1], as above. Prove that the tangent line to the level set of f
at (x0, y0) is exactly the projectivization of the plane given by Equation 7.
In other words, reconcile the definition of tangent line given above with the
usual definition given in a calculus class.

3 A Case of Bezout’s Theorem

3.1 Homogeneous Polynomials in Two Variables

A field is F algebraically closed if every polynomial over F has all its roots
in F . The results here work for any algebraically closed field, but for conve-
nience we’ll take F = C, the field of complex numbers. The Fundamental
Theorem of Algebra says that C is algebraically closed.

Exercise 7: Let A(x, y) be a homogeneous polynomial of degree n in 2
variables over C. Prove that A(x, y) factors into linear factors

A(x, y) = (c1x+ d1y)...(cnx+ dny).

Here ci, di ∈ C.

3.2 Multiplicity

Exercise 7 has implications for homogeneous polynomials in 3 variables. If
P (x, y, z) is such a polynomial, we can write

P (x, y, z) = A(x, y) + zB(x, y, z),

Where B has lower degree. Assuming that A is nontrivial, we can factor A
as in Exercise 7. This gives

P (x, y, z) = (c1x+ d1y)...(cnx+ dny) + zQ(x, y, z). (8)
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Let L∞ = P 2(C)−C
2 denote the line at infinity.

Exercise 8: Prove that VP ∩ L∞ consists of the points

pk = [ck : −dk : 0] = [−ck : dk : 0]. (9)

These account for the extra points of VP contained in P 2(C)−C
2. See Ex-

ercise 4.

The multiplicity of pk is defined to be the number of factors of (ckx+dky)
appearing in Equation 8. With this definition, VP ∩L∞ consists of exactly n

points, counting multiplicity. Here n is the degree of P .

Exercise 9: Let T be a projective transformation such that T (L∞) = L∞.
Let P ∗ = P ◦ T . Then T (VP ∗) = VP . Suppose that p ∈ L∞ ∩ VP ∗ has mul-
tiplicity m with respect to VP ∗ . Prove that T (p) ∈ V∞ ∩ VP has multiplicity
m with respect to VP . (Hint: The map T is a projective transformation that
maps L∞ to itself. T is represented by some invertible linear transformation
T̂ . We have

T̂ (Z) = aX + bY + cZ.

When Z = 0, we have T (Z) = 0 as well. This is only possible if a = b = 0.
Hence T̂ (Z) = aZ. We might as well divide through by a, so that T̂ (Z) = Z.
Now that you know what T looks like, do some algebra.)

Exercise 10: In the discussion in the last section, we considered the case
when our homogeneous polynomial had at least one term with no z’s in it.
That is A(x, y) is nontrivial. Suppose that P is a homogeneous polynomial
such that every term of P involves the variable z. Prove that L∞ ⊂ VP .

3.3 Bezout’s Theorem

Suppose now that L is an arbitrary line in P 2(C) and that p ∈ L ∩ VP .
One possibility is that L ⊂ VP . Suppose that this doesn’t happen. Then we
choose a projective transformation T such that T (L) = L∞, and we define
the multiplicity of p to be the multiplicity of Tp = L∞ ∩ T (VC).

Lemma 3.1 The multiplicity of p is well-defined.
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Proof: Suppose that T1 and T2 are two projective transformations carrying
L to L∞. We want to see that T1(p) has the same multliplicity relative to
T1(VP ) that T2(p) has relative to T2(VP ). This was the point of Exercise 9. ♠

Now that we know the multiplicity is well defined, we have a case of
Bezout’s Theorem.

Theorem 3.2 (Bezout) Suppose that P is a homogeneous polynomial of

degree n and VP is the corresponding projective curve. Let L be any line

that is not contained in VP . Then L ∩ VP consists of n points, counting

multiplicity. In particular, if VP contains no lines, then every line intersects

VP in n points, counting multiplicity.

Proof: Let L be any line. To count the points of L ∩ VP we move L to
∞ by a projective transformation T . Since L is not contained in VP , the
polynomial P ◦ T−1 has some nontrivial part that just involves the variables
x and y. But then the analysis above shows that T (VP ) intersects L∞ in
exactly n points, counting multiplicity. This means that VP intersects L in
exactly n points, counting multiplicity. ♠

The general case of Bezout’s Theorem says that a projective curve of de-
gree d1 and a projective curve of degree d2, having no common components,
intersect in exactly d1d2 points, when these points are counted with multi-
plicity. The proof of this result, as well as a good definition of multiplicity
that works in any algebraically closed field, is harder.
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