
Math 181 Handout 6

Rich Schwartz

October 10, 2005

The purpose of this handout is to give you some background on smooth
surfaces and Riemannian metrics. You can find this material in any begin-
ning book on the theory of manifolds, such as Manfredo DoCarmo’s book
Riemannian Geometry .

This material is a prelude to the discussion of hyperbolic surfaces. In the
first part of the handout I will define some basic objects in the Euclidean
plane. In the second part of the handout I will explain how these ideas are
transplanted onto a surface.

1 Curves in the Plane

A smooth curve in R
2 is a smooth map f : (a, b) → R

2, given by equations

f(t) = (x(t), y(t))

such that x(t) and y(t) are smooth functions. This is to say that

dnf

dtn
=

(

dnx

dtn
,
dny

dtn

)

exists for all n. We will usually write f ′(t) for df/dt.
The function f is regular if f ′(t) 6= 0 for all t ∈ (a, b). As usual f ′(t) is

known as the velocity of f at t. Sometimes it is useful to talk about smooth
curves defined on closed intervals. Thus, if we write f : [a, b] → R

2 we really
mean that f is defined on some open interval (a − ε, b + ε) and is smooth
there. In particular f : [0, 0] → R

2 is defined in a neighborhood of 0. This is
the usual treatment of the problem with taking derivatives at the endpoints.
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2 Inner Products

An inner product on a vector space V is a map G : V × V → R which
satisfies the following properties:

• G(av + bw, x) = aG(v, x) + b(w, x). Here a, b ∈ R and v, w, x ∈ V .

• G(x, y) = G(y, x).

• G(x, x) ≥ 0 and G(x, x) = 0 if and only if x = 0.

You can remember this by noting that an inner product satisfies the same
formal properties as the dot product.

Let’s specialize to the case when V is a 2 dimensional vector space, with
a given basis {e1, e2}. Of course, you should think of V = R

2 and e1 = (1, 0)
and e2 = (0, 1), but it’s worthwhile to do things more abstractly to allow for
other possibilities. Given an inner product G on V we define

gij = G(ei, ej).

Then there is a symmetric 2 × 2 matrix

MG =
[

g11 g12

g21 g22

]

which encodes G completely.

Exercise 1: Let v = a1e1 + a2e2 and w = b1e1 + b2e2 be two vectors in
V . Prove that

G(v, w) =
∑

ij

gijaibj .

Thus G determines MG and vice versa.

Exercise 2: Give an example of a symmetric 2 × 2 matrix with g11 > 0
and g22 > 0 which goes not have the form MG where G is an inner product.
(You want to choose g12 so the sum in Ex. 1 is sometimes negative.)

It is possible to explain exactly what conditions must be put on a symmetric
matrix so that it comes from an inner product. The condition is simply that
all the eigenvalues of the matrix are positive. A symmetric matrix with this
property is called positive definite. Thus, the inner product G determines a
positive definite symmetric matrix MG and any positive definite symmetric
matrix comes from an inner product.
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3 Riemannian Metrics on the Plane

Let I denote the set of inner products on R
2. Let U ⊂ R

2 be an open set.
A Riemannian metric on U is a smooth map Ψ : U → I. In other words,
a Riemannian metric on U is a choice Gp of inner product for each p ∈ U .
This choice gives rise to the functions gij(p). We require that the functions
gij are smooth functions on U . So, you can specify a Riemannian metric on
U by specifying 4 smooth functions gij : U → R subject to the following
constraints:

• g12(p) = g21(p) for all p ∈ U .

• For all p ∈ U the matrix {gij(p)} is positive definite−i.e. has positive
eigenvalues.

A curve in U is just a curve which happens to lie entirely in U . We can
measure the length of a curve in U relative to the given Riemannian metric,
as follows: Let f : [a, b] → U be a smooth curve. We define

Riemannian length(f) =
∫ b

a

√

Gf(t)(f ′(t), f ′(t)) dt.

The integrand above is called the Riemannian speed of f at t. So, we are
computing the Riemannian length of f by integrating its Riemannian speed.
Of course, these quantities depend on the choice of Riemannian metric. If we
choose the standard Riemannian metric−namely the dot product at every
point−then we recover the ordinary notions of speed and length.

Exercise 3: Let U be the upper half plane in R
2, namely those points

(x, y) with y > 0. Define

Gp(v, w) =
v · w

y2
.

Here p = (x, y). In other words Gp is just a multiple of the dot product at
each point. The path f(t) = (0, t), defined on [1, 2] connects the point (0, 1)
to (0, 2). Compute the Riemannian length of this path.

Exercise 4: Give an example of a Riemannian metric, defined on all of
R

2, which has the following property: Any two points in R
2 can be joined

by a smooth curve whose Riemannian length is less than 1.
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4 Diffeomorphisms and Isometries

Let U and V be two open subsets of R
2. A diffeomorphism from U to V is

a homeomorphism f : U → V with the following additional properties:

• f is smooth: That is, all orders of partial derivatives of f exist.

• For each p ∈ U the matrix df(p) of first partial derivatives is non-
singular. That is, df defines a vector space isomorphism at each point.
We abbreviate this by saying that f is regular .

• f−1 is smooth and regular.

Actually, the third condition follows from the other two and the inverse
function theorem.

Note that dfp maps a tangent vector based at p to a tangent vector based
at f(p). Suppose that U and V are given Riemannian metrics. We say that
a diffeomorphism f : U → V is a Riemannian Isometry if

Hf(p)(dfp(v), dfp(w)) = Gp(v, w); ∀v, w, p.

Here v and w are vectors and p ∈ U . Also G is the Riemannian metric
defined on U and H is the Riemannian metric defined on V .

Exercise 6: This problem refers to the problem in Exercise 3. Prove that
the following maps are Riemannian isometries:

• (x, y) → (x + 1, y).

• (x, y) → (2x, 2y).

• z → −1/z. Here we are using the complex notation z = x + iy.

The metric from Exercise 3 is known as the Hyperbolic metric and this exer-
cise shows that it has a lot of isometries.

Here is another formulation of the notation of a Riemannian isometry: A
Riemannian metric on U ⊂ R

2 turns U into a metric space, in the following
way: Given p, q ∈ U we define S(p, q) to be the set of smooth curves in U
which join p to q. We define d(p, q) to be the infimum of the lengths of curves
in S(p, q).

Exercise 7: Prove that d really is a metric on U . Prove also that a Rieman-
nian isometry between U and V gives rise to a metric space isometry.
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5 Atlases and Smooth Surfaces

Recall that a surface is a metric space S such that every point has a neigh-
borhood which is homeomorphic to R

2. We say that a collection of such
neighborhoods is called an atlas . The neighborhoods themselves are called
coordinate charts. So, each element of the atlas is a pair (U, h) where U is
an open subset of Σ and h : U → R

2 is a homeomorphism. We require that
the union of all the coordinate charts in the atlas is the entire surface. In
other words, each point in the surface is contained in at least one coordinate
chart.

Suppose now that (U1, h1) and (U2, h2) are two coordinate charts and
it happens that V = U1 ∩ U2 is not empty. We define V1 = h1(V ) and
V2 = h2(V ). Being the intersection of two open sets, V is an open subset of
both U1 and U2. Since h1 and h2 are homeomorphisms, V1 and V2 are open
subsets of R

2. On V1 the map

h12 = h2 ◦ h−1
1

is well defined. We have h12(V1) = V2. The map

h21 = h1 ◦ h−1
2

is defined on V2 and evidently h21(V2) = V1. The two maps h12 and h21 are
inverses of each other. Also, both maps are continuous, since they are the
composition of continuous maps. In summary h12 : V1 → V2 is a homeomor-
phism and h21 : V2 → V1 is the inverse homeomorphism. These two functions
are called overlap functions because they are defined on the overlaps between
coordinate charts.

Our atlas on Σ is said to be a smooth structure if all its overlap functions
are smooth diffeomorphisms. In other words, every time we can produce an
overlap function h12 : V1 → V2 it turns out to be a diffeomorphism. We say
that a smooth surface is a surface equipped with a smooth structure.

Here is an annoying technical point. Let (U, h) be a pair such that U
is an open subset of Σ and h : U → R

2 is a homeomorphism. If (U, h) is
not part of our atlas then we can enlarge our atlas by including (U, h) in it.
This will produce possibly some new overlap functions. If all the new overlap
functions are diffeomorphisms then we say that (U, h) is compatible with our
atlas. We say that our atlas is maximal if it already contains all compatible
coordinate charts. It is conventional for us to require that our atlases be
maximal. However, this point never actually comes up in practice.
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6 Smooth Curves and the Tangent Plane

Say that a map f : (a, b) → Σ is smooth at t if there is some ε > 0 such that

• (t − ε, t + ε) ∈ (a, b);

• f((t − ε, t + ε)) is contained in a coordinate chart (U, h) in our atlas.

• The curve h ◦ f : (t − ε, t + ε) → R
2 is a smooth curve.

The fact that our overlap functions are all diffeomorphisms means that the
notion of smoothness does not depend on which coordinate chart we use. In
other words, if f(t − ε, t + ε) ⊂ U1 ∩ U2 and (U1, h1) and (U2, h2) are both
coordinate charts, then

h2 ◦ f = h12 ◦ (h1 ◦ f).

Since h12 is smooth, the curve h1◦f is smooth if and only if the curve h2◦f is
smooth. Here are using the fact−really a consequence of the chain rule−that
the composition of smooth maps is again smooth. (Any book on real analysis,
or advanced several variable calculus, has this formulation of the chain rule.)

We say that f : (a, b) → Σ is smooth if f is smooth at each t ∈ (a, b).
We say that f : [a, b] → Σ is smooth if f is defined and smooth on a larger
interval (a − ε, b + ε).

Let p ∈ Σ be a point. Suppose that

f1, f2 : [0, 0] → Σ

are two curves wuch that f1(0) = f2(0) = p. We write f1 ∼ f2 if there is a
coordinate chart (U, h) such that p ∈ U and h ◦ f1 and h ◦ f2 have the same
velocity at 0. In other words, (h ◦ f1)

′(0) = (h ◦ f2)
′(0).

Exercise 8: Prove that ∼ is well defined, independent of the coordinate
chart we use. Prove also that ∼ is an equivalence relation.

We define Tp(Σ) to be the set of equivalence classes of curves f : [0, 0] → Σ
such f(0) = p. We can make Tp(Σ) into a vector space as follows: If [f1]
and [f2] are two equivalence classes of curves, we define [f1] + [f2] to be the
equivalence class of the curve g such that the velocity of h ◦ g is the velocity
of h ◦ f1 plus the velocity of h ◦ f2. That is

(h ◦ g)′(0) = (h ◦ f1)
′(0) + (h ◦ f2)

′(0).

6



Exercise 9: Prove that this notion of addition is well defined. In other
words, if we made this definition relative to two different coordinate charts
(U1, h1) and (U2, h2) then we could get the same answer. Hint: Use the fact
that

h2 ◦ g = h12 ◦ (h1 ◦ g)

(and likewise for f1 and f2) and the fact that dh12 is a linear transformation
at each point. Now use the chain rule.

We can also define scaling on Tp(Σ). We define r[f ] to be the equivalence
class of the curve which has r times the velocity of f at 0, measured in any
coordinate chart. Again, this is well defined because the overlap functions
are diffeomorphisms.

All in all, Tp(Σ) is a vector space for each p ∈ Σ.

Exercise 10: Prove that Tp(Σ) is isomorphic to R
2. Hint: You should

map [f ] to (h ◦ f)′(0) and show that it is an isomorphism.

7 Riemannian Surfaces

7.1 Basic Definition

Suppose that Σ is a smooth surface. This means that we have a (maximal)
atlas on Σ whose overlap functions are smooth diffeomorphisms. Suppose,
for each coordinate chart (U, h), we choose a Riemannian metric on R

2. We
say that our choice is consistent if all the overlap functions are Riemannian
isometries relative to the choices. Thus, the overlap function h12 considered
above is a Riemannian isometry from V1 to V2, when V1 is equipped with
the Riemannian metric associated to (U1, h1) and V2 is equipped with the
Riemannian metric associated to (U2, h2).

A Riemannian metric on Σ is a consistent choice of Riemannian metrics
on R

2, one per coordinate chart. This definition is pretty abstract, so I’ll give
a second definition at the end of this section which is perhaps more concrete.

7.2 Riemannian Length

Let f : [a, b] → Σ be a smooth curve. We can define the Riemannian Length

of f as follows: First of all, we can find a partition a = t0 < ... < tn = b
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such that f([ti, ti+1]) is contained in a coordinate chart (Ui, hi). Next, we
can define Li to be the Riemannian length of

hi ◦ f([ti, ti+1]).

Finally, we define the length of f to be L0 + ... + Ln. In other words, we
compute the lengths of a bunch of little pieces of f and then add them
together.

Lemma 7.1 The Riemannian length of f is well defined, independent of the

choices made in its definition.

Proof: Suppose first of all that we keep the partition the same but use new
coordinate charts (U ′

i , h
′

i) such that f([ti, ti+1]) ⊂ U ′

i . Then, on [ti, ti+1] we
have

h′

i ◦ f = (h′

i ◦ hi) ◦ (hi ◦ f).

But the map h′

i ◦ hi is an overlap function, and is an isometry relative to the
two Riemannian metrics. Thus Li = L′

i. This shows that the Riemannian
length of f doesn’t change if we use different coordinate charts from our
atlas.

Suppose now that a = s0 < ... < sm = b is another partition, and we
are using a different sequence {(U ′

i , h
′

i)} of coordinate charts to calculate the
length. Then by considering all the si and also all the tj (from our original
partition) we can find a refinement a = u0 < ... < ul = b which contains all
the si and also all the tj . (Basically, we just take the collection of all the
numbers and then resort them.)

We can use the charts (Ui, hi) to compute the length relative to the u-
partition, and we will get the same answer as if we used the t-partition. The
point here is just that integration is additive:

∫ ti+1

ti

=
∫ uk+1

t1

+... +
∫ ti+1

uk+h−1

.

Here ti = uk < ... < uk+h = ti+1. Likewise, we can use the charts (U ′

i , h
′

i)
to compute the length relative to the u-partition, and we will get the same
answer as if we used the s-partition. Thus, we reduce to the case where the
partition is the same but the charts change, considered previously. ♠
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7.3 Another Point of View

Given that we have the notion of the tangent plane Tp(Σ), and this object
is always a vector space, we could define a Riemannian metric on Σ to be a
smoothly varying choice of inner product Gp on Tp(Σ) for each point p ∈ Σ.
We just have to make sense of the notion of smoothness.

If we fix a coordinate chart (U, h), then a Riemannian metric G on Σ
gives rise to a Riemannian metric H on R

2 as follows. Suppose we have a
point q ∈ R

2 and two vectors v, w. Let p = h−1(q) ∈ U and [f1], [f2] ∈ Tp(Σ)
be the two classes so that (h ◦ f1)

′(0) = v and (h ◦ f2)
′(0) = w. Then we

define Hq(v, w) = Gp([f1], [f2]). To say that our Riemannian metric on Σ
varies smoothly is to say that H is a smooth Riemannian metric on R

2 for
any choice of coordinate chart. This other definition is completely equivalent
to the one I gave above.
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