
Math 20 Final Solutions

A1: Write the function as f(x, y) = xy∆. Then ∇f = (y−2x2y, x−4xy2)∆.
∆ is never zero, so the critical points only occur when y − 2x2y = 0 and
x− 4xy2 = 0. There are 5 solutions, namely (0, 0) and (±1/

√
2,±1/2). Since

the function tends to 0 as you go towards infinity, there must be a local min
and a local max. Here is an analysis of the situation

• f = 0 at (0, 0).

• f > 0 at (0, 1/
√
2, 1/2), and (0,−1/

√
2,−1/2).

• f < 0 at (0,−1/
√
2, 1/2), and (0, 1/

√
2,−1/2).

Based on this analysis, the global max is e−1/(2
√
2).

A2: We have the equation r′′ = (dv/dt)T+κv2N = 2v2N. The second equal-
ity comes from the fact that dv/dt = 0. From this we get 8 = ‖r′′‖ = 2v2,
which means that v = 2. So, the arc length is 2× 3 = 6.

A3: In the (r, θ) plane, the domain is given by the following constraints:
It satisfies r ≤ 1 and 0 ≤ θ ≤ π/4. The last inequality comes from the
inequality sin(θ) ≤ cos(θ). Compute the Jacobian:

J = ±det
[−3r sin(θ) 3 cos(θ)
4r cos(θ) 4 cos(θ)

]

= 12r.

So, by change of variables, the area is

∫ π/4

0

∫

1

0

12r dr dθ = 3π/2.

A4: The tangent to the curve is proportional to the cross product of the
two normals. This works out to (1, 2, 1) × (2x, 2y, 2z) = (A,B, 4x − 2y),
where A and B are not important. The max/min height must occur where
the tangent is horizontal, so y = 2x. Now we can use the first equation to
solve for z, getting z = 3 − 5x. Plugging this into the second equation and
solving yields x = 0 and x = 1. The two possible points are then (0, 0, 3)
and (1, 2,−2). The second one is obviously the lower point.
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B1: Parametrize the circle as r(t) = (
√
2 cos(t),

√
2 sin(t). The integral

then becomes

A =
∫

3π/4

π/4
(cos4(t), 0) · (− sin(t), cos(t))dt = −

∫

π/4
cos4(t) sin(t)dt

Make the substitution u = cos(t) and du = − sin(t)dt to get the

A =
∫ −1

1

u4du = −2/5.

B2: This is a straight-up surface integral. Parametrize the surface using the
equation S(x, y) = (x, y, x2 + y2). Compute

N(x, y) = (1, 0, 2x)× (0, 1, 2y) = (−2x,−2y, 1)

The integral is then

∫

D

∫

D
(x, 0, 2y(x2 + y2)) · (−2x,−2y, 1).

Here D is the domain x2 + y2 ≤ 4. The integral becomes

∫

2

−2

∫

√
4−x2

−
√
4−x2

−2x2 + 2x2y + 2y3 dx dy.

B3: This vector field satisfies Qx = Py, and the domain has no holes. So, its
conservative. Call the potential function f . We have fy = 2yx. Integrating
gives f = y2x+ g(x). Then fx = y2 + g′(x) = 6x+ y2. So, g′(x) = 6x. This
gives g(x) = 3x2 +C. So, f = y2x+ 3x2 +C, where C is any constant. The
curl of the second vector field does not vanish, so its not conservative.

B4: Use Green’s Theorem. The curl is 2x+ 2y, and so the integral is

2
∫

0

−1

∫ −x

x2

(x+ y) dy dx = 2
∫

0

−1

(−x2/2− x3 − x4/2) = −1/30.
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C1: Call the case A = B = 0 the basic field . The basic field is defined
everywhere except (0, 0), and has divergence 0. The flux through any loop
surrounding (0, 0) is the same and may be calculated using the unit circle.
The result is: 2π. (This is the 2D Gauss law.) The flux through any loop
that doesn’t surround (0, 0) is 0. For general (A,B), the v.f. is a translate
of the basic field, so you get the same result: the flux through any loop sur-
rounding (A,B) is 2π and the flux through any other loop is 0. The circle
in the problem surrounds the points (0, 0) and (0, 1) and (1, 0) and (1, 1), so
for all these values of A and B you get flux 2π. Otherwise you get 0.

C2: Use Stokes’ Theorem: The triangle in question has unit normal vec-
tor (−→n = (1/

√
2,−1/

√
2, 0) and F has been carefully constructed so that

curl(F ) · −→n = −
√
2. The flux is constant, so the answer is just -(area of

triangle) times
√
2. The triangle has area

√
2/2. So, the answer is −1.

C3: By the Divergence Theorem, the triple integral is the same as the flux
of ∇f through the sphere. But the gradient of a function is always perpen-
dicular to its level sets. So, ∇f · n at each point is ±3. The total flux is
therefore ±3 times the area of the sphere. The area of the sphere is 16π. So,
the total flux is ±48π. Taking the absolute value, we get 48π for the final
answer.

C4: By Gauss’s law (and our choice of constants) the flux of any mass
density through a membrane that surrounds it is −4π times the total mass.
In our case, the total mass is 1, so the total gravitational flux through the
donut is −4π. The whole picture is symmetric with respect to rotations
about the z-axis, and also with respect to reflection in the xy plane. So, the
amount of flux through T2 is just 1/8 of the total flux, namely −π/2.
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