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The purpose of these notes is to discuss the symmetric space X on which
SLn(R) acts. Here, as usual, SLn(R) denotes the group of n × n matrices
of determinant 1.

1 The Group Action

The space X denotes the sets of n× n real matrices M such that

• M is symmetric: M t = M .

• det(M) = 1.

• M is positive definite: M(v) · v > 0 for all v 6= 0.

The action of SLn(R) on X is given by

g(M) = gMgt. (1)

One can easily verify that g(M) ∈ X. Only the third step has anything to
it:

gMgt(v) · v = M(gt(v)) · gt(v) = M(w) · w > 0.

The action we have described really is a group action, because

g(h(M)) = g(hMht)gt = (gh)M(gh)t = gh(M).
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2 The Tangent Space

The identity matrix I is the natural origin for X. The tangent space TI(X)
consists of derivatives of the form

V =
dM

ds
(0), (2)

where Ms is a path of matrices in X and M0 = I. Clearly V is a symmetric
matrix. Also, to first order, we have Ms = I + sV , and

det(I + sV ) = 1 + s trace(V ) + ... (3)

Hence trace(V ) = 0. Conversely, if trace(V ) = 0 and V is symmetric, then
I + sV belongs to X to first order. More precisely

Ms = exp(sV ) = I + sV +
s2

2!
V 2 +

s3

3!
V 3 + · · · (4)

gives a path in X, for small s, having V as derivative. In short, TI(X) is the
vector space of n× n symmetric matrices of trace 0.

The differential action of SLn(R) on TI(X) works very conveniently. If
g ∈ SLn(R) we have

dg(V ) =
d

ds

(

g(Ms)
)

=
d

ds
(gMsg

t) = gV gt.

In short
dg(V ) = gV gt. (5)

In other words, the action of g on the tangent space TI(X) is really just the
same as the action of g on X.

Lemma 2.1 The stabilizer of I is SO(n).

Proof: The stabilizer of I consists of those matrices g ∈ SLn(R) such that
g(I) = I. This happens if and only of ggt = I. These are precisely the
orthogonal matrices. That is g ∈ SO(n). To see this, note that

g(v) · g(w) = gtg(v) · w.

So, g preserves the dot product if and only if gtg = I, which is the same as
ggt = I. ♠
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3 Lemmas about Symmetric Matrices

Lemma 3.1 Every M ∈ X has the form M = gDg−1 where g ∈ SO(n) and
D is diagonal.

Proof: Introduce the quadratic form Q(v, v) = M(v) · v. The lemma is
equivalent to the claim that there is an orthonormal basis which diagonalizes
Q. To see this, choose a unit vector w1 which maximizes Q(∗, ∗). Next,
consider the restriction of M to the subspace W = (w1)

⊥. If w2 ·w1 = 0 then
M(w2) · w1 = 0 because

0 =
d

ds
Q(w1 + sw2, w1 + sw2) = 2M(w1) · w2. (6)

But this means that W is an invariant subspace for M , and M |W is the
matrix defining the quadratic form Q|W . By induction, Q|W is diagonaliz-
able, with basis {w2, ..., wn}. Then {w1, ..., wn} is the desired basis on Rn. ♠

Corollary 3.2 Every V ∈ TI(X) has the form T = gEg−1 where g ∈ SO(n)
and E is diagonal.

Proof: By the previous result, and by definition, we can find a smooth path
qs ∈ SO(n) and a smooth path Ds of diagonal matrices so that

V =
d

ds
(gsDsg

t
s).

By the product rule,

d

ds
(gsDsg

t
s)
∣

∣

∣

∣

0

= gD′gt +
(

g′gt + g(g′)t
)

.

Here we have set g = g0 and D′ = D′(0), etc. The last two terms cancel,
because

0 =
dI

dt
=

d

ds
(gsg

t
s) = gD′gt + g′gt + g(g′)t.

Hence
V = gEgt, g = g0, E = D′.

This completes the proof ♠
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4 The Invariant Riemannian Metric

Given A,B ∈ TI(X), we define

〈A,B〉 = trace(AB). (7)

Lemma 4.1 The metric is invariant under the action of SO(n).

Proof: Given g ∈ SO(n), we have gt = g−1. Hence

〈g(A), g(B)〉 = 〈gAg−1, gBg−1〉 = trace(gAg−1gBg−1) =

trace(gABg−1) = trace(AB) = 〈A,B〉.

This completes the proof. ♠

Lemma 4.2 The metric is positive definite.

Proof: We can write V = gEg−1, where E is diagonal and g is orthogonal.
For this reason

〈V, V 〉 = trace(E2) > 0.

The point is that E2 has non-negative entries, not all of which are 0. ♠

5 The Diagonal Slice

There is one subspace of X on which it is easy to understand the Riemannian
metric. Let ∆ ⊂ X denote the subset consisting of the diagonal matrices with
positive entries. We can identify ∆ with the subspace

Rn
0
= {(x1, ..., xn)|

∑

xi = 0}. (8)

The identification carries a matrix to the sequence of logs of its diagonal
entries. This makes sense because all the diagonal entries of elements of ∆
are positive.

In the log coordinates, the diagonal subgroup of SLn(R) acts by trans-
lations. Moreover, our metric agrees with the standard dot product on Rn

0
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at the origin, by symmetry. Hence, our log coordinates give an isometry
between ∆ and Rn

0
equipped with its usual Euclidean metric.

It remains to show that ∆ is geodesically embedded. Before we do this, we
mention a cautionary case: In hyperbolic space, if we restrict the hyperbolic
metric to a horosphere, we get the Euclidean metric. However, horospheres
are not geodesically embedded, and so the zero curvature is a consequence
of the distorted embedding. We want to rule out this kind of thing for ∆.

Lemma 5.1 ∆ is geodesically embedded in X.

Proof: We’ll show that the shortest paths connecting two points in ∆ belong
to ∆. Choose some M1 ∈ ∆ and let Ms be a path connecting M1 to I = M0.
We can choose continuous paths gs and Ds such that

• g0 = g1 = I.

• gs and Ds vary smoothly. Here gs is orthogonal and Ds is diagonal.

• Ms = gsDsg
t
s for all s ∈ [0, 1].

The path Ds also connects M0 to M1. We just have to show that Ds is not
a longer path than Ms.

We compute
d

ds
Ms = As + Bs,

where
As = gsD

′

sg
t
s, Bs = g′sDsg

t
s + gsDs(g

′

s)
t. (9)

Here the primed terms are the derivatives. Note that

〈As, As〉Ms
= 〈D′

s, D
′

s〉Ds
(10)

because the action of gs is an isometry of our metric. To finish the proof, we
just have to check that As and Bs are orthogonal. To so this, we check that
dM−1

s (As) and dM−1

s (Bs) are orthogonal. These are two tangent vectors in
TI(X), and we know how to compute their inner product.

Dropping the subscript s and using gt = g−1, we compute

dM−1(A) = (gD−1g−1)(gD′g−1)(gD−1g−1) =

dG−1D′D−1g−1 = gΩg−1, (11)
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where Ω is some diagonal matrix. Similarly

dM−1(B) = g(Ψ1 +Ψ2)g
−1,

Ψ1 = D−1g−1g′, Ψ2 = (g−1)′gD−1 = −g−1g′D−1. (12)

The last equality comes from Equation 6.
We compute

〈A,B〉M = trace
(

g(ΩΨ1 + ΩΨ2)g
−1

)

= trace(ΩΨ1 + ΩΨ2) =

trace(ΩD−1g−1g′)− trace(Ωg−1g′D−1) =1

trace(ΩD−1g−1g′)− trace(D−1Ωg−1g′) =2

trace(ΩD−1g−1g′)− trace(ΩD−1g−1g′) = 0. (13)

Equality 1 is comes from the fact that XY and Y X in have the same trace
for any matrices X and Y . Equality 2 comes from the fact that D−1 and Ω,
both diagonal matrices, commute. ♠

6 Maximal Flats

Now we know that ∆ ⊂ X is a totally geodesic slice isometric to Rn−1. By
symmetry, any subset g(∆) ⊂ X, for g ∈ SLn(R), has the same properties.
We call these objects the maximal flats . As the name suggests, these are the
totally geodesic Euclidean slices of maximal dimension. (We will not prove
this last assertion, but will stick with the traditional terminology just the
same.)

Lemma 6.1 Any two points in X are contained in a maximal flat.

Proof: By symmetry, it suffices to consider the case when one of the points
is I and the other point is some M . We have M = gDgt where g is orthogo-
nal and D is diagonal. But then g(∆) contains both points. ♠

It is not true that any two points lie in a unique maximal flat. For generic
choices of points, this is true. However, sometimes a pair of points can lie
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in infinitely many maximal flats. This happens, for instance, when the two
points are I and D, and D has some repeated eigenvalues.

The maximal flats are naturally in bijection with the subgroups conjugate
in SLn(R) to the diagonal subgroup. There is a nice way to picture this
correspondence geometrically. Let P denote the real projective space of
dimension n − 1. Say that a simplex is a collection of n general position
points in P . The diagonal subgroup preserves the simplex whose vertices
are [e1], ..., [en], the projectivizations of the vectors in the standard basis. In
general, a conjugage group preserves some other simplex; the vertices of the
simplex are fixed by all elements of the subgroup. Thus, there is a bijection
between the maximal flats and the simplices in P .

7 The Weyl Group and Weyl Chambers

The Weyl group is usually defined in terms of the Lie Algebra, but here is
a rough and ready geometric description. The Weyl group associated to X

is the subgroup W ⊂ O(n) which acts isometrically on the diagonal slice ∆.
When n is odd, we can take W ⊂ SO(n). In general, W is generated by the
permutation matrices.

W contains a number of reflections, for instance, the permutation matrix
which swaps the first two coordinates. Each such reflection g ∈ W fixes some
hyperplane Hg ⊂ ∆. The complement ∆ −

⋃

Hg is a finite union of convex
cones. Each such cone is called a Weyl chamber .

Here is the first nontrivial example. When n = 3 there are 3 reflections.
In log coordinates, the corresponding lines in R3

0
are the intersections with

the coordinate planes. Geometrically, these lines branch out along the 6th
roots of unity, and the Weyl chambers fit together like 6 slices of pizza.
In general, the points in the interior of the Weyl chambers correspond to
matrices having no repeated eigenvalues.

Using the action of the diagonal group on ∆, we define, for p ∈ ∆, the
union Cp of convex cones to be the translation of the Weyl chambers to p.
Thus, we think of the Weyl chambers as something akin to the way we think
of a light cone in Minkowski space: The cone is something that really lives
at every point, in the tangent space at that point.

We say that a line L in a maximal flat F is regular if, for some p ∈ L,
the line L points into the interior of some chamber of Cp. This definition is
independent of the choice of p. If L is not regular, we call L singular . For

7



n = 3, the singular lines in ∆ are parallel to the 6th roots of unity, when we
use log coordinates.

Lemma 7.1 If L ⊂ F is regular, then L lies in a unique maximal flat.

Proof: We will argue by contradiction. Let F1 = F and let F2 be some
second maximal flat containing L. Let S1 and S2 be the corresponding sim-
plices in P . We can assume by symmetry that F1 = ∆ and L contains the
origin. Then the matrices of L − I have no repeating eigenvalues. Hence,
the fixed points of these matrices determine S1 and S2. But then S1 = S2.
Hence F1 = F2. ♠

Lemma 7.2 If L ⊂ F is singular, L is contained in infinitely many flats.

Proof: Again, we normalize so that L is contained in ∆ and goes through I.
In this case, the matrices of L− I have some repeated entries, and the same
entries repeat for all the matrices. Moreover, all the elements of L− I have
common eigenspaces. Let Σ ⊂ P denote the union of the projectivizations of
the eigenspaces. There are infinitely many simplices S which are compatible
with Σ in the sense that each point of S is contained in some projectivized
eigenspace. Any such simplex corresponds to a flat containing L. ♠

Remark: The last proof is a little bit opaque, so consider the example when
n = 3 and L consists of matrices having the first two entries equal. Then Σ is
a union of the origin O0 and the line Λ at infinity in the projective plane. If
we choose any two distinct points O1, O2 ⊂ Λ, then the triangle (O0, O1, O2)
is compatible with Σ.

So, the maximal flats form a network of Euclidean slices in X. The
maximal flats intersect along the boundaries of the Weyl chambers. This
picture suggests a kind of higher dimensional graph, called a building , and
indeed when one considers SLn(Qp), the linear group over the p-adics, the
corresponding space Xp is indeed known as a building.
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8 Hyperbolic Slices

It is worth mentioning that X contains some totally geodesic copies of H2,
the hyperbolic plane. When n = 2, the corresponding space X2 is isometric
to the hyperbolic plane. We can fit X2 inside Xn by considering diagonal
matrices. Precisely, we can make the upper 2× 2 block an arbitrary element
of X2, and then we can put (1)s for the other diagonal entries. This embeds
X2 isometrically inside Xn.

Lemma 8.1 X2 is a totally geodesic subspace of Xn.

Proof: Let G ⊂ SLn(R) be the subgroup of block diagonal matrices having
(1)’s for the first two entries and then some (n−2)× (n−2) diagonal matrix.
The action of G fixes X2 pointwise. Moreover, for any point p ∈ Xn − X2,
there is some g ∈ G such that g(p) 6= p.

Suppose that x, y ∈ X2 are two points, connected by a geodesic segment
γ. Choosing x and y close enough together, we can arrange that γ is the
unique distance minimizing geodesic connecting x and y. But if γ 6∈ X2 then
we can find some g ∈ G such that g(γ) 6= γ. But then γ and g(γ) are two
distinct geodesic segments, having the same length, connecting x to y. This
is a contradiction. Hence γ ⊂ X2. Since geodesics locally stay in X2, the
subspace X2 is geodesically embedded. ♠

Once we have one totally geodesic copy of H2 in Xn, we get others by
using the action of SLn(R). Thus g(X2) ⊂ Xn is a totally geodesic embedded
copy of H2 as well. We call these the hyperbolic slices .

It turns out that X has non-positive sectional curvature, and the Eu-
clidean slices are the slices of maximum curvature (zero) and the hyperbolic
slices are the slices of minimum curvature.
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