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The purpose of this handout is to discuss the notions of fundamental
domains and orbifolds. Each of these topics presents some expository diffi-
culties.

• There isn’t really a universal definition for a fundamental domain, be-
cause it is a broad notion used in many contexts. I will give a typical
definition, for the context of planar symmetry groups.

• The formal definition of an orbifold is quite tricky. I will first give
an informal definition. Then, I’ll give a formal definition. The formal
definition is much harder to understand!

1 Discrete Symmetry Groups

Let R
2 denote the Euclidean plane. Let EUC denote the group of isometries

of R
2. So, each element of EUC is a symmetry of the plane that preserves

distances. The group EUC is sometimes called the Euclidean group. Rather
than specify a symmetry pattern, we will specify a subset G ⊂ EUC that is
a group in its own right. We think of G as the group of symmetries of some
unspecified infinite tiling. G is called a subgroup of EUC, because G is both
a subset and a group.

We call G a discrete symmetry group if it has the following property: For
any disk B in the plane, there are only finitely many elements g ∈ G such
that g(B) ∩ B is not empty. In other words, all but finitely many elements
of G move B completely off itself.

Here is an example. Let G denote the group of elements having the form

g(x, y) = (x, y) + (m, n),
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with m and n integers. In other words, G is the group consisting of all the
integer translations. If B is a disk, then there is some N such that all points
in B have coordinates of the form (x, y) with |x| and |y| both less than N .
In other words, B is contained in a square of side length 2N centered at the
origin. But then g(B) ∩ B = ∅ as long as g translates at least one of the
coordinates by more than 2N .

Here is a non-example. Let G be as above, except that m and n can be
rational numbers. Then there are infinitely many elements of G such that
g(B)∩B 6= ∅ for any choice of B. The point is that there is an infinite list of
elements of G that move points of the plane less than any tiny amount you
like.

Exercise 1: Let T be the tiling of the plane by unit squares having ver-
tices at integer coordinates. Let G′ be the group of symmetries of T . Prove
that G′ is a discrete group. Note that G′ is larger than our example G,
because G includes (for example) a 90 degree rotation about the origin.

2 Orbits

Let G be a discrete symmetry group. Given any point p ∈ R
2 the orbit of p,

denoted G(p) is the set

G(p) = {g(p)| g ∈ G}. (1)

In other words, you act on p by every single element of g and then take the
totality of points you get. If G is the example considered above, then the
orbit of the point (0, 0) is exactly the set of points with integer coordinates.

Exercise 2: Let G′ be the group considered in Exercise 1. Draw the or-
bit G′(1/2, 1/3).

We can relate the notion of discreteness to the notion of orbits. A group
G is discrete if and only if every orbit of G intersects any disk in finitely many
points. In other words, when you look at the orbits of a discrete group, you
see a “discrete” set of points, spaced out sort of like as in a grid.
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3 Solid Polygons

Say that a polygonal arc is a curve in the plane made from finitely many line
segments, I1, ..., In, with the following properties:

• Ik and Ik+1 share a common vertex for each k = 1, ..., n − 1.

• Ik and Im are disjoint if |k − m| > 1.

A polygon is the same kind of object, except that I1 and In share a common
vertex. Figure 1 shows some examples.

arc
arc

polygon

polygon

Figure 1

Say that a solid polygon is a region in the plane whose boundary is a
polygon. In other words, you draw the polygon and then fill in the bounded
region. It is a theorem, a special case of the Jordan Curve Theorem, that
any polygon divides the plane into two connected regions, one of which is
what we call a solid polygon. Try finding coloring in the solid polygon in
Figure 2.

Figure 2

3



3.1 Fundamental Domains

Let G be a discrete symmetry group, as above. A fundamental domain for
G is a solid polygon F with two properties:

• Every orbit of G intersects F in at least one point.

• An orbit that intersects the interior of F only intersects F in one point.

The interior of F is the set of points not lying on the polygon that bounds
F . Put another way, a point x lies in the interior of F is a sufficiently small
disk centered at x also lies in F .

Exercise 3: Draw fundamental domains for the examples G and G′ dis-
cussed above.

The symmetry group does not uniquely determine the fundamental do-
main. That is, the same symmetry group can have many different fundamen-
tal domains. The beauty of some of the Escher tilings comes from Escher’s
pleasing choice of fundamental domain for underlying symmetry group.

Lemma 3.1 Every symmetry group G has a convex fundamental domain.

Proof: If every point of R
2 was fixed by some element of G, then G would

not be discrete. So, there is at least one point p ∈ R
2 that is not fixed by

any element of G. Consider the orbit G(p). Let F denote the set of points in
R

2 that are at least as close to p as they are to any other point in G(p). We
want to verify the two axioms for F , and we also want to see that F is convex.

Axiom 1: Let q′ be some other point in R
2. We want to show that G(q′)

intersects F in at least one point. There is some point p′ ∈ G(p) such that q′

is as close to p′ as it is to any other point in G(p). Also there is some element
g such that g(p) = p′. But then let q = g−1(q′). The distance from q to p
is the same as the distance from q′ to p′. Also, the minimum distance from
q to G(p) is the same as the minimum distance from q′ to G(p), because g
maps G(p) to itself. Hence p is the point of G(p) closest to q. Hence q ∈ F .
Since q ∈ G(q′), we see that G(q′) intersects F in at least one point.
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Axiom 2: Suppose that x is a point in the plane and g1, g2 ∈ G are el-
ements such that g1(x) ∈ F and g2(x) ∈ F . Consider the sets

F1 = g−1

1 (F ); F2 = g−1

2 (F ),

and the points

p1 = g−1

1 (p); p2 = g−1

2 (p),

Then F1 consists of those points in R
2 that are as close to p1 as they are to

any other point in G(p). Likewise, F2 consists of those points in R
2 that are

as close to p2 as they are to any other point in G(p). Being in both F1 and
F2, we see that x is equidistant from p1 and p2.

We claim that p1 6= p2. suppose that p1 = p2. Then g−1
1 (p) = g−1

2 (p). But
then g1g

−1
2 (p) = p. But then g1 = g2. This contradiction shows that p1 6= p2.

So, x is equidistant from the two distinct points, p1 and p2.
If x1 lies in the interior of F then x lies in the interior of F1. But then

we can move x a little bit towards p2 and away from p1 to a new point y.
The new point y still belongs to F1, but y is closer to p2 than to p1. this
is a contradiction. The contradiction shows that x1 does not lie in the in-
terior of F . The same argument shows that x2 does not lie in the interior of F .

Convexity: Let q1, q2, q3... be a complete list of points of G(p) other than p.
Let Hn be the set of points that are at least as close to p as to qn. Then Hn

is a halfplane. Hence Hn is convex. But then F is the intersection of all the
sets Hn. The intersection of convex sets is convex. Hence F is convex. ♠

4 Gluing Diagrams

Let G be a discrete symmetry group and let F be a fundamental domain.
Let ∂F denote the boundary of F . Say that two points x and y in ∂F are
equivalent if they belong to the same orbit. That is, G(x) = G(y). Note that
∂F is already a polygon. It turns out that ∂F can be further divided into
smaller segments (if necessary) so that the segments are matched in pairs.
In other words, for each segment S1, there is another segment S2, having the
same length, such that each point on S1 is equivalent to a point on S2. The
equivalent points are in the same positions on the two segments. In other
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words, if p1 on S1 is halfway between the endpoints of S1, then the equivalent
point p2 ∈ S2 is halfway between the two endpoints of S2.

The pairing of segments is denoted by arrows. For instance, for the group
G discussed above, we could take F to be a unit square. Then the pairings
are as shown in Figure 3. The decoration of F with these arrows is called
the gluing diagram.

Figure 3

Exercise 4: Find a fundamental domain for the group G′, and then find the
gluing diagram for the fundamental domain you have found.

5 Orbifolds

Informally, a Euclidean orbifold is the space one gets from a pair (G, F ) by
cutting F out of the plane and gluing the sides of ∂F together according to the
gluing diagram. Here G is a planar symmetry group and F is a fundamental
domain for G. what is misleading about this informal definition is that the
orbifold associated to (G, F ) only depends on G and not on F . In other
words, if you took a different fundamental domain F ′ for the same group and
then did the (new) gluings, you would get the same orbifold.

More formally, a Euclidean orbifold OG for the group G is the space of
orbits of G, equipped with the quotient metric. To say that OG is the space

of orbits of G is to say that there is one point of OG for each orbit of G. If
you think about this, the space we get by gluing F together according to the
gluing diagram accomplishes exactly this goal. To say that OG is equipped

with the quotient metric is a bit harder to explain. What follows is a terse
account of the basic notions.

A metric on a set S is a function d : S × S → R with the following
properties:
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• d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.

• d(x, y) = d(y, x) for all x, y ∈ X.

• d(x, y) + d(y, z) ≤ d(z, y) for any x, y, z ∈ S.

For instance, the function d(x, y) = ‖x− y‖ is the usual Euclidean metric on
the plane.

A ball in a metric space is a set of the form

{y|d(y, x) = r}

for some choice of x ∈ S and some r > 0. We call x the center of the ball. In
Euclidean spaces, the balls are the usual round balls. However, in a general
metric space, the balls can be pretty wierd.

An isometry between metric spaces X and Y is a map f : X → Y such
that

dY (f(p), f(q)) = dX(p, q)

for all p, q ∈ X. We also insist that f is one-to-one and onto. If we drop the
one-to-one condition, then the map f is called an isometric submersion.

To say that OG is equipped with the quotient metric is to say that there
is a map φ : R

2 → OG with the following properties:

• For each x ∈ R
2, the point φ(x) is the point in OG corresponding to

the orbit of x.

• If x is not fixed by any element of G, then the map φ is an isometry
from some ball centered at x to some ball centered at φ(x).

• If x is fixed by some element of G, then φ is an isometric submersion
from some ball centered at x to some ball centered at φ(x).
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