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The purpose of this handout is to prove that Mobius transformations map
circles to circles.

1 Basic Definition and Group Structure

A Mobius transformation is a map of the form

f(x) =
Az + B

Cz + D
; AD − BC = 1. (1)

In class we considered the case when A, B, C, D are all real numbers, but
we will also consider the case when A, B, C, D are any complex numbers.
First we will verify that the Mobius transformations form a group using the
composition law.

Exercise 1: Suppose that f1 and f2 are Mobius transformations. Prove
that f1 ◦ f2 is also a Mobius transformation. Here f1 ◦ f2(z) = f1(f2(z)).

A rather tedious, but routine calculation, shows that

f1 ◦ (f2 ◦ f3) = (f1 ◦ f2) ◦ f3.

This fact has a conceptual explanation. Each Mobius transformation is rep-
resented by a 2 × 2 matrix. Composition of the Mobius transformations
corresponds to multiplication of the matrices. Matrix multiplication satis-
fies the associative law, and therefore so does the composition of Mobius
transformations.
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If we define the map

g(z) =
Dz − B

−Cz + A
, (2)

then f ◦ g(z) = z and g ◦ f(z) = z. In other words, g is the inverse of f .
What is going on here is that the matrices corresponding to f and g, namely

[

A B
C D

]

;
[

D −B
−C A

]

are inverses of each other.
Now we have all the ingredients to say that the Mobius transformations

form a group. Exercise 1 shows that the first axiom holds. The associative
lat is the second axiom. The map f(z) = z is the identity element. This is
the third axiom. Finally, inverses exist. This is the fourth axiom.

2 The Riemann Sphere

The Riemann sphere is defined to be the set C ∪ ∞. Here C is the set of
complex numbers, and ∞ is considered to be an extra point.

We really need the ∞ symbol to be included if we want to have our
Mobius transformations everywhere defined. For instance, if f(z) = 1/z,
then we want to say that f(0) = ∞ and f(∞) = 0.

In general, if you have a Mobius transformation f , you define

f(∞) = lim
n→∞

f(n). (3)

For instance, suppose that

f(z) =
2z + 1

3z + 2
.

Then

f(∞) = lim
n→∞

2n + 1

3n + 2
= lim

n→∞

2 + 1

n

3 + 2

n

=
2

3
.

After thinking about it for a minute, you see that

lim
n→∞

An + B

Cn + D
=

A

C
. (4)

We think of ∞ as lying on every straight line. If L is such a straight line,
then we call L ∪∞ a circle.
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3 Triples of Points

Say that a triple is a triple of points of the form (z1, z2, z3) where z1, z2, z3

all belong to C ∪∞, and

z1 6= z2 6= z3 6= z1.

That is, the points are all distinct.
Here is the main result in this section.

Theorem 3.1 Let (z1, z2, z3) and (z′
1
, z′

2
, z′

3
) be triples. Then there is a

unique Mobius transformation T such that T (z1, z2, z3) = (z′
1
, z′

2
, z′

3
).

The notation T (z1, z2, z3) = (z′
1
, z′

2
, z′

3
) means that T (z1) = z′

1
, etc.

We will prove the result by stringing together a number of smaller results.

Lemma 3.2 If (z1, z2, z3) is any triple, then there is a Mobius transforma-

tion T such that T (z1, z2, z3) = (0, 1,∞).

Proof: Step 1: Let

T1(z) =
1

z − z3

.

Then T1(z3) = ∞. Let w1 = T1(z1) and w2 = T1(z2). So, T1 maps the triple
(z1, z2, z3) to the triple (w1, w2,∞).
Step 2: Let

T2(z) = z − w1.

Note that T2(∞) = ∞ and T2(w1) = 0. Let u2 = w2 − w1. Then T2 maps
the triple (w1, w2,∞) to (0, u2,∞).
Step 3: Let

T3(z) =
z

u2

.

Then T3(∞) = ∞ and T3(u2) = 1 and T3(0) = 0. So, T3 maps the triple
(0, u2,∞) to (0, 1,∞).
Step 4: If we let T = T3 ◦ T2 ◦ T1 then

T (z1, z2, z3) = T3(T2(T1(z1, z2, z3))) =

T3(T2(w1, w2,∞)) = T3(0, u2,∞) = (0, 1,∞).

That’s the end of the proof. ♠
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Lemma 3.3 Suppose (z1, z2, z3) and (z′
1
, z′

2
, z′

3
) are any two triples. There

is a Mobius transformation that maps (z1, z2, z3) to (z′
1
, z′

2
, z′

3
).

Proof: By the previous result, there is a Mobius transformation T such that
T (z1, z2, z3) = (0, 1,∞). Likewise, there is a Mobius transformation T ′ such
that T ′(z′

1
, z′

2
, z′

3
) = (0, 1,∞). Let S = (T ′)−1 ◦ T. Then

S(z1, z2, z3) = (T ′)−1(T (z1, z2, z3)) =

(T ′)−1(0, 1,∞) = (z′
1
, z′

2
, z′

3
).

The point here is that T ′ maps (z′
1
, z′

2
, z′

3
) to (0, 1,∞), to the inverse map

(T ′)−1 maps (0, 1,∞) to (z′
1
, z′

2
, z′

3
). So, S is the Mobius transformation that

does the job for us. ♠

So far, we’ve worked out the existence of a Mobius transformation that
maps (z1, z2, z3) to (z′

1
, z′

2
, z′

3
). The next step is to show that it is unique.

Lemma 3.4 Suppose that T is a Mobius transformation with the property

that T (0, 1,∞) = (0, 1,∞). Then T is the identity. That is, T (z) = z.

Proof: Let’s write

T (z) =
Az + B

Cz + D
.

Since T (0) = 0 we must have B = 0. Since T (∞) = ∞ we must have C = 0.
Now we know that T (z) = (A/D)z. But T (1) = 1. Therefore, A = D. Since
AD −BC = 1, we must have either A = D = −1 or A = D = 1. Both cases
lead to the same map T (z) = z. ♠

Now for the end of the proof. Suppose that T1(z1, z2, z3) = (z′
1
, z′

2
, z′

3
).

Likewise suppose that T2(z1, z2, z3) = (z′
1
, z′

2
, z′

3
). Let U be a Mobius trans-

formation such that U(z′
1
, z′

2
, z′

3
) = (0, 1,∞). Let S1 = U ◦T1 and S2 = U ◦T2.

Note that S1 and S2 both map (z1, z2, z3) to (0, 1,∞). Therefore S−1

1 ◦ S2

maps (0, 1,∞) to (0, 1,∞). Therefore S−1

1 ◦ S2 is the identity. But S−1

1 ◦ S1

is also the identity. So S−1

1 ◦ S1 = S−1

1 ◦ S2. But this means that S1 = S2.
Since S1 = S2 we have U ◦ T1 = U ◦ T2. But then T1 = T2.

In our last argument we used the cancellation property of groups several
times: If AB = AC then B = C.

4



4 Real Triples

Say that a triple (z1, z2, z3) is real if each of the points is either a real number
of else ∞. For instance (0, 1,∞) is a real triple. Say that a Mobius transfor-
mation is real if the coefficients defining it, namely (A, B, C, D), are all real
numbers.

Exercise 2: Prove the following theorem, which is almost exactly like what
we proved in the last section: If (z1, z2, z3) and (z′

1
, z′

2
, z′

3
) are real triples,

then there is a unique real Mobius transformation T such that T (z1, z2, z3) =
(z′

1
, z′

2
, z′

3
). (Hint: Just take all the arguments in the previous section and

put the word real before each occurance of the word mobius transformation.)

5 Closed Loops

The set R ∪∞ is a special example of a circle in the Riemann sphere. Say
that a closed loop is a set of the form M(R ∪ ∞) where M is a Mobius
transformation. We want to prove that closed loops are actually circles. Here
we will sketch the proof of a preliminary result about these closed loops.

Lemma 5.1 Suppose that X is a closed loop, but not a circle. Then there

is a Mobius transformation T such that T (X) and X intersect in at least 3
points, but X 6= T (X). In fact, T can be taken as a rotation.

Proof: Figure 1 shows the idea of this proof. Let X be the region in the
plane bounded by X. Suppose X is not a circle. Then X is not a disk.
Let D1 be any choice of the largest possible disk contained in X. Then D1

intersects X in at least 2 points. Otherwise, we could make D1 larger. Like-
wise, let D2 be any choice of the smallest possible disk containing X. Then
D2 intersects X in at least 2 points. Let D3 be any disk that contains D1

and is contained in D2 but is not equal to either one. Let Y be the circle
that bounds D3. Then Y intersects X in at least 3 points, but Y 6= X. The
point here is that any arc of X that travels from the boundary of D1 to the
boundary of D2 must touch Y . If T is a small rotation about Y then T (X)
and X intersect in at least 4 points, but are unequal. These rotations are all
Mobius transformations. They all have the form T (z) = uz + v where u is a
unit complex number. ♠
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Figure 1: Loops and Circles

6 The Image of the Reals

Here is the main result in this section.

Theorem 6.1 If M is any Mobius transformation, then M(R∪∞) is a cir-

cle. Also, if C is any circle in C, then there is some Mobius transformation

T such that T (R ∪∞) = C.

In the above theorem, we mean the generalized sense of the word circle,
in which L ∪∞ counts as a circle when L is a straight line.

Lemma 6.2 Suppose that M(R∪∞) contains ∞. Then M(R∪∞) has the

form L ∪∞, where L is a straight line.

Proof: Let’s write

M(z) =
Az + B

Cz + D
.

If M(∞) = ∞, then C = 0. This means that M(z) = (A/D)z + (B/D).
This map is just a dilation followed by a translation. In this case, M(R) is
clearly just another line. All we are doing is expanding the picture, rotating
it, and translating it. So, M(R ∪∞) = L ∪∞ for some straight line L.

Let’s suppose that M(∞) 6= ∞. Then there is some point t ∈ R such
that M(t) = ∞. But then there is a real Mobius transformation T such
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that T (∞) = t. Consider the map M ′ = M ◦ T . Since T is a real Mobius
transformation, we have T (R ∪∞) = R ∪∞. This means that

M ′(R ∪∞) = M(T (R ∪∞)) = M(R ∪∞).

But M ′(∞) = ∞. By the previous case, we see that M ′(R ∪∞) = L ∪∞,
where L is a straight line. But M ′(R ∪∞) = M(R ∪∞). ♠

Lemma 6.3 Suppose that M(R∪∞) does not contain ∞. Then M(R∪∞)
is a circle.

Proof: Let X = M(R ∪ ∞). Suppose that X is not a circle. By Lemma
5.1, there is some Mobius transformation T such that T (X) and X intersect
in 3 points, but T (X) 6= X.

Let (z1, z2, z3) be a triple that is contained in both X and T (X). Consider
the two maps M1 = M and M2 = T ◦ M . Note that M1(R ∪∞) = X and
M2(R ∪∞) = R(X).

Let (a1, a2, a3) be the real triple such that M1(a1, a2, a3) = (z1, z2, z3).
Likewise, let (b1, b2, b3) be the triple such that M2(b1, b2, b3) = (z1, z2, z3).
There is a real Mobius transformation S such that S(a1, a2, a3) = (b1, b2, b3).
Consider the maps

M ′

1
= M1; M ′

2
= M2 ◦ S.

Note that M ′

1
and M ′

2
both map (a1, a2, a3) to (z1, z2, z3). From our unique-

ness theorem above, we see that M ′

1
= M ′

2
. But

M ′

2
(R ∪∞) = M2 ◦ S(R ∪∞) = M2(R ∪∞) = T (X).

On the other hand

M ′

1
(R ∪∞) = M1(R ∪∞) = X.

Since M ′

1
= M ′

2
we must have X = T (X). This contradicts the fact that

T (X) 6= X. ♠

Now we know that M(R∪∞) is always a circle, in the generalized sense.
In other words, we count L ∪∞ as a circle when L is a straight line.
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Lemma 6.4 Let C be any circle in C, the complex plane. Then there is a

Mobius transformation M such that M(R ∪∞) = C.

Proof: Consider the Mobius transformation

T (z) =
1

z − i
.

Then T (i) = ∞. Hence T (R∪∞) does not contain ∞. Let C ′ = T (R∪∞).
We know that C ′ is some circle in C, but perhaps not the one we want.

We can find a Mobius transformation S such that S(C ′) = C. This
just amounts to rotating, dilating, and translating the plane. But then let
M = S ◦ T . We have M(R ∪∞) = S(C ′) = C. ♠

7 The End of the Proof

Now we can finish the proof that Mobius transformations map circles to
circles. Suppose that M is a Mobius transformation and C is a circle. We
want to prove that M(C) is a circle. We can find a Mobius transformation
T such that T (R ∪∞) = C. Consider M ′ = M ◦ T . We have

M ′(R ∪∞) = M(C).

But M ′(R ∪∞) is a circle, by the result in the previous section. So, M(C)
is circle.
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